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Abstract: An SU(3) flavor projection operator technique is implemented to construct the baryon-meson scattering
amplitude within the framework of the 1/N, expansion of quantum chromodynamics (QCD), where N, represents
the number of color charges. The operator technique is implemented to evaluate not only the lowest-order scattering

amplitude but also effects from the first-order perturbative SU(3) flavor symmetry breaking and strong isospin

breaking. The most general expression is obtained by explicitly accounting for the effects of the decuplet-octet bary-

on mass difference. At order O(1 /Nf), a large number of unknown operator coefficients appear, and therefore, there

is little additional predictive power unless leading and subleading terms are retained. Although the resultant expres-

sion is sufficiently general that it can be applied to any incoming and outgoing baryons and pseudo scalar mesons,

provided that the Gell-Mann--Nishijima scheme is respected, results for Nm — Nn scattering processes are expli-

citly considered.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is accepted as the
theory of the strong interaction, with quarks and gluons
as fundamental fields. QCD is a gauge theory with the
local symmetry group SU(N,), which acts in the internal
space of the color degrees of freedom with N. =3 color
charges. However, the analytical computation of hadron
properties from first principles is hampered because QCD
is strongly coupled at low energies. Two major theories
have shed light on the static properties of hadrons. One of
them is the large-N, limit, and the other one is the chiral
perturbation theory (ChPT).

The generalization of QCD from N.=3 to N, — oo,
which is commonly referred to as large-N. QCD, has be-
come a remarkable tool for studying the structure and in-
teractions of mesons [1, 2] and baryons [3] in more gen-
erality. Physical quantities evaluated in the large-N, limit
achieve corrections of relative orders 1/N,, 1/N?, and so
on, which originates the 1/N, expansion of QCD.

Baryon-meson scattering is a fundamental nuclear
physics process that has been analyzed within the large-
N, limit (and of course ChPT and several other ap-
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proaches). The earliest analysis of baryon-meson scatter-
ing amplitudes in the context of the 1/N, expansion was
introduced in the seminal paper by Witten [3]. Generally,
it takes N, quarks (in a totally antisymmetric color state)
to make up a baryon, and therefore, Witten proposed
splitting the problem into two parts to first use graphical
methods to study n-quark forces in the large-N, limit and
then to use other methods for analyzing the effects of
these forces on an N.-body state. From the analysis of
large-N, counting rules for baryon-meson scattering, Wit-
ten concluded that the corresponding amplitude at a fixed
energy must be of order one.

Subsequently, Gervais and Sakita [4] and Dashen and
Manohar [5] independently proved that large-N, QCD
has a contracted SU(4) symmetry (for two flavors of light
quarks), and they derived a set of consistency conditions
that must be satisfied. The equations obtained from these
consistency conditions admit a unique (minimal) solution
for baryon-meson coupling constants, which are identical
to those of the Skyrme model or non-relativistic quark
model. Dashen, Jenkins, and Manohar applied the ap-
proach to show that large-N. power counting rules for
multimeson—baryon-baryon scattering amplitudes lead to
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important constraints on baryon static properties [6, 7]. In
the same context, Flores-Mendieta, Hofmann, and Jen-
kins [8] studied tree-level amplitudes for baryon-meson
scattering and obtained generalized large-N. consistency
conditions valid to all orders in the baryon mass splitting
A =My — Mgy, where My and Mjp represent the baryon
decuplet and baryon octet masses, respectively. Cohen,
Lebed, and collaborators implemented a systematic meth-
od to derive linear relationships among meson-baryon
scattering amplitudes combining the 1/N. expansion of
QCD with the Wigner-Eckart theorem applied to both an-
gular momentum and isospin [9—11]. In this framework,
scattering amplitudes are expressed via partial wave ex-
pansions, where mesons carry fixed orbital angular mo-
mentum and baryons possess definite spin and isospin,
while neglecting baryon recoil effects. The scattering
matrix elements are further specified by the total spin and
total isospin of the meson-baryon system. This approach,
together with the 1/N, corrections to the #-channel isospin
and angular momentum exchange quantum numbers,
I, =J;, enables deriving multiple linear relationships
among partial-wave amplitudes for meson-baryon scatter-
ing.

In the context of baryon chiral perturbation theory
(BChPT), important advancements have been made on
baryon-meson scattering over the past three decades. A
detailed account of phenomenological models and/or dif-
ferent approaches proposed prior 2016 is presented in
Ref. [12]. Besides the heavy baryon approach (HBChPT)
[13, 14], some fully relativistic methods are noteworthy,
namely, the infrared regularization of covariant BChPT
[15] and the extended-on-mass-shell scheme for BChPT
[16, 17]. Further improvements in HBChPT to orders
O(p?®) and O(p*) have been performed recently [18, 19].

Despite important progress achieved in the under-
standing of baryon-meson scattering processes in both the
phenomenological and experimental bent [20], various
challenges remain unsolved. In view of this, lattice QCD
has become an essential non-perturbative tool for tack-
ling some issues with first-principles QCD calculations
that cannot be dealt with otherwise. A comprehensive de-
scription of the state-of-the-art computation of scattering
amplitude for the baryon-meson system within lattice
QCD can be found in Ref. [21].

The baryon-meson scattering problem is a mature
area of research that has been tackled from a number of
different perspectives. However, the aim of the present
work is to analytically compute baryon-meson scattering
amplitudes at leading and subleading orders in the frame-
work of the 1/N. expansion using the projection operator
technique developed in Ref. [22]. This approach intro-
duces new and unique elements into the theory of baryon-
meson scattering, expanding existing concepts and in-
sights. At the first stage in the analysis, the primary ob-
jective is to perform a calculation in the exact SU(3) sym-

metry limit. At the second stage, the effects of the first-
order perturbative SU(3) flavor symmetry breaking (SB)
and strong isospin symmetry breaking (IB) are expected
to be separately incorporated. Thus, flavor projection op-
erators can be useful to fully classify all flavor represent-
ations involved in the structure of the scattering amp-
litude. From this perspective, the present analysis is fun-
damentally different from previous works [9—11]. Loop
graphs contributing to the scattering amplitude can be
consistently analyzed in a combined formalism between
chiral and 1/N, corrections, which is the so-called large-
N, chiral perturbation theory based on the chiral Lag-
rangian introduced in Ref. [23]. However, this requires a
non-negligible effort that will be deferred to subsequent
work.

The remainder of this paper is organized as follows.
Sec. II presents some elementary materials about scatter-
ing processes, along with a brief review of large-N, QCD
to introduce notation and conventions. The 1/N, expan-
sion of the baryon operator whose matrix elements
between baryon states yields the scattering amplitude in
the limit of the exact SU(3) limit is constructed. The most
complete form of this amplitude is obtained by account-
ing for the decuplet-octet baryon mass difference expli-
citly. In Sec. III, the results are particularized to the Nz
system, and some isospin relationships are checked to be
respected by the obtained expressions. In Sec. IV, the
analysis is applied to two processes including strange-
ness only as case studies. In Sec. V, the effects of first-or-
der SB are evaluated; for this purpose, flavor projection
operators are constructed and extensively used to rigor-
ously identify components from different SU(3) flavor
representations participating in the breaking. First-order
IB effects to the scattering amplitude are also evaluated.
Violations to the isospin relationships discussed in Sec.
Il are straightforward. A comparison of nucleon-pion
scattering amplitudes within this formalism and HBChPT
are outlined in Sec. V.B. Applications to scattering
lengths are sketched in Sec. VI. Some concluding re-
marks are given in Sec. VII. In Appendix A, the baryon
operator basis used in the scattering amplitude is listed.
The paper is complemented by some supplementary ma-
terial, loosely referred to as the Online Resource, which
contains 1) the reduction of the different baryon struc-
tures in terms of an operator basis of linearly independ-
ent operators, 2) the full list of the pertinent coefficients
that accompany the baryon operators of Appendix A, and
3) the operator basis used to evaluate SB effects along
with their respective matrix elements listed in tables.

