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Abstract: A formalism has been developed for calculating the signal of violation of time-reversal invariance,
provided that space-reflection (parity) invariance is conserved during the scattering of tensor-polarized deuterons on
vector-polarized ones. The formalism is based on the Glauber theory with the full consideration of spin dependence

of NN elastic scattering amplitudes and spin structure of colliding deuterons. The numerical calculations have been

carried out in the range of laboratory proton energies of 7 = 0.1-1.2 GeV using the SAID database for spin amp-

litudes and in the energy region of the SPD NICA experiment corresponding to the invariant mass of the interacting

nucleon pairs +/syy = 2.5-25 GeV, using two phenomenological models of pN, elastic scattering. It is found that

only one type of the time-reversal non-invariant parity conserving NN interaction gives a non-zero contribution to
the signal in question, that is important for isolating an unknown constant of this interaction from the corresponding

data.
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I. INTRODUCTION

Discrete symmetries with respect to the time reversal
(T), space reflection (P) and charge conjugation (C) play
a key role in theory of fundamental interactions and astro-
physics. Under CPT-symmetry which takes place in loc-
al quantum field theory [1, 2], the violation of 7T-invari-
ance means also the violation of CP-symmetry, which is
necessary to explain the baryon asymmetry of the Uni-
verse [3]. CP violation observed in decays of K, B and D
mesons is consistent with the standard model (SM) of
fundamental interactions, but it turns out to be far from
sufficient to explain the observed baryon asymmetry [4].
This means that there must be other sources of CP viola-
tion in nature beyond the SM.

One of these sources is associated with the electric di-
pole moments (EDM) of free elementary particles, neut-
ral atoms and the lightest nuclei, the search for which is
given great attention during the last decades [5]. An ob-
servation of a non-zero EDM value will mean that 7-in-
variance and parity are violated simultaneously. Much
less attention was paid to the experiments on the search
for the effects of T-invariance violation with parity con-
served (TVPC) and flavor conserved. This type of inter-
action was introduced in [6] to explain the CP violation
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observed in kaons decays and is related to physics out-
side of the SM [7, 8]. As was shown in a model-inde-
pendent way within the effective field theory [9], due to
an unknown mechanism of EDM generation, the avail-
able experimental limitations on EDM cannot be used for
estimation of the appropriate restrictions on TVPC ef-
fects, the detection of which at the current level of experi-
mental sensitivity would be the direct evidence of phys-
ics beyond the SM.

In the scattering of two polarized nuclei, the signal of
violation of T-invariance while conserving parity is that
the component of the total cross section which corres-
ponds to the interaction of a transversely polarized (P,)
incident nucleus with a tensor polarized (P,,) target nuc-
leus [10]. This observable cannot be simulated by the in-
teraction in the initial or final states and is not zero only
in the presence of the TVPC interaction discussed here, in
a similar way as EDM is a signal of a 7- and P-violating
interaction.

As follows from the description of the experimental
COSY project for studying the TVPC effect in pd inter-
actions [11], this kind of component of the total cross sec-
tion (called in the literature the TVPC null-test signal),
can also be measured in dd scattering} by measuring the
asymmetry of the event counting rate in this process,
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when the sign of the vector polarization of one of the col-
liding deuterons (P{") changes while the tensor polariza-
tion (P2)) of the second deuteron is unchanged.

When using this method, the transverse vector polar-
ization PP of the second (tensor polarized) deuteron is
required to be zero [12]. Another method of measure-
ment which does not require such a restriction on P, but
uses the rotating polarization of the incoming beam in a
combination with the Fourier analysis of the time-de-
pendent counting rate of the number of events, was pro-
posed in Ref. [13]. A possible measurement procedure of
the TVPC null-test signal in dd scattering was recently
briefly discussed in [14].

Here we focus on the theoretical calculation of the
TVPC null-test signal. Its dependence on the collision en-
ergy for pd [15, 16] and *Hed [17] scattering was per-
formed in the Glauber theory in the range of laboratory
energies 0.1-1 GeV, taking into account the full spin de-
pendence of NN scattering amplitudes as well as S and D
components of the deuteron wave function.

In this paper, we calculate the TVPC null-test signal
in dd scattering for the first time using the fully spin-de-
pendent Glauber theory for this process and generalizing
the method developed previously in [14—16]. The follow-
ing section II provides the basic mathematical formalism
for this calculation. In Sec. III, the results of numerical
calculations are presented and analysed. Conclusions are
given in Sec. IV. In Appendix, a detailed derivation of the
final formulas for the TVPC signal is given.

