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Abstract: The Circular Electron Positron Collider (CEPC) is a large-scale particle accelerator designed to collide
electrons and positrons at high energies. One of the primary goals of the CEPC is to achieve high-precision measure-
ments of the properties of the Higgs boson, facilitated by the large number of Higgs bosons that can be produced
with significantly low contamination. The measurements of Higgs boson branching fractions into bb/cc/gg and
1T /WW*/ZZ*, where the W or Z bosons decay hadronically, are presented in the context of the CEPC experiment,
assuming a scenario with 5600 fb™' of collision data at a center-of-mass energy of 240 GeV. In this study the Higgs
bosons are produced in association with a Z boson, with the Z boson decaying into a pair of muons (u*u~), which
have high efficiency and high resolution. In order to separate all decay channels simultaneously with high accuracy,
the Particle Flow Network (PFN), a graph-based machine learning model, is considered. The precise classification
provided by the PFN is employed in measuring the branching fractions using the migration matrix method, which ac-
curately corrects for detector effects in each decay channel. The statistical uncertainty of the measured branching ra-
tio is estimated to be 0.55% in H — bb final state, and approximately 1.5%-16% in H — c¢/gg/tt/WW*/ZZ* final
states. In addition, the main sources of systematic uncertainties to the measurement of the branching fractions are

discussed.
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I. INTRODUCTION

The discovery of the Higgs boson by the ATLAS and
CMS collaborations at the Large Hadron Collider (LHC)
in July 2012 [1, 2] marked a breakthrough in particle
physics, providing deeper insights into the Standard Mod-
el (SM). While SM has been successful in describing the
fundamental building blocks of matter and their interac-
tions, several unanswered questions remain, such as the
origin of dark matter and the inability to unify all funda-
mental forces. As a promising gateway to new physics,
precise measurements of the Higgs boson’s properties are
essential for testing the Standard Model (SM) and uncov-
ering potential hints of physics beyond the Standard
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Model (BSM).

In comparison with the LHC, which relies on high-en-
ergy proton-proton (pp) collision, a lepton collider offers
more energy control and significantly lower pileup con-
tamination (average number of pp interactions per beam
crossing), serving as a Higgs factory. Several lepton col-
liders have been proposed with the aim of reconfirming
the discovery of the Higgs-like particle and studying the
properties of Higgs boson with high precision, including
CLIC [3], FCC-ee [4] and ILC [5]. Among the aforemen-
tioned colliders, the Circular Electron Positron Collider
(CEPC) [6, 7] was proposed by the Chinese High Energy
Physics Community in 2012. It is designed to operate at a
center-of-mass energy of 240 GeV to 250 GeV with an
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integrated luminosity of 5600 fb~'. The main Higgs pro-
duction process in CEPC will be via associated produc-
tion with a Z boson, e*e~ — ZH, where the Z boson is ex-
pected to undergo further decay.

According to theoretical predictions, the branching
fractions for the decay of a 125 GeV Higgs boson into
bb, cc, gg, 1T, WW*, ZZ* are 57.7%, 2.91%, 8.57%,
6.32%, 21.5% and 2.64%, respectively [8—10]. The Higgs
boson decay into bb, WW*, ZZ* were studied by the AT-
LAS Collaboration using a 13 TeV pp Run 2 dataset col-
lected at a center-of-mass energy of 13 TeV with a lumin-
osity of 139 fb™! at the LHC. The branching fractions
were measured to be 0.53+0.08, 0.257+59%,
0.028 +0.003, respectively [11].