II. BARYON-MESON SCATTERING
AMPLITUDE AT LEADING AND
SUBLEADING ORDERS

In this section, the analytical computation of the amp-
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litude of baryon-meson scattering presented in Ref. [8] is
explicitly conducted, specialized to the process

B(p)+7“(k) — B'(p") + 7" (k). M

The amplitude for baryon-meson scattering at fixed
meson energy is dominated in the large-N, limit by the
diagrams displayed in Fig. 1. In Eq. (1), 7 represents one
of the nine pseudo scalar mesons =, K, 1, and 7’ of mo-
menta k= (k% k', k%, k%) and k' = k°, k', k% k) and fla-
vors a and b for the incoming and outgoing mesons, re-
spectively. B and B’ represent the incoming and outgoing
baryons of momenta p and p’, respectively. Soft mesons
with energies of order unity are considered in the process.
The goal is to explicitly evaluate the corresponding scat-
tering amplitude at leading and subleading orders, incor-
porating the effects of the baryon mass splitting A
defined in the previous section. Before tackling the prob-
lem, it is convenient to introduce some key concepts on
large-N, QCD to set notation and conventions. Further
details on the formalism can be found in Refs. [6, 7].

In the large-N, limit, the baryon sector has a contrac-
ted SU(2N;) spin-flavor symmetry, where N, represents
the number of light quark flavors. For Ny =3, the lowest
lying baryon states fall into a representation of the spin-
flavor group SU(6). When N, = 3, this corresponds to the
56 dimensional representation of SU(6).

e b
. ,
N 7
. ,
A 7
. ,
. ,
B B’
(a)

T b
B = — B’
(b)
w4 b
B >t B’

Fig. 1. Leading-order diagrams for the scattering
B+n— B +n.

The 1/N, expansion of a QCD operator can be writ-
ten in terms of 1/N.-suppressed operators with well-
defined spin-flavor transformation properties. A com-
plete set of operators can be constructed using the 0-body
operator 7 and 1-body operators

r=q|%erlq (L1 (2a)
r=g|re’]a (0.8) (2b)
¢ =q'[To% ] (1,8) (20)

where J*, T¢, and G* represent the baryon spin, baryon
flavor, and baryon spin-flavor generators, respectively,
which transform under SU(2) x SU(3) as (j,dim), where j
represent the spin and dim represents the dimension of
the SU(3) flavor representation. The SU(2N;) spin-flavor
generators satisfy well-known commutation relationships
[7].

The Feynman diagrams displayed in Fig. 1 will be
analyzed separately as they contribute differently to the
scattering process.

A. Scattering amplitude from Fig. 1(a,b)
The amplitude for the scattering process (1) represen-
ted in Fig. 1(a,b), in the rest frame of the initial baryon,
can be represented by the baryon operator [§]

1ol 1 . A
Al == kK 5 2 o A MM IM AT
n=0

n insertions

A3)

where f ~ 93 MeV represents the pion decay constant, A
represents the baryon axial vector current, and M repres-
ents the baryon mass operator. Explicitly, the 1/N, expan-
sion of A, at N, = 3, is given by [7]

ia ia 1 ia 1 ia 1 ia

A" = alG + ﬁcbzﬂz + ﬁzb31)3 +FEC3O . (4)

where a;, by, b3, and ¢; represent unknown coefficients

of order one, and the two- and three-body operators D¥,
iaand O9 read

DY =J'T, (52)

DY ={J I, G}, (5b)
. . 1 .

O ={J?,G"} - 5{J’,{J’,G’“}}. (5¢)
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The baryon mass operator is expressed as [7]

Ne-1
M=myN.T + Z m,

n=2,4

Nl ©

where m, represents unknown coefficients. Although the
first term on the right-hand side is the overall spin-inde-
pendent mass of the baryon multiplet, the remaining
terms are spin-dependent and make up Myyperfine- At
N. =3, Muyperfine 1S sSimply

ny

e 72
N )

Mhyperﬁne =

where m, can be set to A. Numerically, the average value
is A =0.237 GeV [24].

The series (Eq. (3)) with the first three summands
reads

| P I | I A
Al = = KK | GIA" AT+ G AT IMA)

. )
oA IMIM AT+ ®)

The constraint that A should be at most O(1) in the
large-N. limit sets the consistency conditions [5, §]

[A7,A“] < O(N,), (9a)
[A7,[M,A"]] < O(N,), (9b)
[A”, M, [M,A“]]] < O(N,), (%)

where £°, f, and A are of orders O(1), O(+/N,), and
O(N:') in that limit, respectively. This work focuses on
the explicit analytical computations of the first three op-
erator structures in Eq. (9); the results will be discussed in
the following sections.

1. Spin-flavor transformation properties of AL

The baryon operator A is a spin-zero object and
contains two adjoint (octet) indices. The tensor product of
two adjoint representations 8®8 can be split into the
symmetric product (8 ®8)s and the antisymmetric product
(8®8)4 [7], which in turn can be decomposed in terms of
SU(3) multiplets as

(8®8)s = 1@8®27, (10a)

(8®8), =8 108 10. (10b)

To exploit the transformation properties of A% un-
der the SU(2) x SU(3) spin-flavor symmetry, the spin and
flavor projectors introduced in Ref. [22] become handy.
In a few words, this technique exploits the decomposi-
tion of the tensor space formed by the product of the ad-
joint space with itself # times, [], adj®, into subspaces
that can be labeled by a specific eigenvalue of the quad-
ratic Casimir operator C of the Lie algebra of SU(N). For
the product of two SU(3) adjoints, the flavor projectors
[pUim]ebed for the irreducible representation of dimension
dim contained in Eq. (10) are given by [22]

1
[P(l)]ah(‘d - 6abécd’ (1 1)
i
) N
[p(S)]a}ud — N% i4dabedcde’ (12)

[P(27)]abcd - %(6a05bd + 6b06ad) _ 1 6abé-cd

N -1
Nf be jed,
— da7edc 67 13
N4 )
1
[p(SA)]abcd — 7fahefcde’ (14)
Ny

and
[P(IOJrTO)]abcd — l( Secsbd _ gbe 6ad) _ L fabe fcde, (15)
2 N,
which fulfill the completeness relationship

[P“) + P(S) + P(27) + P(SA) + P(10+E)]abcd — 6a(,'6bd' (16)

Therefore, [PU™A o] effectively projects out the
piece of A that transforms under the flavor representa-
tion of dimension dim according to the decomposition
(Eq. (10)). However, for computational purposes, it is
more convenient to group the operators [PU™ A o]
based on their symmetry transformation properties under
the interchange of a and b. Accordingly, [PV +P®+
PDabed apd [PBY 4 PUOHI0]abed “acting on the symmetric
and antisymmetric [antisymmetric and symmetric] pieces
of A, respectively, will provide the symmetric [anti-
symmetric] piece of A% under the interchange of a and
b.
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2.  Explicit form of the scattering amplitude

A more specialized and detailed calculation beyond
the qualitative analyses of baryon-meson scattering
presented in previous works [5, 8] can be performed by
explicitly evaluating the first summands expressed in Eq.
(8); succinctly, all baryon operators allowed at N.=3
(i.e., up to relative order 1/N? not discussed so far in the
literature) are accounted for in the terms kept in the series
(Eq. 8).