II. CALCULATION OF THE TVPC SIGNAL IN dd
SCATTERING

Considering dd scattering, one should note that in pd
collision, the TVPC signal is determined by the compon-
ent of the total cross section corresponding to a vector-
polarized proton interacting with a tensor-polarized deu-
teron [13]. Unlike pd, the dd scattering has two symmet-
ric components of the total cross section corresponding to
the vector polarization of one deuteron and the tensor po-
larization of the other. Accordingly, the TVPC transition
operator dd — dd at zero angle includes two terms:

MTVPC(O) 28101+8202- (D
Here the operators 0, and O, are defined as
01 = ];m QAEylly),gnlrS ;2)]}”
02 = ]A{m Qﬁ;snns;l)]}n (2)

where k is a unit vector directed along the incident beam,
S are the components of the spin operator of the j-th

” 1 o 4
deuteron, Q) = 3 (S§4)52’)+55,J)55,{)—§5mn1) is the sym-

metric tensor operator, and &, is the fully antisymmetric
tensor (m,n,l,r = x,y,z)}. Here and further, we assume
j=1 for the incident deuteron and j=2 for the target
one.

We find the TVPC signal using the optical theorem:

(1) (2)
Otvec T O1veC)

orvec =4 \/EImTr(ﬁiMTVPC(O)) = 3)
where p; is the spin density matrix of the initial state,
which includes vector and tensor polarizations of both
deuterons, and the cross sections oRpe (i =1,2) are ex-

pressed through the amplitudes g; as follows:

(1)

Tivpe = 4Vrlm (%) (P! lz> p;2> _ P(z ;) P,

g
FD Y= 4Jxim (52) (POPD-POPD). (4

In turn, the amplitudes g; and g, can be expressed in
terms of matrix elements from the transition operator
over the spin states of the incident and target deuterons in
the initial and final states, < m’l,m’leTVpC(O)lml,mz >

~ +
< =1, 1{Myypc(0)(0,0 >= i%,

< 1,0|M7ypc(0)[0, 1 >= ;5L ;gz.

)

Let's find the transition operator Mrpypc(0) in the
Glauber model, taking spin effects into account. A single-
scattering mechanism, as well as in the case of pd colli-
sions, does not contribute to the TVPC signal, since the
corresponding TVPC NN amplitude is vanishing at the
zero scattering angle [12]. In this paper, we calculate the
TVPC signal in the double-scattering approximation, neg-
lecting the contributions of triple and quadruple NN colli-
sions, which give only a small correction to the dd elast-
ic differential cross section at forward scattering angles
[14, 18].

The amplitude of the double-scattering mechanism in
an elastic dd collision consists of two terms, the so-called
“normal” and “abnormal” ones. The first (“normal”) cor-
responds to the sequential scattering of both nucleons of
the incident deuteron on one of the nucleons of the target
deuteron, and similarly, of one of the nucleons in the in-
cident beam on both nucleons of the target. The second
(“‘abnormal”) is the simultancous collision of one nucle-
on from the incident beam with one of the target nucle-
ons and another nucleon of the beam with another nucle-
on of the target. The corresponding scattering amplitude
at zero angle takes the form:
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M0 = 27r3/2/ / / &pd’rd*q¥ (1) ¥ s (e K

x [0°9(q) + 0" (@)] Waiz (0)Pacia (T)-
(6)

The operators 0?"(q), O'®(q), 0®)(q) and 0" (q)
are expressed in terms of spin-dependent NN amplitudes:

A 1
0" (q) = 5 (Ms1(q). My (=)}

1
+ §{M32((1)’M42(—(I)},

. 1
0/(2)1)((1) — E{M31(q), M32(_q)}

1
+ E{M41(Q)7M42(—Q)},

0%(q) = M3 (Q)Muix(—q),

0"*(q) = M (q) My (—q). @)

Here, the subscripts 1 and 2 refer to the nucleons of
the target deuteron, and 3 and 4 refer to the nucleons of
the incoming deuteron; r=r; —r,, p=r;=rs; s and J are
the components of the vectors r and p, respectively, per-
pendicular to the direction of the incident beam. In the
Glauber approximation, one can put qr = gs and qp = 4.

The deuteron wave function is represented in a stand-
ard way:

‘Ild

1 & o
i) = —=w(n)S n(F; 07, 0’j)> > (®)

2V2

u(r)+

i

where u(r) and w(r) are the S- and D-wave radial func-
tions, Sy(#;0,,0;)=3(0;-#)(0o;-#)—0;-0; is the tensor
operator, and ;o — the spin operator of the ith nucleon.