The work presented here focuses on the determina-
tion of the branching fractions of the Higgs boson decay-
ing into a pair of b-quark or c-quark, gluons, 77, WW* or
ZZ* in associated Z(u*u)H production, where the W or Z
bosons decay hadronically, at the CEPC with a center-of-
mass energy of 240 GeV and integrated luminosity of
5600 fb'. The branching fraction measurements for
H — bb/cc/gg/tt/WW*/ZZ* will be conducted simultan-
eously considering the major background sources. Since
the dominant decay modes of WW* and ZZ* are hadronic,
all the six processes result primarily in final states with
jets, making it challenging to distinguish between them.
Such difficulty is addressed by employing the Particle
Flow Network (PFN) [12], which is used for jet tagging,
due to its ability to separate these processes. In contrast
with traditional jet tagging methods based on QCD the-
ory, which measure branching fractions channel by chan-
nel, PFN achieves separation of all channels in a single
implementation with high accuracy.

This paper is organized as follows: Section 2 provides
a brief description of the collider and the MC simulations.
Event selection requirements are detailed in Section 3.
Section 4 discusses the modeling using Particle Flow
Networks, with their performance evaluated in Section 5.
The procedure for determining the branching fractions is
explained in Section 6, followed by the results in Section
7, where the measurements and their associated statistic-
al and systematic uncertainties are discussed. A brief
summary is given in Section 8.

II. CEPC DETECTOR AND SIMULATION
SAMPLES

The CEPC is a circular electron positron collider with
total circumference of 100 km. The center of mass en-
ergy in CEPC could reach the Z pole (91.2 GeV), the
WW threshold (161 GeV) and the Higgs factory (240
GeV). The CEPC detector employs a highly granular
calorimetry system to separate the particle showers, and a
low material tracking system to minimize the interaction
of the final state particles in the tracking material. It con-

tains a vertex detector with high spatial resolution, a
Time Projection Chamber (TPC), a silicon tracker, a silic-
on-tungsten sampling Electromagnetic Calorimeter
(ECAL), and a steel-Glass Resistive Plate Chambers
(GRPC) sampling Hadronic Calorimeter (HCAL). The
CEPC detector magnet is an iron-yoke-based solenoid
which provides an axial magnetic field of 3 Tesla at the
interaction point. The outermost part of the detector is a
flux return yoke embedded with a muon detector, which
identifies muons inside jets. Further details can be found
in Ref. [7].

The signal and background events are both generated
using the Monte Carlo (MC) generator Whizard 1.95 [13]
and Pythia6 [14] for the fragmentation and hadronization.
The response of the CEPC detector is simulated using a
Delphes-based software suite for fast detector simulation
[15], according to the performance of the baseline detect-
or in‘the CEPC CDR [7]. The resolution of impact para-
meter in the r¢ plane is given as:

10
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The resolution of particle transverse momenta is given as:
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In this analysis, Higgs production via ZH process is
considered to be the dominant process with Z decaying to
a pair of muons and Higgs boson decaying in pairs of
bb/cc/gg/tT/WW*|ZZ* is the signal process, while in-
clusive decays of H— WW* and H — ZZ* are con-
sidered. The backgrounds originate from processes with
two-fermion and four-fermion final states. The two-fer-
mion background processes include I/, vv and gg, refer-
ring to final states with leptons (I), neutrinos (v) and
quarks (q). The four-fermion background includes (ZZ),,,
(ZZ), (ZZ)g, (WW)y, (WW),, (WW)g, (SZ), (SZ)g,
SW), (SW)g, (mix), and (mix);, referring to final states
with leptons (1), hadrons (h) and semi-leptons (sl). Table
1 presents the cross sections of the signal processes. Ta-
ble 2 provides a summary of the detailed decay modes of
the two-fermion and four-fermion backgrounds along
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Table 1. Cross sections for the Higgs production via ZH process, where Z boson decays to a muon pair and the Higgs boson decays
to bb/cc/gg and 7T/WW*/ZZ*, where the W or Z bosons decay hadronically.

Process Higgs decays Cross section/fb
H—bb 3.91
H— cc 0.20
H— gg 0.58
ZH process
H—> 1T 0.42
H - Ww* 1.46
H—ZZ* 0.18

Table 2. Detailed decay modes for two-fermion (I, vv and ¢g) and four-fermion ((ZZ),, (Z2);, (ZZ)g, (WW),, (WW);, (WW)g, (SZ);,
(S2Z)s1, SW)i, (SW)y, (mix), and (mix);) backgrounds and their cross sections.