As a starting point, it should be recalled that the com-
mutator of an n-body operator and m-body operator is an
(n+m— 1)-body operator, i.e.,

[OM7 On] = Opin-1- (17)

A close inspection of Eq. (8) reveals that [A”?,A"] for
N, =3 yields at most the operator structure [oﬂ’,oga], and
according to Eq. (17), it retains up to five-body operators.
Sequential insertions of one and two J? operators add up
six- and seven-body operators, respectively. Therefore,
the first three summands displayed in Eq. (8) will be ex-
plicitly evaluated and sufficient to draw some conclu-
sions. Clearly, it would be desirable to perform a calcula-
tion including eight-body operators and higher; however,
this is beyond the scope of this work because of the con-
siderable amount of group theory involved.

The task now is to rewrite the baryon operators in-
volved in [PY™ A, 5] in terms of a set of linearly inde-
pendent operators up to seven-body operators. A conveni-
ent operator basis S @ for m=1,...,139 is listed in Ap-
pendix A. This is straightforward albeit the long and tedi-
ous exercise to compute those reductions. However, ow-
ing to the length and unilluminating nature of the full ex-
pressions, only symmetric and antisymmetric pieces
rather than individual results for each representation are
listed in the Online Resource. In passing, it is straightfor-
ward to verify that the consistency conditions (Eq. (9))
are fulfilled by all these reduced structures.

The matrix elements of A, given in Eq. (3) between
SU(6) baryon states, where mesons are labeled with fla-
vors a and b, yield the corresponding scattering amp-
litude, namely,

Aro(B+n" = B +1°) = (" B| AL |n*B).  (18)

The flavors associated to mesons are conventionally
given by {1};23% =, 6\}”,8} for (7, 7% K*,K°.K 1),
respectively.” For instance, an expressions such as
Aro(p+n~ — n+n°) should be understood as (n°n| A3+

AL In p)/ V2.

Thus, with the operator reductions listed in the On-
line Resource, the scattering amplitude for process (1)
arising from Fig. 1(a,b) can be organized as

Aro(B+7* = B +10)

L
=7 D (€ + KK (7 BIS PP By,  (19)
m=1
where §@) constitute a basis of linearly independent
spin-2 baryon operators with two adjoint indices, and ¢®
and ¢® are well-defined coefficients that come along
with the symmetric and antisymmetric pieces of AX;
these coefficients are listed in the Online Resource. In Eq.
(19), the sum over spin indices is implicit.

B. Scattering amplitude from Fig. 1(c)

The two-meson-baryon-baryon contact interaction
represented in Fig. 1(c) contributes to the baryon-meson
scattering amplitude with a term [8]

1
Al = —Tﬂ(2k°+M—M’)if”b“T“, (20)

where M and M’ represents the masses of the initial and
final baryons, respectively. Since A%, 1is already anti-
symmetric under the interchange of a and b, the only term
that remains once the projection operators are applied is
[PBYA,rex 12, and therefore, this term only contributes to
the octet piece. Further, both A® ., of order O(1), and

A (Eq. (3)) yield the leading order O(1) scattering
amplitude for baryons with spin J ~ O(1).

II. APPLICATION: N7 — Nan SCATTERING
AMPLITUDE

The formalism presented so far can be implemented
to study the scattering processes of the form B+7n‘ —
B’ +n” provided that reactions in which these particles are
produced have equal total strangeness on each side, ac-
cording to the Gell-Mann—Nishijima scheme. Since B and
B’ can be either octet or decuplet baryons from the theor-
etical point of view, the possibilities are numerous. The
examples include A+K* — p+7n°, B +K* - X040,
2" +K°—>3X +2°% and so on. For definiteness, the
Nr — N scattering processes will be analyzed to exem-
plify the approach.

A pion /=1 and a nucleon I =1/2 can be combined
inal=3/2 or al=1/2 state following the usual addi-
tion rules of angular momenta [27]. The allowed states

1) For simplicity only the octet of mesons is considered. Extending the analysis to include the 77’ is straightforward by using the baryon axial vector current A’ = AP,

which is written in terms of the 1-body operators G = %J Tand T° = %ch [23].
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for the Nx system are listed in Table 1.

The elastic scattering amplitude for the process (Eq.
(1)) can be decomposed using the usual Clebsch-Gordan
technique into two non-interfering amplitudes AT with
I1=3/2 and I=1/2. Thus, starting from the s-channel
isospin eigenstates

In*p) = ‘3,+3>, 1)
|n+n>:@;+;>+@;+;>
D e
CRE S R

|7n) = ‘3,—3>, (26)

272
it is straightforward to obtain [28]

Ao(p+r* - p+rt)=Apn+r - n+r) =AY,

App+a = p+r)=HApon+a" - n+n")
1

2
SABP 4 g0,
3 3

Ao(p+1° — p+a°) = Aon+n° — n+7a°)
2 1
= ZACGRD L Z 70,
3 3
\/EﬂLO(P-FT[_ - n+7r0) = \/E?lLO(n+n+ — p+710)

2 2
e I N (V)
3 3 '
(27)

In addition, an alternative set of invariant amplitudes
A and A can be introduced for the Nz system,
which are defined as [29]

gﬂ(3/2) + lﬂ(l/Z)

AD =
3 3

1) Here, non-trivial matrix elements are those which are either zero or obtained as anticommutators with J?.

Table 1. Allowed states for the Nz system.
=3 =1
L=+3 In* p)
LK=+1 VEirtny+ /3170p) Vi~ /i)
L=~} V30 + /T p) V30w = \/Zip)
L=-3 I~ p)
ﬂ(—) — _1ﬂ(3/2) + lﬂ(lﬂ) (28)
3 3 ’
and therefore,
ACD = A® _ 7O
AP = AP 4 2AD. (29)

The non-trivial matrix elements k'k’/(x”B'|S ())|z4 B)
are displayed in Tables 2 and 3 for proton-pion and neut-
ron-pion processes (Nm — Nm processes for short),
spectively.” It can be easily verified that the symmetric
and antisymmetric pieces of A o(B+n* — B +n°) are re-
spectively proportional to k-k’ and the third component
of i(k xKk’), which will be denoted hereafter by i(k xk’);.
The latter can also be rewritten as iePkik’’/ =i(k'k’*—
K2k,

B. Scattering amplitude from Fig. 1(a,b)

Collecting partial results from Eq. (19), the scattering
amplitude for the Nz system can be cast into

fszﬂLo(P +n" = p+n’)

25, 5 25 1 5
- {_ﬁ“' 36902~ Tog s~ 7282~ 1og ey

25 , 2{ 2A AZ}{ 1 H ,
_@b 5 1- F+k02 a +alc3+4c3 k-k

25 5
+ —al 36[l1b2+ 0801b3

5 25

—bz ——byb b
7272 10877 pag”

2 1A A? 1 . ,
- 6 |: —EE'FW} {a%+alc3+zc§H1(ka)3

'%
~0|
)

= PR Ao+ s n+n),
(30)

For instance, for the Nm system,

, , b ’ ’ b, ’ ’ b .
Kik' ("B |S(”>(a |7“B) vanishes whereas k'K’ (x* B |S(U)(a |n“B) = 3Kk i(nbB |S(U)(a )|7T“B>, so they are not listed.
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Table 2. Non-trivial matrix elements of operators involved in proton-pion scattering processes.