For T-even P-even NN amplitudes, we use the fol-
lowing representation [19]:

Mtj(q) = AN + CN(O',' . ﬁ) + C;V(O-] ﬁ)
+By(o;-k)(o; - k)
+(Gy+Hy)o;-@)(o;-q)

+(Gy - Hy)(o;-h)(0o ;- ). 9

Here the unit vectors k, §, i correspond to the vectors

1
k=5(p+p’), q=p-p’, n=[p'xp], (10)

p and p’ are the momenta of the incident and
scattered nucleon, and the invariant amplitudes
Ay.Cy.Ciy.By.Gy.Hy (N=p for {ij}={31}{42} and
N=n for {ij}={32},{41}) depend on the momentum
g =q|. To calculate M;;(—q), one should replace q — —q,
n — —n in Eq. (9). In the laboratory frame traditionally
used to derive scattering amplitudes in the Glauber mod-
el, the amplitudes Cy and C}, are different.

The amplitudes (9) are normalized in such a way that

dO'ij
dt

1

In turn, the amplitudes of dd elastic scattering are re-
lated to the differential cross section as follows:

do 1. .
I G i),

I (12)

This relation is consistent with the optical theorem

G2
Further, we take the TVPC NN — NN transition oper-
ator in the form [12]:

tij = hyl(0-K)(0;- @) + (07:- @) k)
2
-3 (0o k)/m?

+gyloixo;]-[qxK](T; —‘1']')1/”’12

+gi(oi—0) - ilgxkllTx Tl /m.  (13)
In the calculations, we used TVPC NN amplitudes T;;

normalized in the same way as 7-even P-even amp-

litudes (9) and related to the amplitudes (13) as [12]:

m
T,,= ———t;, 14
! 4ﬁkNN ! (19

where kyy 1s the nucleon momentum in the NN center-
of-mass frame and m is the nucleon mass. Taking into ac-
count TVPC interactions, the products of NN amplitudes
included in the operators of normal and abnormal double
scattering (7), take the form

[M;j(q) + T ([ Mu(—q) + Ti(—q)]
=M;(@QMyu(-q) +T; () Tu(-q)

+Tij(@QMyu(—q) + M; (@ Ti(-q), (15)

where the first two terms correspond to the spin-depend-
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ent 7-even P-even amplitude of dd scattering (the second
term can actually be neglected), and the last two — to the
T-odd P-even (TVPC) amplitude.

Let's consider separately the contributions of three
types of TVPC NN interactions.

i) The NN amplitude of the g’ type contributes only
to the charge exchange process pn — np. In dd collisions,
a double scattering process is possible with two sequen-
tial (or simultaneous in the case of abnormal scattering)
charge-exchange collisions: pn — np and np — pn. The
product of the corresponding amplitudes has a form sim-
ilar to Eq. (15), where NN amplitudes are charge-ex-
change ones. In this case, T-even amplitudes are the same
for the processes pn— np and np — pn, while T-odd
amplitudes have an equal magnitude but an opposite sign
for these two processes. Therefore, the net contribution of
the g’-type amplitude to the TVPC signal goes to zero, as
in the case of pd scattering [15].

i1) To find the contribution of the g-type NN amp-
litude, we note that due to the isospin factor (r;—7;), (see
Eq. (13)), it turns to zero for identical nucleons. In this
case, the operators of the normal (or abnormal) double
scattering, taking into account the decomposition (15),
contain the sum of g-type pn and np amplitudes multi-
plied by the same T-even pp (or pn) amplitude. Since,
due to the same isospin factor, the g-type amplitudes for
pn and np elastic scattering have different signs, the net
g-type contribution to the TVPC signal goes to zero as
well. This can be easily shown by explicitly writing the
operators O, 0’ 0% and O’®® and employing the
symmetry of the deuteron wave functions with respect to
index permutations 1 < 2 and 3 < 4.

iii) Thus, among the three types of TVPC NN interac-
tions, only the A-type amplitude contributes to the TVPC
signal in dd scattering. To calculate the respective contri-
bution, we substitute the expansion (15) with the A-type
TVPC NN amplitude into the operators (7) and then per-
form integration by the nucleon coordinates in the expres-
sions for double-scattering amplitudes (6). It is a straight-
forward but rather cumbersome procedure in the case of
spin NN amplitudes and the D-wave included in the deu-
terons' wave functions. Finally, by calculating the spin
matrix elements (5), we find the TVPC amplitudes of dd
scattering g; (i=1,2). The detailed derivation of the A-
type TVPC signal is given in Appendix.