Category Name Decay modes Cross section/fb
ete sete 24770.90
1 eteT - utuT 5332.71
ete > thr 4752.89
ete” > vV, 45390.79
vy ete” s vy, 4416.30
Two-fermion background ete” = v, 4410.26
ete” - un 10899.33
ete” > dd 10711.01
qq ete” > ¢t 10862.86
ete” = 55 10737.84
ete” — bb 10769.78
Z — c¢,Z — dd/bb 98.97
7ZZ — dddd 233.46
Z2)
ZZ — uiiuit 85.68
Z — uit,Z — s5/bb 98.56
Z-optu, Z - utu 15.56
Zo1tt,Z -1ttt 4.61
(Z22), AT WTRVASAA 19.38
Z-thr Z o ptu 18.65
Z -1, Z > vy 9.61
Z—-utu~,Z—dd 136.14
Four-fermion background
Z - utu,Z - uii 87.39
Z > w,Z—dd 139.71
(ZZ)51
Z > vv,Z = uil 84.38
Z—-ttr,Z—dd 67.31
Z - 11,7 > uii 41.56
WW — uubd 0.05
WW — ccbs 5.89
(WW)n WW — ccds 170.18
WW — cusd 3478.89
WW — uusd 170.45

Continued on next page
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Table 2-continued from previous page

Category Name Decay modes Cross section/fb
(WW), WW — 4leptons 403.66
W — uv,, W — qg 242343
(WW)g _ _
W — 1., W — qq 2423.56
ete™,Z —ete” 78.49
ete , Z - utu 845.81
ete”,Z— v 28.94
(SZ)
ete”,Z—- 1t 147.28
viv ., Z - utu 43.42
AR AVASS oF 14.57
ete , Z—dd 125.83
Four-fermion background ete™,Z > ui 190.21
SZ)s -
vty ,Z—>dd 90.03
vV, Z — uii 55.59
eve, W — v, 436.70
(SW)
eve, W — vy 43593
SW)g eve, W — qq 2612.62
ZZ|WW — ccss 1607.55
(mix)p
ZZI|WW — uudd 1610.32
ZZIWW — upv,vy, 221.10
(mix); ZZ|WW - 1t1veve 211.18
SZ/SW — eev,v, 249.48

with their cross sections.

III. EVENT SELECTION

The following criteria are applied to select events for
further analysis. Each event must contain at least two op-
positely charged tracks, reconstructed as a muon pair
(u*u). The muon candidates in each event are required
to be isolated by satisfying E2 . <4E,+12.2GeV [17],
where E,. 1s the sum of energy within a cone
(€08 0cone > 0.98) around the muon. In cases where more
than two muons are selected, the muon pair with the in-
variant mass closest to the Z boson mass is chosen as the
Z candidate, corresponding to a Z-mass window of 75
GeV to 105 GeV. The invariant mass of the recoil sys-

tem, My, against the Z boson candidate is defined as:

M = (V5= By —E, P~ (Br+ B (5)
where +/s =240 GeV while E and B represent the en-
ergy and momentum of the muons, respectively. Based
on that, Myes°! must fall within the Higgs mass window of
110 GeV to 150 GeV. To further reduce the two-fermion
background, the polar angle of muon pair system is re-

quired to be in the range of |cosf,+,-| < 0.996.

Figure 1 shows the invariant mass distribution of the
selected muon pair, and Figure 2 presents the invariant
mass distribution of the muon pair recoil system for both
signal and background events, after the isolation and
muon pair criteria have been applied. In both distribu-
tions, a high signal efficiency of more than 90% is
achieved, while the background contributions are signi-
ficantly suppressed, following the mass window selec-
tions.