Operator

p+rt - p+nat

p+tn > p+n

p+n’ - p+n

p+n o n+nw

kiR (s D)y
Kk (zij)(ab)>
kik'j(S gfj)(ub)>
Kki¢ Sffj)("b))
Kk (Sij)(ab)>
kik'j<S (6ij)(ah)>
kik'j<S (7ij)(ab)>
kik'j<S gi./)(ab)>
kik'j(S (gij)(ub)>
kik/j<S Y’(.)/)(ab)>
kik’j<S (li]j)(ab)>
Kk (1!'2j)(zlb)>
kik'j(S (1f3j)(ub)>
Kk Y?Olb))
Kk (lisj)(ab)>
kik'j<S (1%/')(11’7)>
kik'j(S (lfg')(ub)>
kik/j<S (1t'.9/)(ah)>
kik'j(S (ng)(ub)>
kik/j<S (21'3/)(ab)>
kfk’j<S (zl;{)(ab)>
kik'j<S (ztg)(ah)>
Kk (zié')(ab)>
Kk (21'7/)(017))
kik'j(S (ng')(ub)>
kik/j<S (zt'.gi)(ah)>
kik'j(S %’)(ub)>
kik'j<S (3!'8/)(111:)>
kik'j(S (3!'9/')(ub)>
KK j< S %)(ab)>
kikrj<Sii7j)(ab)>
Kk j< S g)(ah)>
kik"i(S (;{)(ab)>
kik'j<S (Stg)(ah)>
kik"i(S gg)(ub)>
kik'j<S (6i_7/')(ah)>
kik"i(S gé')(ab)>
kik/j<S gé/)(ab)>
kik'j(S g)(ub)>
kik'j<S ;tg)(ah)>
kik"i(S gé')(ab)>
Kk glj)(ab)>

kK
i(kxk')3
itk xK')3

k-K

3k-K

Is Sle
= =

K - Hikxk');
K+ ik xK)3
19 ’
Pkk
ik xK')3
2i(kxk')3
1 ’
ik-k
5 ’
-2k-k

ho ol

-2k-K
1k K
Li(k xk')3
itk xk')3
i(kxK')3
Bikxk');
kK
—3k K - $i(kxK');
-3k K + ik xK')3
4k K - $i(kxk');
$k-K + $i(k xk')3
Bikxk');
Bikxk')3
-3k-K
2k-K
-3k-K
ik xk')3
ik xk')3
1k-K
4i(k xK')3
4k -k’ —i(kxk');
Bikxk');
-8k K’ +2i(k x k')
3k-K
2k-K
Bikxk')3
3k-K
3k-Kk
4Kk’
6k -k’ — 6i(k xk');

kK’
i(k xk')3
itk xK')3

kK’

3k-K

s Sle
= =

K+ Hik xk');
K - Hikxk');
19 ’
Pk
ik xK')3
2i(kxk')3
1 ’
ik-k
5 ’
3k-k
5 ’
2k-k

o ol

1k K
—4ikxk’)3
itk xk')3
i(kxk');
Bikxk');
kK
4k K - $i(kxk');
4k K+ $i(k xk')3
-3k K - ik xK');
—3k K + 2i(k xK')3
Bikxk');
Bikxk')
3k-K
-2k-K
3k
ik xk')3
ik xK')3
1k-K
~4i(k xK')3
4k -k’ +i(k xk)3
-Bikxk')3
-8k K’ —2i(kx k')
3k-K
2k-K
Bikxk');
3k-K
3k
—4k K’
~6k -k’ —6i(k x k')

0
3ikxk’)3
LikxK')3

1k-K
3k K
kK
kK
PkK

Zitkxk')3

Zikxk')3
Lk-K
0
0
1k K
0
itk xKk')3
Titk xk')3
Likxk');
0

-Zi(kxk')3
Zi(k xK')3
-Zi(kxk')3
Zi(k xK')3
2ikxk');
Bikxk')3

0
0
0
ik xK')3
2i(k xk')3
1k-K
0
2k-k’
0
—4k K’
3k-K
2k-K
Bikxk');
2k-K
3k-K
0
-3i(k xK')3

-k-K
0
0
0
0
—Hikxk')3

Hikxk');
0

Li(kxk’)3

0

0

0
-k-K
-3k-K
-3k-K
ik-K
$k-K

-3k-K
2k-K
-3k-K’
0
0
0
4i(k x k')
~i(k xK')3
Bikxk')
2i(k xK')3
0

oS o o o

4k -k’
6k -k’
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Table 3. Non-trivial matrix elements of operators involved in neutron-pion scattering processes.