As a result, we get the following expressions for the
amplitudes g; and g,:

oo

917 / dqq’ [ Zo + Z(@)) {@hn(@) (Ci(@) + Cp(@)),

2nm
0

oo

/ dqq’ [Zy+Z(@)] {(@hn(q) (Ci(q) + C)\(@)). (16)

0

i

8= 2nm

where the first term in square brackets refers to the nor-
mal, and the second to the abnormal double scattering. In
Eq. (16), we assumed h, = h, = hy, that is justified in the
beginning of the next section. The quantities Zy, Z(g) and
(g) in Eq. (16) are the linear combinations of the deuter-
on form factors:

3
5Pp,

1
Z=87"0) =585 =1-3

1
2q) =" (@)= 555" ()

1
~ =5+ V25 (q),

V2
1
@) =55 @+ 1555 @
A V2 18

2
$P @+ =5 @+ 328, (7)

V2

where Pp, is the D-state probability in the deuteron. Note
also that Z, =Z(0). If the D-wave contribution is neg-
lected, both Z(g) and {(q) are reduced to a purely S-wave
form factor S (()O)(q), and Z, turns to unity. The deuteron
form factors arising in (17) are defined as follows:

=)

SY(q) = / dri(r) jo(qr),

0

=)

S$(g) = / drw?(r) jo(qr),

0

0o

(g =2 / dru(rw(r) j(gr),

0

1 0
S =-—= / drw’(r) jo(qr),
V2 /

e}

1
5@ = [ aniidan,

0

(18)

Note that the form factor S f)(q) is absent in the elec-
tromagnetic structure of the deuteron.

The TVPC signal is eventually found from the amp-
litudes g, and g, using the formulas (3) for a given com-
bination of polarizations of colliding deuterons.

III. NUMERICAL RESULTS

For numerical calculations, spin amplitudes of pp and
pn elastic scattering are required, both T-even P-even
amplitudes from (9) and T-odd P-even ones from (13). As
was shown in the previous section, the interactions of g
and g’ type do not give a contribution to the TVPC sig-
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nal in dd scattering. Therefore, we consider here only the
h-type interaction. The numerical value of the constant in
the respective amplitude Ay (13) is unknown, so it is im-
possible to calculate the absolute value of the TVPC sig-
nal, but it is possible to calculate its dependence on the
collision energy.

The amplitude iy dependence on the momentum ¢
can be given under assumption that the A-type NN inter-
action is determined by the exchange of the h;(1170)
meson with quantum numbers I°(J7¢) = 0=(1*") between
nucleons (see [15] and references therein). Under this as-
sumption, according to the works [15, 20], we take the
following expression for the amplitude Ay:

2G;,
hy = —igp———F )
N N 4 q? N (g7)

(19)
where ¢, = G,/G, is the ratio of the coupling constant of
the h;-meson with a nucleon for the 7-non-invariant in-
teraction (G,) to the corresponding constant of the 7-in-
variant interaction (G,); Fuvn(q?) = (A>—=m})/(A*—q?) is
the phenomenological monopole form factor at the hNN
vertex. The numerical parameters are taken from Ref.
[20]: m;, =1.17 GeV, G, =4nx1.56, and A =2 GeV, as
follows from the Bonn NN-interaction potential. At the
same time, due to isoscalar nature of this meson, we have
the equality of the amplitudes %, = h, = hy, which is taken
into account in the formulas (16) for the dd TVPC amp-
litudes g; (i=1,2).

In the range of laboratory proton beam energies
0.1-1.2 GeV in pN scattering (corresponding to the inter-
val of the invariant mass of colliding nucleons
VSpn =1.9-2.4 GeV), the T-even P-even amplitudes
Ay, -+ ,Hy are available in the SAID database [21], which
we use here in the numerical calculations of the TVPC
signal at these energies. In the calculations at higher ener-
gies +/syy 2 2.5 GeV corresponding to the conditions of
the NICA SPD experiment, we employ the phenomenolo-
gical models for the spin amplitudes of pN elastic scatter-
ing available in the literature.