Table 3 presents the event selection efficiencies for
various signal and background processes, detailing the ef-
ficiency at each selection step relative to the previous re-
quirement. In addition, the total efficiency is defined as
the ratio of the number of events satisfying all selection
criteria to the total number of events expected from the
process considered (signal or background). For signal
processes, a high efficiency of over 80% is observed. In
contrast, two-fermion background processes, primarily //,
exhibit a total efficiency of around 0.3% and other contri-
butions are negligible. Four-fermion backgrounds, such
as (Z2),, (ZZ)y and (WW),, have total efficiencies of
3.3%, 1.3% and 2.1%, respectively, while (Z2Z),, (WW),,
(WW),; are found to be negligible.
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Fig. 1. (color online) The invariant mass distributions of the

muon pair for signal and background events, after applying
the muon pair and isolation selection criteria, are shown. The
signal is well preserved, with a high efficiency exceeding
90%, while background contributions are largely suppressed.
Signal events are normalized to 1000 times the expected
yields, and background events are normalized to their expec-
ted yields in data with an integrated luminosity of 5600 fb™'.

BiotHoo [J1o*Hee [H10°Hgg
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Bso, Wi, Wi
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Fig. 2. (color online) The invariant mass distributions of the
muon pairrecoil system for signal and background events, fol-
lowing the muon pair and isolation selection criteria, are
shown. The signal is well preserved, with an efficiency ex-
ceeding 90%, while background contributions are signific-
antly suppressed. Signal events are normalized to 1000 times
the expected yields, and background events are normalized to
their expected yields in data with an integrated luminosity of
5600 fb .

Table 3. The cutflow selection efficiency is shown for signal and background processes. The relative selection efficiency after each
requirement applied and the total selection efficiency for each process are listed.
H — bb H—cc H—gg H— 17 H— WW* H— 77"
Simulated events 1.00x10°  1.00x10° 1.00x10°  3.72x10° 1.00x 10° 1.00x 10°
Muon pair 94.45% 94.24% 94.17% 94.94% 94.91% 94.43%
Isolation 91.47% 92.76% 93.31% 94.47% 93.77% 93.99%
Z-mass window 96.28% 96.41% 96.41% 92.95% 93.03% 95.28%
H-mass window 99.64% 99.66% 99.65% 98.98% 98.88% 99.36%
lcosf,+,-| < 0.996 99.66% 99.66% 99.66% 99.64% 99.65% 99.65%
Total efficiency 82.59% 83.70% 84.14% 81.95% 81.58% 83.72%
I} vy qq Z2), (Z2), Z2)y (WW), (WW), (WW)g
Simulated events 120x108  3.03x107  3.03x107  3.00x10°® 1.00x107  2.60x107  250x107  2.00x107  3.00x 10’
Muon pair 11.95% 0 0.05% 0.08% 46.21% 18.91% 0.00% 11.03% 0.16%
Isolation 91.67% 0 0.40% 2.60% 74.09% 66.49% 0 96.46% 3.68%
Z-mass window 41.82% 0 0 0 67.68% 71.45% 0 34.48% 17.75%
H-mass window 6.55% 0 0 0 14.52% 15.02% 0 57.50% 36.76%
|cosf,+,-| < 0.996 90.62% 0 0 0 98.83% 99.56% 0 98.85% 99.15%
Total efficiency 0.27% 0.00% 0.00% 0.00% 3.32% 1.34% 0.00% 2.09% 0.00%
82y SZ)q (SW), EW)y (mix); (mix);
Simulated events 8.18x107  3.20x10° 3.49%10°  1.05x107 1.29% 107 1.17x 107
Muon pair 9.92% 0.02% 0 0.00% 0.00% 29.38%
Isolation 44.68% 0 0 0 0 60.77%
Z-mass window 18.46% 0 0 0 0 13.78%
H-mass window 31.71% 0 0 0 0 35.94%
|cosf,+,-| < 0.996 90.02% 0 0 0 0 62.79%
Total efficiency 0.36% 0.00% 0.00% 0.00% 0.00% 0.19%
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IV. MODELING WITH PARTICLE FLOW NET-
WORKS

Machine learning algorithms, particularly those with
strong momentum in data analysis, improve their per-
formance as they gain more experience through observa-
tional data or interactions with their environment. In
particle physics, several neural network models, such as
Particle Flow Networks (PFN), Particle Net [18] and
Particle Transformer [19] have demonstrated excellent
performance in tasks like event classification and jet tag-
ging.