Operator n+at s> n+nt n+n” > n+a n+n° — n+n° n+rt > p+a’
KK gij)(ab)> k-K —k-K 0 -k K
Kik (s PPy i(kxK')3 i(kxK')3 —LikxK)s 0
kikI(s Py LikxK'); LitkxK')3 —Li(kxK)s 0
Kik'I(s 7y kK kK 7k K 0
Kik?d(s 4Py kK kK kK 0
Kik? (s &)y Br-k + LikxK)s Brk' - LikxK)s Pxk ~Hikxk');
Kik? (s YD)y Pk - Likxk'); Dok + Likxk'); Prw Uik xK)s
kik/j<5gj)(ab)> )N PkK -LPk-K 0
Kik' (s 7y SitkxK')3 itk xK)s3 3 ikxK)s 0
Kik? T (s by ik xk'); ik xK')3 Filkxk); 0
Kik (s PPy kK kK Sk-K 0
K I(8 (7 ik -3k K 0 —ikK
kik/j<S§i3j)(ﬂb)> koK -3k-K 0 -2k-K
Kk (s D)y sk K TkK kK 0
ik (3 Dby ~Liflexk')s itk xK)s 0 Fi(kxK')3
KT ( i0ab)y itk xK')3 ik xk')3 FilkxK)s3 0
Kikrd(s (PP i(kxK')3 i(kxK')3 itk xk')3 0
Kik? (s )y Dikxk'); Dikxk'); Likxk'); 0
KK I(s 5Py kK kK’ 0 kK
Kike (S Py 4Rk - 4k xK)3 kK - ik xK); ~Zi(kxk')3 ~ik-K
Kik (s PPy 4k K+ $i(kxk'); —3k-K + $i(k x k)3 Zi(kxk'); -ik-K
Kik (S §P)y kK - ik xK); $k-K - $i(kxk')s ~3i(kxk’)3 ik-K
KikI(S S0y ~4k K + ik xK); 4k-K + dikx k)3 itk xK)s kK
Kik? (S Sy Bikxk')s Bikxk'); Bikxk'); 0
Kik' (S Sy Bikxk'); Bikxk); BikxK)s 0
KiK' (s DNy Skek' -3Kk-K 0 -3k-K
Kik' (5 Gty —3k-K Sk 0 2k-K
kiR (5 Gy koK' Y 0 -3k-K
Kik' (S 4Py JikxK')3 ik x k) ik xK)s 0
Kik? (S YD)y ik xk')3 itk xk')3 itk xk')3 0
KiK' (s Dby kK ik-K 1k-K 0
Kik? (S D)y —4i(kxKk')3 4i(kxK')3 0 4i(kxK')s
KikI(s Py 4k K +i(kxK)3 4k -k —i(kxK); 2%k ~i(kxk')3
k(s G0y ~Bikxk)s Bikxk'); 0 Bikxk')3
Kik'I(S &)y -8k -k’ —2i(kxKk')3 -8k -k’ +2i(k x k)3 —4k - K 2i(k xk');
Kik? (s &)y kK kK 3k-K 0
KikI(S &Py kK Sk-K 3k-K 0
ik (s UKy BikxK); Bikxk); Bikxk'); 0
K¢S (P Skek koK kK 0
KikT(s Gy kK kK 3k-K 0
kiR i(s iNab)y KK 4K -K 0 4Kk K’
KRS Sy -6k -k’ —6i(k xk')3 6k -k’ —6i(k xK)3 -3ikxk')3 ok K’
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PRAL(p+r~ - p+r)

25 5 25 5 25 2 2A A? 1
|:7Ll$ 36a|b2+ 0801b3+72b2 108 b2b3+648 2 § |: W:| {a?+a|c3+1c§Hk~k'
25 5 25 1 5 25 2 1A A 1 . , A3
+ {—a L+ 3gba 08a1b3+72b2 Togl2be 648b2 5{ et {a%+a1c3+ZC§H1(k><k)3+0[k?}
=f2k0ﬂL0(n+7r+ - }’l+7T+),
@3
PPRAL(p+n° — p+a°)
4 A 1 , |25 5 25 1 5 25
:_§k0 |:a +d1(,3+4 :|k k' + |: 2 36alb2+ 0801b3+72b2 08b2b3+648b2
2 AZ 2 1 2 : ’ 3 _ 210 0 0
o) 1+k? a1+alc3+1c3 i(kxKk');+0 W = fkAom+n - n+m), (32)
‘/zfszﬂLo(p+7r_ - n+71°)
_[25, 5 25 1 5 25 , 4 AT, 1 2” )
- { 3641 gl T 5g b g yhbim kit g { W} aitacatyc)|k-k
+%é al+ac +1 2likxK);+0 A V220 A o(n+ 7t — p+7°) (33)
90 |4 1€3 403 3 el i LO 0 ptm).
Scattering amplitudes including all operator struc- H = _§a 3 b 5 b (34d)
tures enabled for N. =3 in Eq. (8) can be evaluated be- B A R
cause the above results can be rewritten in terms of the
SU(3) invariant couplings D, F, C , and H introduced in A further simplification can be achieved if the power
HBChPT [2.5, 26]. These couplings are related to the series expansion in A of the function
1/N, coefficients a;, by, b3, and ¢; for N, =3 as [23]
1 1 kO kO B A 2
D:§a1+8b3’ (34a) WA Tl - hth+ti—h)g +(f1+fz)ﬁ
3 A4
1 1 1 +(ti—th)— +0 |: :| (35)
F=3a+ bt sh, (34b) kor Lot )
1 where 7, are some coefficients, is substituted into Egs.
C=-a- 563 (34¢) 30)—(33) to rewrite the final forms of the scattering amp-
g amp
litudes as
FA(p+rt = pt+rt) = {—1(D+F)2+1 {—LO +3k—o} Cz}k-k’
Lotp prr)= K-A KA
1 K° K° 5] . , 210 _ _
(D F)? BT 7+3m ClikkxKk'); = fFKAon+n - n+n), (36)
1 1 k° k°
21,0 — -\ — 2 2 ’
[fEA(p+n - p+a)= {f(D+F) —§{ WA kO+A}C}k~k
2 1 kO ko 2| . ’ 21,0 + +
(D+F) BT 3k° A ko ClikkxK);=fkAon+a" - n+n"), (37)
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FRAG(p+7° — +7r°)——%{7kO __© }Czk-k’
Lotp Prr)= "9 [l _A K0+ A
1D F)? Lr_# ko 2l ik xK'); = f2K° 0 0 38
+ E( + )‘5 O_A kO C|ikxK); = fk Ap(n+n > n+n), (38)
27 &0 KO
21,0 — 0y _ 2 2 ’
V22K Ao (p+r o> n+a’) = {—(D+F) +5 {kO_A+kO+A}C}k~k
1] &° K , ) .
*olma wag) Clilkxk); = V220 Ao+t — p+1°), (39)

which are valid to order O(A3/k**).

A glance at the above expression shows that scatter-
ing amplitudes for Nm — Nrm processes are written in
terms of the SU(3) invariants F, D, and C [25, 26], which
is a totally expected and consistent result because F' and
D come along BBr vertices, where g4, = D+ F represents
the axial coupling for neutron beta decay in the limit of
exact SU(3) symmetry, whereas C comes along T Br ver-
tices. Further, in the limit A — 0, the coefficients of the
C? terms do not vanish.

As for the A and A{J” amplitudes, they are found
to be

FRAL? = {—%a% 356a1b2 12058a1bg
ﬁbz 1?) bybs — 62458bz (40)
%{1—% 2)22} {a +a1c3+£11c3Hk K’
{72 6“1]’”1058“1[7”7]72[’% 138b2b3+62458b
g{ ;13 ICA—;} {a§+a1c3+%cgﬂi(kxk')3+0L<A—(;},
(41)
and
AN = Eg al+ 58a1b2+ zia@
+%b2 554b2b3+ 3225 i (42)
- g {1+kA—0+kA—022} a?+a1c3+%c§H k- -k
+ {§a2+356a1b2+ 2058411173+712b2 108b2b3+62458b2
—5 {1+%+kA—;} {a%+a1C3+%c§H i(kxKk'); +0 {k—;} ,

(43)

or equivalently,

FROACD = {—1(D+F)2+1 [—LO+3 K
LO 9 kO_A k0+A
1 { k° k°

2_7
{ D+E) =15 loa P osa

}Cﬂk-k'

} Cz} i(kxK)s,
(44)

and

4
FRAL = {(D +F) -~

2 ’
. C}kk

{ (D+F)* 2 2 Cz} i(kxk');, (45)

9 k0 —
which are valid to order O(A3/k%’).