In the formulation of pp scattering models in the
high-energy region, the helicity amplitudes ¢, +¢s are
used, in the conventional notation (see [22]). The spin
amplitudes Ay, By, Cy, Cy, Gy and Hy, defined in (9),
are related to the helicity amplitudes by the following re-
lations valid at small momentum transfers and high ener-
gies specific for the Glauber model (see [19] and refer-
ences therein):

Ay =(d1+¢3)/2, By=(¢3—¢1)/2,

CN = i¢5, GN = ¢2/2» HN = ¢4/2’
2 4y,
m

C]/V:CN+2

(20)

Here we use two different models for the helicity
amplitudes of pN elastic scattering. The first one [22] in-
volves the Regge parametrization of data on the pp dif-
ferential cross section and spin correlations Ay, Ayy in
the range of laboratory momenta 3 +50 GeV/c. This mod-
el includes the contributions from four Regge trajectories,
w, p, f>, ay, and the P pomeron exchange. As noted in
[22], in the Regge model, because of isospin symmetry
and relations due to G parity, pp and pn scattering amp-
litudes can be represented as the following linear combin-
ations of these five contributions:

¢(PP) = _¢w - ¢p + ¢fz + ¢az + ¢P,

21)
¢(pl/l) g _¢w +¢p +¢fz _¢u2 +¢P;

here, for example, ¢, is the contribution of the w
Regge trajectory, etc. The energy domain, in which the
Regge parametrization was performed in [22], corres-
ponds, to the range of the pp invariant mass
S =2.8-10 GeV.

The second approach used here is based on the
Regge-eikonal model developed by O. Selyugin (see the
work [23] and references therein) and is called by its au-
thor the HEGS (High Energy Generalized Structure)
model. This model considers pp, pp and pn elastic scat-
tering at small angles taking into account the nucleon
structure based on the data on generalized parton distribu-
tions of nucleons. The helicity amplitudes of NN elastic
scattering obtained in this model allow one to describe
the available experimental data on the differential cross
section and single-spin asymmetry Ay(s,?) in pp scatter-
ing in the energy range +/s from 3.6 to 10 TeV with a
minimum of variable parameters [24] In both models, at
the energies +/s,, >3 GeV considered here, the follow-
ing approximate relations hold for the helicity amp-
litudes of pp elastic scattering: ¢, = @3, ¢ =0,¢4 = 0.

When calculating the TVPC signal according to the
optical theorem, the Coulomb contributions are excluded
here from pp amplitudes. The explanation for this is giv-
en in [15, 25]. The reason is that the Coulomb interaction
does not violate the T invariance and therefore cannot
make a direct contribution to the TVPC signal. Indeed,
the spin structure of the transition operator for scattering
on the deuteron at zero angle is such that the spin-inde-
pendent amplitude Ay and the amplitudes By, Gy, Hy,
additively containing the Coulomb contribution, do not
enter the expressions for dd TVPC amplitudes (16). At
the same time, the Coulomb term enters the spin-flip
amplitude Cj, through the amplitude Ay, however, Ay is
multiplied here by the transferred momentum ¢ (see Eq.
(20)), which compensates for the Coulomb singularity at
g — 0 when integrating over ¢ in Eq. (16). Numerically,
the contribution of the Coulomb interaction to the TVPC
signal is negligible [15].
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The figures show the results of our calculations of the
TVPC signal in dd scattering using the SAID database
(Fig. 1) and two phenomenological models for spin NN
amplitudes — Regge parametrization (Fig. 2) and HEGS
model (Fig. 3) in the energy intervals corresponding to
these parametrizations.

It is seen from Fig. 1 that the maximum of the signal
is located in the energy range of 1.95-2.05 GeV and its
absolute value is unevenly decreasing with further in-
crease of collision energy although demonstrating the
second local maximum at ~ 2.2 GeV in o'y, and some a

; (1)
plateau in o7y pc-

One should note that the S-wave of the deuteron dom-
inates in both amplitudes g, and g, in the entire range of
the invariant mass +/syy = 1.9-2.4 GeV covered by the
SAID database, whereas the contribution of the pure D-
wave is negligible. The S — D interference is essential and
destructive for the g; amplitude, but constructive for the
&> one. The numerical difference between the amplitudes
g1 and g, is due to the fact that one of them (g,) is calcu-
lated in the rest frame of a tensor polarized (P?) deuter-
on target d,, on which a vector polarized (P{") deuteron
beam d,; scatters, and the other (g;) — in a collision, when
a tensor-polarized (P)') deuteron beam d, falls on a vec-

0.02 ‘ ‘
. dd
i a)
S pN - SAID
7N
001} RN _
; N L e e D
[ '\ e — —
° .o . — T b
E I \ ya
€ oKL
_E I
S ._, )
fE - e e g, g
A g,(8)
_001 —a —
g,(8-D)
e e, g,D) i
0.02 \ \ \ \ \
1.9 2 2.1 22 23 2.4 25
0.02
0.01
Ka}
£
&
z
o
nm{ ———- g0
2,(S-D)
| ———.g,D) |
0.02 \ \ \ \ \
1.9 2 2.1 22 23 24 25
sNN]/z, GeV

Fig. 1.