Inspired by point clouds and DeepSet theory [20], the
Ref. [12] introduced Energy Flow Networks (EFN) and
then developed Particle Flow Networks which could ac-
commodate inputs of all information at particle level.
This end-to-end learning approach eliminates the depend-
ency on jet clustering and e/y isolation. In the DeepSet
conception, permutation invariance and equivariance are
essential for handling unordered sets of data. The EFN re-
lies on summation, a symmetric operation that ensures in-
variance across the elements in the set. PFN defines a
mapping for encoding events, defined as F(O ), ®(py)),
where p represents particle features such as rapidity or
transverse momentum, and ®(p) is a latent space repres-
entation of those features. The function F maps the en-
coded representations to the network's output. The archi-
tecture of the PFN model is defined by the number of lay-
ers and neurons within both F and ©.

In configuring the PFN model; after evaluating vari-
ous configurations, parameters yielding the best perform-
ance were chosen. The function ®(p) consists of three
layers where the number of neurons in each layer is 64,
64, and 50 neurons. In addition, the function F also con-
tains three layers with the number of neurons set to 64,
64, and 40 neurons. The fully connected layer is directly
used in both ® and F. Each layer uses the ReLU activa-
tion function [21] and adam optimizer [22]. The SoftMax
activation function is applied to the output layer.

Based on the seclection criteria discussed in Section 3,
the training process involves a twelve-classification task.
The signal includes six distinct Higgs decay channels,
while the background contains one two-fermion back-
ground class (/) and five four-fermion classes ((ZZ),,
(ZZ)g, WW),, (§Z); and (mix);). During the training pro-
cedure, 300,000 events for each process are provided to
the model whose weights are all equal to 1, with data split
into training, validation and test sets in an 8:1:1 ratio. The
PFN is an end-to-end neural network designed to directly
utilize the information of the particles to perform event
classification. The training variables include the energy
of the particle, momentum, ¢ which is the azimuth angle,
cos® where 0 is the polar angle, particle identification
number (PID), and impact parameters including D, and
Zy, which represent coordinates in cylindrical coordinate

system.

For the remaining hyperparameters in the training, the
number of epoch is set to 200, with a batch size of 1000
and a learning rate of 0.001. The loss function uses cross-
entropy for multi-class classification problems, while the
SoftMax function in the final output layer calculates the
score for each class of a given event, which can be used
for further analysis.

V. THE MODEL PERFORMANCE

In order to assess the performance of the model, sev-
eral aspects are considered as described in the following.
After each epoch of training, the neural network assesses
itself using a validation set, generating a loss-accuracy
curve that tracks changes in accuracy throughout the
training process. This curve is particularly useful for de-
tecting potential overfitting. As shown in Figure 3, the
loss and accuracy curves converge towards the end of the
training and the high overlap of the training and valida-
tion set curves indicates that the model has strong gener-
alization capabilities.

The Receiver Operating Characteristic Curve (ROC)
is a graphical representation of the discriminant power of
a classifier model as the threshold is varied. Figure 4 de-
picts the True Positive Rate (TPR) versus the False Posit-
ive Rate (FPR) at various discrimination thresholds. The
goal of the training is to maximize the TPR while minim-
izing FPR; therefore the Area Under the Curve (AUC)
value serves as an important metric for evaluating the
performance of the model. The area under the ROC curve
ranges from 0 to 1, where a value of 1 indicates perfect
classification and a value of 0.5 suggests a random classi-

model accuracy/loss

accuracy/loss

0 25 50 75 100 125 150 175 200

Fig. 3.  (color online) The Loss-accuracy vs epochs curves.
The upper two lines are the accuracy curves for the training
and validation sets, while the bottom lines are the loss curves
for the training and validation set.
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4 ROC of Htt (AUC = 0.998)
e —— ROC of (52), (AUC = 0.984)
/ —— ROC of (mix), (AUC = 0.976)