1. Isospin relations

The Nrm— Nr scattering amplitudes satisfy the fol-
lowing isospin relations:

Ao(p+n = p+r)—Ao(p+a° — p+1°)

1
+—=Ao(p+r > n+n°) =0, (46)

V2

Aro(p+7* = p+r")=Ao(p+n — p+n)
- \/E?{Lo(p+7r’ —-n +7T0) =0, (47)

Ap(p+r" = p+a)+Ao(p+n - p+n)

—2Ao(p+r’ - p+r°) =0, (48)

Aon+n s n+r)—Aon+r1° = n+1°)

1
- %ﬂm(n-wr* — p+7r°) =0, (49)

Aron+nt > n+a)-Aon+n > n+n)

+ V2Ao(n+71t > p+1°) =0, (50)
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Ao+t s n+a)+Aon+a > n+n)

—2Aon+7° > n+7")=0. (51)

B. Scattering amplitude from Fig. 1(c)

Following the lines of Eq. (18), for the Nz system,
the scattering amplitudes arising from Fig. 1(c) read

Averex(p+7* — +7r+)—lk—0
vertex \ P p = 4f2
= Averex(+71~ > n+717), (52)
) o
ﬂvcnex(p+7r - ptn )__ZF
:~?{vcnex(n'|'7fr - I’l+7l'+), (53)
Aeriex(p+7° = p+7°) =0
= Averex(n+7° = n+1), (54)
Aerex(p+ 71~ = n+1°) LK
vertex T n+mn)=—r—,
Tl p 2\/§f2
:ﬂvenex(n+ﬂ+ _>P+7TO), (55)

from which the following amplitudes can be obtained,

L

A =15 (50
and
14°
1/2) _—
ﬂvenex - _EF (57)

1. Isospin relations

In a close analogy of the previous case, the isospin re-
lations between these scattering amplitudes are

Averiex(p+7~ = p+17) = Avertex(p+71° = p+1°)

1
+ 7ﬂvertex(p +n —on +7TO) =0,

V2
(58)
Averiex(p+7° = p+1) = Avenex(p 7 = pt17)
- \/Eﬂvertex(p +n —on +7TO) =0,
(59)

ﬂvenex(p+7T+ - p+ﬂ+)+ﬂvenex(p+ﬂ-_ - p+7T_)

- 2~?{venex(p +7T0 — I’l+7T0) =0,

(60)
ﬂvertex(” +n —on+ ﬂﬁ) _ﬂvertex(n + 71'0 —n +7T0)
1
- —Ase ex(n'l'ﬂ-Jr i +7l'0) =0,
\/z rt P
61)
Avertexn+ 7" > 1+ 7) = Aerex(n+71 > n+7)
+ \/Z?{vertex(n""7'(+ - p+7T0) = Os
(62)
Averiex(+7" = n+1) + Ayerex(n+1~ = n+17)
—2Aserex(+7° = n+1%) = 0.
(63)

IV. PROCESSES WITH STRANGENESS: TWO
CASE STUDIES

To test the applicability of the approach, two pro-
cesses including strangeness have been selected with no
specific criteria. They are two case studies: A+K* —
p+n® and Z°+K°— A+n. The respective scattering
amplitudes from Fig. 1(a,b) read

4 V3O AL A+ KT > p+1°)

+ % {1+%+$—01 {a +alc3+41tC3Hk K’
{_gaﬁ_%“‘bz 13“11’* 112b g 1302bs = 11(?8]72
; {1+%+$—01 {a +a1c3+ic3H(kxk’)w(){Ar,
(64)
and
4V32OALHE" + K* — A +1)
= {-%a%-é(ﬁbz ;a]b3 112b b2b3 11217
+ g% {a +alc3+ic3} k-K
{_%“%_éa‘bz i;“‘l” 112b 8b2b* 11018b
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2 A? 1 A7’
+3 {1+ﬁ} {af+a1c3+1c§H kxK);+0 [@} ,
(65)

or equivalently,

43 PROA A+ K - p+1°)

20 k0
—3D2—2DF—3F2+7{ }Cz}kk’

3LE0-A

1] & , AT’
+{D2—6DF—3F2+§ {kO_A}cz} (kxk)3+0{ﬁ} :
(66)

and

AV3 PO A E + K > A+n)

= {—3D2+2DF—3F2+%{L0— K }Cz}k-k’
3LEO—A KO+A
+{—D2—6DF+3F2+1{L0+ K }Cz} (kxKk');
3LEO-A KO+A

A 3
+O{@} .

(67)

The above expressions have been obtained in a com-
plete parallelism to the nucleon-pion processes, and
therefore, no additional details are required.

V. FIRST-ORDER SU(3) SYMMETRY BREAKING
IN THE SCATTERING AMPLITUDE

The SU(3) flavor symmetry is not an exact symmetry
and is actually broken. Flavor SB and strong IB refer to
the deviation of the strong force from the ideal symmet-
ric limit where all quark flavors are treated on an equal
footing (flavor symmetry) and where the up and down
quarks are considered identical (isospin symmetry).

Two major sources of SU(3) symmetry breaking are
identified. The first one is caused by the light quark
masses, and the perturbation transforms as the adjoint
(octet) irreducible representation of SU(3),

eHE + EHC. (68)

The first term in Eq. (68) is considered the dominant
SU(3) breaking and transforms as the eighth component
of a flavor octet, where € ~ m;/Aqcp represents a (dimen-
sionless) measure of SB; € ~ 0.3, which is comparable to
an 1/N. effect. The second term represents the leading
QCD isospin breaking effect, i.e., the one associated with
the difference of the up and down quark masses and

transforms as the third component of a flavor octet, where
€ ~ (my—m,)/Aqcp; therefore, € < e. This isospin break-
ing mechanism is referred to as strong isospin breaking.

The second source of symmetry breaking is induced
by electromagnetic interactions. Second-order electro-
magnetic mass splittings in the quark charge matrix can
obtain a suppression factor of €’ ~ @.,/4n. To a good ap-
proximation,

mg—my, Tem

. 69
AQCD 47 ( )

In this section, effects caused by first-order SB and IB
to the scattering amplitude are discussed by extending the
projection operator technique applied to the diagrams dis-
played in Figs. 1(a,b) and 1(c) separately as they involve
different operator structures. These effects are added to
the lowest-order results A;o to obtain more accurate ex-
pressions. Loop graphs that complement the analysis will
be attempted elsewhere in the framework of large-N.
chiral perturbation theory.

A. Flavor projection operators for the product
of three adjoints

First-order flavor symmetry breaking contributions to
the scattering amplitude are computed from the tensor
product of the scattering amplitude itself, which trans-
forms under the spin-flavor symmetry SU(2) x SU(3) as
(2,8®38), and the perturbation, which transforms as (0, 8).
The tensor product of three adjoint representations
8®8®8 decomposes as

82828=2(1)®8(8)24(10810)86(27)82(35835)®64.
(70)

Thus, the effects of SB can be evaluated by construct-
ing the 1/N,. expansions of the pieces of the scattering
amplitude transforming as (2,1), (2,8), (2,10©10),
(2,27), (2,35®35), and (2,64) under SU(2) x SU(3).
These 1/N. expansions need to be expressed in terms of a
complete basis of linearly independent operators
(RI“12)y " where a generic operator R\”“'““ repres-
ents a spin-2 object with three adjoint indices. For N, = 3,
up to three-body operators should be retained in the
series. Accordingly, first-order SB can be accounted for
by setting one of the flavor indices to 8, v.gr., a; =8,
whereas first-order strong IB can be accounted for by set-
ting one of the flavor indices to 3, v.gr., a; = 3. For com-
pleteness, the set of up to three-body operators used as a
basis is listed in the Online Resource. The set contains
170 linearly independent operators, where R@@8) and
REP@a3) represent operators with 7 =0 and I = 1, respect-
ively. Naively, isospin breaking induced by electromag-
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netism should appear from operators with 7 =2 and I = 3,
which emerge from the tensor product of four and five
adjoint presentations, respectively. These tensor products
are not treated here.