(color online) Energy dependence of TVPC signals (cross sections) corresponding to the amplitudes g; (a) and g, (b) in dd

scattering for spin pN amplitudes taken from the SAID database [21]. (a) gi: S-wave (dotted line), D-wave (thin dashed), S-D interfer-
ence (dash-dot-dotted), total S + D (dash-dotted); (b) g»: S-wave (dashed line), D-wave (thin dashed), S-D interference (dash-dash-dot-
ted), total S + D (solid). The invariant mass of the interacting NN pair — one nucleon from the beam and another one from the target — is
shown along the X-axis. On both panels, a straight thin dotted line shows the zero level for easy visualization.
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Fig. 2.
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1/2’ GeV

20

(color online) Energy dependence of TVPC signals corresponding to g; and g, amplitudes in dd scattering for spin pN amp-

litudes taken from Ref. [22]. Notations are the same as in Fig. 1, panels (a) and (b).

tor-polarized (P?) target d,.

The results obtained by using the Regge parametriza-
tion of pN amplitudes from the work [22] are shown in
Fig. 2. With this pN input, the amplitudes g,-and g, are
numerically very close to each other separately for the S-
and D-wave contributions, as well as for the total S +D
calculation. The D wave is negligible and the S =D inter-
ference is destructive for both g; and g, amplitudes. It
should be noted that the maximum of the TVPC signal is
obtained at the minimal energy +/syy =2.6'GeV from the
range considered, and the signal decreases monotonically
with an increase of the collision energy +/syy.

With the HEGS parametrization [23, 24], at energies
vswn ~5 GeV the TVPC signal is obtained about an or-
der of magnitude less than with the parametrization [22]
and also decreases with increasing energy (see Fig. 3).
Like for the parametrization from Refs. [21] and [22],
when using the HEGS model, the contribution of the deu-
teron D wave to the TVPC signal is negligible in mag-
nitude in comparison to the S-wave contribution, and
S — D interference is significant. Furthermore, as for the
parametrization from Ref. [21], the S — D interference is
destructive for the g, amplitude and constructive for the
g2 one.

IV. CONCLUSION

In this paper, the signal of 7T-invariance violation with
parity conserved (TVPC) has been calculated (up to an
unknown constant) for dd scattering. The calculation is
based on the Glauber diffraction theory with full consid-
eration of the spin dependence of the NN scattering amp-
litudes. We take into account the contributions of single
and double scattering mechanisms dominating in the

amplitude of the elastic process dd — dd in the region of
the first diffraction maximum, which gives the main con-
tribution to the TVPC signal [14]. For the first time, the
D-component of the deuteron wave function is taken into
account in the calculation of this effect together with the
S-component accounted for earlier in [14]. The S-D inter-
ference is found to be significant in the TVPC signal.

The TVPC scattering amplitude is much smaller in
magnitude as compared to the corresponding 7-even had-
ron amplitude. However, due to different symmetry prop-
erties of these amplitudes, the 7-odd amplitude of elastic
scattering does not interfere with the corresponding 7-
even one. Therefore, the typical accuracy of a Glauber
theory calculation of the total cross section is similar to
that of the calculation of the TVPC signal}. To a large ex-
tent, this accuracy is determined by our knowledge of NN
elastic scattering amplitudes, which are included in the
TVPC signal as multipliers.

Here, for the pN amplitudes, we used the database
[21] at lower energies and an available parametrization
[22] and a phenomenological model [24] at higher ener-
gies. The energy ranges of pN collisions correspond to
the intervals of the invariant mass of the NN pair
Vswy = 1.9-2.4 GeV (the laboratory kinetic energy of the
proton 7;=0.1-1.2 GeV) and +fsyy =2.5-25 GeV (the
laboratory momentum of the proton beam P, =2.2—332

GeV/e.)
It has been shown that the maximum value of the
TVPC signal corresponds to the invariant mass

\Swy ~ 1.95-2.05 GeV. At the collision energies corres-
ponding to the conditions of the SPD NICA experiment,
\Vswwy 2 2.5 GeV, the magnitude of the signal depends es-
sentially on the model used for the 7-even P-even spin
amplitudes of pN scattering and decreases with increas-
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Fig. 3.

ing energy, under an assumption that the TVPC interac-
tion constant does not depend on energy. This is consist-
ent with the general trend of spin phenomena — the de-
crease of the 7-even P-even spin effect in magnitude with
increasing energy. However, at the energies of the NICA
complex corresponding to the conditions of the early ba-
ryon Universe, a possible growth of an unknown TVPC
constant is not excluded.