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 4.  (color online) ROC curves for signal and back-
ground processes used in classification. The solid lines are the
ROC curves of each process considered, and the dashed lines
are the ROC curves of the micro and macro average. The
dashed black line represents random classification. As can be
seen, AUC vaule for each class is above 0.94, indicating a
strong classification of the model.

fication, indicating that the classifier lacks discriminat-
ory power. As can be seen in Figure 4, the' AUC vaule for
each class is above 0.94, indicating a strong classifica-
tion performance and the model's ability to effectively
distinguish between classes.

The classifier outputs are obtained from a nine-unit
layer using the SoftMax function. Considering the cat-
egory H — bb as an example, the SoftMax function com-
putes twelve scores for each event, representing the prob-
ability distribution for each process being classified as
H — bb. As illustrated in Figure 5 (b), in the region
where the score exceeds 0.8, 99% of the events corres-
pond to the H — bb signal process, while only 1% of the
events originate from the (ZZ),, background. It can be
due to the Z — u*u~,Z — uit/dd processes in the (ZZ)
background, which have the similar properties with the
signal, making the classification more challenging. In ad-
dition, the PFN has similar performance in other categor-
ies. Furthermore, the PFN demonstrates similar perform-
ance across other categories. In order to understand the
twelve-dimensional more intuitively, the t-SNE al-
gorithm [23] is applied to reduce the dimension of the
dataset.

As a non-linear dimension reduction algorithm, t-SNE
constructs a similarity matrix and aims to preserve the re-
lationships between data points in both high-dimensional
and low-dimensional spaces. The differences in high di-
mensions are represented as distances in two or three di-

mensions. As shown in Figure 6, (WW), and (SZ), pro-
cesses are relatively well separated, while signal process
as H—cc, H— gg, H— WW* overlap significantly. In
addition, H — ZZ* process shows similarity to all other
signal processes, indicating room for further optimiza-
tion in model training.

In supervised learning, the migration matrix is used to
compare the classified model’s predictions and the true
values. Based on the twelve classification task, there are
twelve reconstructed categories, which refer to the pro-
cess with the highest score for a given event. In Figure 7,
the diagonal elements of ‘the matrix represent the cor-
rectly classified rates, indicating the purity of each cat-
egory, while the off-diagonal elements show the misclas-
sification rates. The sum of values in each row equals 1.
The decays of H - WW* and H — ZZ* are considered in-
clusively, while the hadronic decays can be well separ-
ated from non-hadronic decays by the classifier. The mi-
gration matrix reflects the overall high accuracy of the
model.

VI. THE DETERMINATION OF THE BRANCH-
ING FRACTIONS

The migration matrix contains the information of both
correct and incorrect classifications and can be unfolded
to represent the generated number of signals [24]. This
matrix method is therefore used to measure the branch-
ing fractions of Higgs decays. By considering all signal
and background processes, the generated numbers of
events for each process can be calculated as in the follow-
ing:

le Ny
NSZ Ny
= (M7, M) x (6)
Npy ¢ T
th Np2

where n; and N; are the expected and generated number
of events of class i, respectively. The M, is a diagonal

matrix containing the selection efficiencies, while M,
denotes the transposed migration matrix:
€11 €121
T _
Mmig - (7)
€112 €12,12

where ¢; is the rate at which state i is reconstructed as
state j, which is just the corresponding element of the
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Fig. 5.
ity distribution for processes identified within each category.

transposed migration matrix. Besides, #n; is obtained from
MC samples processed by the PFN model. The branch-
ing fraction for each process is then calculated by divid-
ing the corresponding generated number of events by the
total number of events from Higgs decays.