The task of constructing operators that yield SB ef-
fects is facilitated by the implementation of the projec-
tion operator technique presented in Ref. [22], extended
to the decomposition (Eq. (70)). The projection operators
can be constructed as

[P(m)]CICZCBbleb.% _ {(C—C"‘f) (C—C"ZI> <C—C"3I>
om —cm o —cm o — e

C-— Cn4I ol Cns_[ cicaczbibybs
X b
om — cna om — s

(71)

where m indicates the flavor representation of each pro-
jector and the n; indicates flavor representations besides
m. The quadratic Casimir operator reads

[C]Clczr3b|b2b3 - 656119[6(‘2}7261‘3}’)3 _Zéclblfa(‘zhzfacﬂ)g
_ 2602h2faclb1fa¢‘3h3 _ 2663h3faclb1faczh2’ (72)

and
=0, ¢=3, "0=6, =8, FF=12, =15,
(73)
are its corresponding eigenvalues.
. in]cicaes .
Therefore, the product [?’(d'm)R;i] )] effectively

provides the component of the operator R{"“'**” trans-
forming in the irreducible representation of dimension
dim according to decomposition (Eq. (70)).

However, the explicit analytic construction of
[P““m’]clczc3b]b2b3faces several algebraic challenges. The
most evident one is dealing with the products of up to ten
f symbols contained in the C° operator, which cannot be
reduced in terms containing fewer Ef or d symbols. Thus,
the algebraic forms of [P4™]"““"™ contain hundreds
of terms, which, in practice, become unmanageable. A
more pragmatic approach such as the matrix method
should be adopted to solve this problem.

To start with, each projection operator (or quadratic
Casimir operator) is an object with six adjoint indices,
each one with eight possible values, and therefore, all
these objects have 8° elements. However, Casimir operat-
ors have all or half of their indices contracted, and the
projectors are applied on three-body operators with three
adjoint indices; therefore, half of the projector indices are
always contracted. Thus, it is possible to collect the first
three indices (c;,c,,c3) and last three indices (b ,b;,b3) of

both the Casimir and projectors in only two indices, one
for each set. These new indices have 8 =512 values. In
this way, a matrix representation for the projectors can be
constructed. They comprise 512 x 512 matrices. Similarly,
the three-body operators with three adjoint indices can be
represented as vectors with 512 entries. Therefore, in-
stead  of  performing the index  contractions
[P(d‘m)RiU)] *, the problem reduces to ordinary matrix
multiplications. The whole procedure is very reliable and
effectively simplifies the analysis.

Let PUim™ represent the matrix corresponding to the
projection operator [P“™] AN With the method im-
plemented, a series of consistency checks have been per-
formed, namely,

pmpm — pom PMPM =0 p£m, (74)

along with

PO 4 PO 4 pUOHO L pED L POSTED L PO = | (75)

where l5;, represents the identity matrix of order 512. The
above relations are the usual properties that projection
operators must satisfy. No further details on the method
are presented here.

The matrix method to construct projection operators
can be extended to the tensor products of four and five
adjoint representations. In the first case,

82828®8 = 8(1)®32(8)®33(27)® 12(64)® 125

®20(10010)®2(28®28) @ 15(35®35)®3(81 @ 81).
(76)

This decomposition (Eq. (76)) contains operators with
four flavor indices, two of which can be fixed to {8,8},
{3,8}, and {3,3}, which will help identify operators with
I=0,1=1,and I =2, respectively. Numerically, the pro-
cedure to construct projections operators would be rather
involved, requiring a considerable amount of computing
time; however, this procedure can still be performed.

1. Flavor SB effects on the scattering amplitude from
Fig. 1(a,b)

The mechanism of flavor projection operators can be
better understood through a few examples. The operator
{T,{T",T¢}} contributes to the scattering amplitude of the
process n+nt — n+nx* through components with flavor
indices a = (1-i2)/ V2, b=(1-i2)/ V2, and ¢ = 8. Using
the matrix method, the {1,1,8} component of the flavor 8
piece becomes
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1 1 4
[P(B)]ll&'dc’{Tc’{Td’Te}} — 7T1T1T8+ + + + T5 + 7T1T8T1
15 30V3 30V3 30V3 30V3 15
1 4
+ =TT T8 - ——TT*7" + ——T°T°T + ——T*T°7° — ——T7°7T'T*+ —T*187?
15 30V3 30V3 30V3 30V3 15
1 1 4
+ =TT+ ——TT*T*+ ——T 77 - ——T7°7 - —— 7377+ =7°7%73
15 30V3 30V3 30V3 30V3 15
1 1 1
- T*T'T® + T T - ——T*7T3°T* + TATAT3 + —T4TT8 + ToT!
153 153 153 30V3 10
1 1
T4T7T2+ T4T8T4 517 52 6 T5T3T5 T5T5T3
3043 15V3 15V3 15V3 30V3
1 1 1 1
+ =TT+ —T°T7T*+ ——T77"T + -T°737° - — 77 17* - —— 757277
10 30V3 30V3 5 15V3 15V3
1 1 1 1
+ T8T3T% + TST*T' + - ——TO7TT% + — 787578 + — 70787
15V3 30V3 30V3 30V3 10 5
1 Tl 5 T 24 T 37 T pd 2 751
- T° + 7T+ ——T7'7°7T - ——T'7T*T*+ ——T'T°T
153 153 153 303 303
1 1 1 1 1 1
— 7T+ =TT+ -T'TT" + —=T8T'T' + =T8>+ =777 + —T78T1*T*
3043 10 5 15 15 15 10
1 1 1 2
+ T3+ —T8TT + — 137777 + 2137878,
10 10 10 5

Similar expressions to Eq. (77) can be found for the
{2,2,8}, {1,2,8}, and {2,1,8} components required in the
example. Therefore, it can be shown that

[P 4 PO 4 pU0+10) 4 p(7) | p(35+35)

+ P(64)]118m'e{Tc’ {Td, Te}} — {Tl, {Tl, TS}}, (78)
which is the expected result. Computing the matrix ele-
ments of the operator (Eq. (77)) is straightforward; there-

fore,

(@ (PO T (T, T n) = % Vi, (19

and

(#al[PO AT AT, T Y ) = 0, (80)
for r #8.

The procedure can be repeated for each flavor com-
bination so that the different contributions of the operator
{T?{T",T°}} to the scattering amplitude of the process
n+n* — n+nx* can be made available. For the canonical
example, the final expression can be summarized as

(77)
1
\/_ \/_klk/](yj(ﬂ' n|[¢)(8)](l i2)(1- 12)8c‘d6{Tc {Td Te}}lﬂ' n>
=3 LBk,
(81)
and
11 .. B
ﬁ%klkudl] [<7T+n|[P(r)](l—lZ)(l—IZ)Scde] {TC,{Td,Te}}|7T+n>=O
(82)
for r # 8.