We have found that only one of the three types of the
TVPC NN interaction that do not disappear on the mass
shell, i.e., hy, gives a non-zero contribution to the TVPC
signal, while the contributions of other two (gy and gy )
vanish due to the specific symmetry properties of these
interactions. By this property, the search for a TVPC sig-
nal in dd scattering differs from the previously con-
sidered processes of pd and *Hed scattering, where two
types of { the} TVPC NN interaction, hy and gy, give

SN

1/2’ GeV

(color online) The same as in Fig. 1 but for spin pN amplitudes from the HEGS model [24].

the non-zero contributions [15—17]. This is one of the
main results of this work, which is important for extract-
ing the unknown constant of the TVPC interaction from
the respective data.
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APPENDIX: DERIVATION FOR h-type TVPC
AMPLITUDES
To find the operators of normal and abnormal double

scattering (7) in the case of TVPC NN interaction of the
h type, we use the expression (15) and omit the terms lin-
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ear in q (or fi), which turn to zero when integrated over
the direction of the vector q in (6). Then, taking into ac-
count the symmetry of the deuteron wave functions in re-
spect of permutation of the nucleon indices, the spin de-
pendence of the operators (7) can be represented as (here
and forth, under the O®”, O’® | etc., we mean operators
for the A-type TVPC interaction):

0(q) = oy - V,y(073,0),
0°"(q) = 03-V,(0,0),
O(ZH)(q) =0 'Va(0-370.4)’

OA,(ZG)(q) =03 V;(O-] s 0-2)7 (Al)
where
V. (03,04) = — 2H(hpcn + hnCp)
X [k(0r3-@)(04-) + q(073-k) (074 -R)],
Vi(oy,0,) = -2I1(h,C, + h,lC;,)
x [k(o1-@)(02-h) + G0 k) (02B)]  (A2)
q
m=—*1
and Amm’ The vector operators V,(o3,04) and

V!(o,07) are similar to V,(03,04) and V.(o,03), re-
spectively, with the replacement A, < h,,.

Such a representation allows one to easily integrate
over the coordinates of nucleons inside one of the collid-
ing deuterons. Thus, after integrating the normal double-
scattering operator O®” over the coordinates of nucleons
in the target, we obtain the operator

QP (q) = / &P} 10 @0 (W 12 ()

= ZOS(Z) : Vn(0-3, 0-4)7 (A3)

where S@ is the spin operator of the target deuteron and
the factor Z, is defined in (17). For the O’®”, we obtain a
similar expression after integration by the coordinates of
nucleons in the beam:

QO (q) = / dSP\P:f(M)(P)Ol(zn)(Q)\Pd(M)(p)

= ZOS(I) . V/n(o-la 0-2)’ (A4)

where S is the spin operator of the incident deuteron.

In the same way, the abnormal double-scattering op-
erator O?? is integrated by @°r (with a factor of ¢4"), and
0% — by d®p (with the factor e~%), and we get the fol-
lowing expressions:

Q(Za)(q) = / d3r'PZ(lz)(r)eiqré(za)(Q)‘Pd(12>(r)

1
=155"(@) = 555 @187 Va(os,0)
1

1 e, 1 o
+ \/E[Sz (@) \/252 (@]

X§12(q;s(2)sva(0—330-4)), (AS)
Ql(za)«l) = / d3p'{’:;(34)(p)e _iqpo/(za)(Q)‘Pd(M)(p)
1
=155"@)- 555 @18" - Vi(o1.02)
1 1
51870~

V2 V2
xS 12(Q§S(1),V;(01,02)),

)

(A6)

where the deuteron form factors S (¢) are defined in Eq.
(18).

Next, we note that in a calculation of the TVPC sig-
nal, only non-diagonal spin matrix elements (5) are
needed. Therefore, the components of the vectors V, and
V/, parallel to k (see the definition (A.2) and the text be-
low it) do not contribute to the TVPC signal (with the
standard choice of k||0z). For the component V', parallel
to q (we denote it as V/?), one has:

$1a(q:8", Vi) =28V -V, (A7)
and a similar relation is fulfilled for the component V¢
(with the replacement S© — S@). Let's denote the parts
of the operators (A.5) and (A.6), including only the com-
ponents V¢ and V7, via Q%(q) and Q*(q), respect-
ively. Taking into account the relations (A.7), we get the
expressions for them similar to (A.3) and (A.4), respect-
ively:

Q0(q) = Z(q)S? - Vi(o3,09), (A8)
Q/(Za) =7 )S(l) . V/q A9
. (@ =Z(q A (01,02), (A9)

where the factor Z(g) is defined in (17).