VII. RESULTS

In this analysis, by using the PFN method to separate
events in u*u H process, the branching fractions of
H — bb/cc/gg/TT/WW*/ZZ* at the CEPC, with a center-
of-mass energy of 240 GeV and luminosity of 5600 fb™',
are measured to be 0.5770, 0.0291, 0.0857, 0.0632,
0.2150 and 0.0264, with the statistical uncertainty of
0.55%, 8.59%, 3.03%, 2.85%, 1.58% and 15.81%, re-
spectively.

The statistical uncertainty is estimated by using

0.4

(SZ), score

0.4 0.6
(mix); score

0.6 0.8 1.0 0.0 0.2 0.8 1.0

(color online) The distributions of classifier outputs for twelve categories are shown. Each histogram represents the probabil-

toyMC method. The number of events are fluctuated
based on a Poisson distribution and then applied to a mul-
tinomial distribution according to the migration matrix
and selection efficiency. A least squares fit of the meas-
ured branching fractions to theoretical fractions is per-
formed 50k times, as shown in Equation 8

®)

where Y; is theoretical branching fraction of process i,
and 5, is the measured branching fraction with an error of
o;. The final results are fitted with guassian function of
Higgs decays, where the mean value represents the fitted
branching fraction and ¢ denotes the statistic error. The
fit results and statistical uncertainties are summarized in
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Fig. 6. (color online) Classification performance visualized

using t-SNE algorithm. Different colored squares represent
distinct processes, with two t-SNE features corresponding to
similarity dimensions. The distance between squares reflects
the difference between processes.

Table 4.

To account for the systematic uncertainty, the resolu-
tion of transverse momentum of the detector was adjus-
ted by increasing it by 2% to represent for differences
between real data and simulated samples. By applying the
previous PFN model to MC samples generated with up-
dated resolutions, the differences in branching fractions
before and after the resolution change are considered as
the systematic uncertainty. The systematic uncertainties
for the branching fractions are estimated to be 0.21%,
3.88%, 2.74%, 1.39%, 0.18% and 19.09% for
bb/cc/gg/tT/WW*/ZZ* final states, respectively.

VIII. CONCLUSION

The Higgs boson branching fractions into bb/cc/gg
and t7/WW*/ZZ*, where the W or Z bosons decay had-
ronically, via the Z(u*u~)H process are studied using the
PFN method at a center-of-mass energy of 240 GeV and
a luminosity of 5600 fb™' at the CEPC. Simulated
samples of "two-fermion" and "four-fermion" processes
are considered as backgrounds. The PFN model demon-
strates strong performance in classifying different chan-

GIReYRZ 6.29% 0.83% 4.85% 0.55% 0.00% 0.00% 1.10% 0.00% 0.00% 0.00% 0.00%
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0.8
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Fig.7. (color online) The migration matrix for the 12 classes

is shown. The horizontal axis represents the prediction of the
model for each event in the test set, while the vertical axis in-
dicates the true labels. The sum of values in each row equals
l.

nels and generalizing across processes. The statistical un-
certainty of branching fractions of
H — bb/cc/gg/tT/WW*|ZZ* processes are estimated to
be approximately 0.55%, 8.59%, 3.03%, 2.85%, 1.58%
and 15.81%, respectively. Compared to a previous ana-
lysis [17], which reported statistical uncertainties of
1.1%, 10.5% and 5.4% for the branching fractions of
H — bb/cc/gg process, the PFN method achieves higher
precision in a single execution, due to its better perform-
ance and deeper data exploitation. By increasing the
transverse momentum resolution by 2% to account for
differences between real data and simulated samples, the
systematic uncertainties for the branching fractions are
estimated to be 0.21%, 3.88%, 2.74%, 1.39%, 0.18% and
19.09% for bb/cc/gg/tT/WW*/ZZ* final states, respect-
ively. This study achieves highly precise measurements
of decay branching fractions of Higgs, helping to in-
crease the understanding of the properties of the Higgs
boson and further testing of the Standard Model.
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