We now proceed to integration by the coordinates of
the nucleons inside the second deuteron. To do this, it is
convenient to represent the vector V/(o,0,) (see Eq.
(A.2)) as

V;(O'l,Uz):Wf?O'nO'zj, (A10)
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where

A

Wi = =211(h,C,, + h,C,)[k§,7;

~

+q kit ] (Al1)

Similarly, V,(03,04) = W},03,04;, where W}, has the
same form (A.11), but with the replacement of Cj — Cy.
In turn, for the vectors V, and V’,, we introduce a simil-

ar representation with Wy, and Wi, which differ from

/ d* ¥, @) T (@)W a2)(T) = Zo ( [S Vg - S%) +

L3
22

where it was taken into account that W/}6;; = W/}§:q; = 0
(see Eq. (A.11)). The integral in Eq. (A. 12) is easy to cal-
culate if one represents it as

0 0 e w (r) 2 <@
Bq, aq | 47rr2 Sn(f:S7.87)
6 a ]2(‘] ) 2 2
= — | driw*(r) S12(q;8?,89), Al3
4q; 0q, (qr)? \A13)

where §1,(q;S?,8?) =3(S? - q)> - 2¢>. After calculating
the integral, we get four terms proportional to symmetric
tensors 6;;, 44, S7q; + 55-2)3 and {552),552)}. The first two
terms are vanishing when multiplied by the vector W},
and the third turns to zero when multiplied by its §-com-
ponent, which is involved in calculating the TVPC signal
(when taking non-diagonal spin matrix elements from the
product S®-W7"). Thus, the contribution to the TVPC

signal is given only by a term proportional to {S ,(2>,S @,

which is obtained by differentiating the operator
A r

S12(q;S?,8%) in (A.13). Rewriting % via a linear
combination of  spherical Bessel functions

Jn(gr),n=0,2,4, we get the following contribution to the
TVPC signal from the last term in Eq. (A.12):

3 6\/_

18
S(l) .WZ{;}{SEZ)’S;Z)} S(2)( ) S(Z)(q)+ S(Z)(q)}

(Al14)

where the form factor §{”(g) is defined in (18).

[S5°(@)+S5(@)] SV-WIHIS® x g1, [S? x g1} + 38-W, / d'r

Wi, and W} by replacing &, < h), only. Such a represent-
ation allows integration by the nucleon coordinates in-
side the second deuteron in the same way as it was done
for pd scattering (for example, using the formula (12)
from Ref. [26]).

Thus, by integrating the operator '**(q) (A.4) with
the factor ¢9" over the nucleon coordinates inside the tar-
get deuteron and employing the definition of the deuter-
on form factors (18), we obtain:

—=5{(g)+ S‘”(q)}S”-W;?{SS”,S?)}

TR

W8 n(F87 87,

e
Al2
47r? (A12)

When integrating the operator Q'(q) with the factor
€% by the coordinates of the nucleons in the incident
deuteron, we obtain an expression similar to (A.12), with
the replacement W} — W}, and S &> 8®. For abnormal
scattering, we also obtaln similar expresswns (with the
replacement Z, — Z(g)) when integrating ©2(q) with the
factor ¢7'% over the nucleon coordinates in the beam, and
Q2“(q) with the factor ¢ over the nucleon coordinates
in the target.

Now, to get the amplitude Mrypc(0) in the double-
scattering approximation, we take the sum of all expres-
sions of the form (A.12) for normal and abnormal scatter-
ing, integrate by the momentum q and multiply by a

i
factor G (see Eq. (6)). From the resulting operator, we

calculate the spin matrix elements (5) necessary to find
the TVPC amplitudes g;, i =1,2. To do this, we use the
following relations:

<—-1,118V - 4{S?-1,8?-Kk}0,0 >
=—<-1,118V-q{[S® x g]-n,[S? x ¢]-k}|0,0 >= —=

< 1,08 ¢{S?®-1,S?-k}|0,1 >
=—<1,08"-q{[S?® xq]-n,[S? xq4]-k}|0,1 >= %

(A15)

When replacing S & S$®, both matrix elements in

(A.15) turn out to be the same and equal to — 7

As aresult, we get the formulas (16).
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