Gathering partial results, the first-order SB to the
scattering amplitude Ao Eq. (19) (denoted hereafter by
6Asp and for which 7 = 0) can be organized as

FPk6 Ay (B+ 1" — B +1°)
— Z [ Cg(dlm)klk/j<ﬂ.bBl|[P(dim)R(lij)](ab8) |7l'aB>
dim
+ N(g(dlm)klkrj<ﬂ,bBr|[P(dim)R(2ij)](ab8)|ﬂ.aB>
16
+ Z g(rdim)kik/j<ﬂ,hB/|[7)(dim)R(rij)](ab8) |ﬂﬂB>

r=3
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71
+ Ni Z UMK (b B[P RGN (@) 7 By
¢ r=17
| d ‘
+ N Z QUM KT (P B[P R @) B)] ’

¢ r=72

(83)

1 1
Jel el

(1)
&ioo T

1
~giy +

2V3 2K Asp(n+7" — n+7t) = [6g<2') + 3

2

1 (1)

(1)
2810t

1
+—glo+
1859 T 18 3

1 (1) 1 (1) 1 (1)

5852t

281t 782+ 586t

1 (1)

where g™ r=1,...,170, are undetermined coefficients
expected to be of order one. The sum over dim covers all
six irreducible representations indicated in the relation
(Eq. (70)), and the sums over i and j are implicit.

For example, the flavor 1 piece of dAspp(n+nt —
n+n*) using the corresponding matrix elements of the
operators listed in the Online Resource becomes

gy 1 g
5823)+igg4)+

1 (1)

I g
T88(95) +

1 (1)

U oo, 1 oa
T+ gt
1(1)

— +
98117

|
+ Eggs)

1 Q)]
98119

1 (1
— +
98118

1 (1)

3 3 9

1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

+ 58120 + 58121 + 88134 + 68135 + 88136 + 88137 + 8g138 + 88139 + 8g140 + 68141

1 1 1 1 1 1 1 1 ,
+ 68(111)2 + 68(114)3 + 68(1?4 + 88(111)5 - Eg(& - ﬁg% - Egﬁ?s - ﬁg(llétg} k-k

1 o
gg(es) +

[

1
(0Y)]
~8e5 T

6g64 +

1 ¢
6823) +

1
e Ly

1
1)
6882

—gar +
6881

1

1
()
~8s0 T

8873 +

1

1
Q)]
—8es T

—g +
6 6% "6 6
1 1 1 1 1 1 1 1 1
+ 58(112)2 + 58(112)3 + Eg(llz)ét + ggglz)s + gg(fz)s + gg(112)7 - ﬁg% - ﬂg(llz)ﬁ) - ﬁg%}o

1 1 1 1 1 1 1 1 1
et et~ e et et~ 1o - st ety - Teslh

1 1 1 1 | 1 ) 1
- Eg(lsg - Rg(llﬁ)o - Eg(llgl - Eg(lls)z - Eg(16)3 - Rg(ll6)4 + %8(116)5 + Eg(16)6 + Eg(116)7

1 1 1 . ,
+ g8 T g 8ier + 18 ik XK);, (84)
However, the applicability of expressions such as Eq. RS A(p+a~ — p+n)
(84) is hindered by several disadvantages. The obvious =@ +d® - 400470 _ 21 | 4®) A7)k K’
one is the impossibility of determining all free paramet- ! ! oo g g
ers. For the Nm— Nr process, simpler expressions are +(el + el = e+ )itk x K3
obtained by defining effective coefﬁgients expressed in = PO A+ 1" — n+7t), (87)
terms of linear combinations of the g™ ones. In view of
this, Eq. (84) can be written as
L6 A(p+7° — p+n°)
1 ,
PR6 A+ 7 = n+at) = dVk K +eVitkx k). (85) = 5d" +2d" +d" + d7" )k -k
Lo ® ., e, ®) /
where the d\" and e{" coefficients are easily read off us- tolar e A G kXKD
ing Eq. (84). = 26 Asg(n+7° — n+71°), (88)
Thus, the final expressions obtained for first-order SB
effects to the scattering amplitudes for the N+7— N+n 20 0
. \/EfkéﬂsB(p+7r_—>n+7r)
process are given by B
_ (Zd(110+10) +2d(127) _dgs) —d§27))k~k'
FRoA(p+" = p+a’) + (26110 4 62— ®)ik X K )y
= +d +d "+ dk K = V226 Asp(n+ 1+ — p+1°). (89)

el

= PS5 Asg(n+ 7 = n+n),

+e® 410 L BNy (k K,

(86)

Expressions (86)—(89) are written in terms of 11 un-
known parameters that contain implicit suppression
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factors in N,; thus, they are expected to be O(N?),
O(N:1), and O(N:?) for coefficients coming from 1, 8 and
10+ 10, and 27 representations, respectively. Neither the
flavor 35+35 nor the flavor 64 representation particip-
ates in the final expressions.

The isospin relations (Eqs. (46)—(51)) are satisfied by
corrections to scattering amplitudes (Egs. (86)—(89)),
which is a completely expected result.

Furthermore,

FRSAG? = (@ +d® +d* 0 + dP)k K

+ (@D + P+ 1010 1 Dk k'), (90)
and
PRSAY = [di” rad? 2" 20+ S+ %dﬂ koK

w0 | 3 ]
+ {eﬁ” +el¥ =26l — Ee?” + Ed;& i(kxk)s.

1)

2. 8B effects to the scattering amplitude from Fig. 1(c)

The SB effects to the scattering amplitude from Fig.
1(c) are obtained following the lines of the previous sec-
tion. In this case, A% . in Eq. (20) is a spin-zero object
and contains two adjoint indices. A straightforward way
to obtain the spin-0 operators with three adjoint indices to
account for SB is forming tensor products of R/ lis-
ted in the Online Resource with § to saturate spin in-
dices. With this procedure, out of the 170 original operat-
ors, only 59 remain. The corresponding operator basis
{Vec} is also listed in the Online Resource. However,
after repeating the computation of the action of flavor
projectors on these 59 operators, computing matrix ele-
ments, and gathering together partial results, only one un-
known parameter is required to parametrize SB effects
from Fig. 1(c). The final forms of the amplitudes read

+ +\ 1k
6ﬂvertex(p+7r —ptn ) - _Zﬁhl
= 0Averiex(n+7” > n+n), (92)
B _ 1k°
6ﬂvertex(p+7r —p +r ) = _Zﬁhl
= 6~?{vertex(n+ﬂ'Jr - I’l+7T+), (93)
5 Pme(p 7 = par®y = -2 K
vertex \ P p - 4 f2 1
= 6Aserex(n+ 1" — n+1°), (94)

OAverex(Pp+1~ — 1 +7%=0

= 0Ayerex( +1° > p+ 770)’ (95)

where 7, represents a new unknown parameter, which is
a linear combination of 1, 8, and 27 operator coefficients.
Note that Aypex(p+7° = p+7°) and Aerex(n+1° —
n+n° no longer vanish because of SB, whereas
Averex(p+71~ = n+7°) and Ayerex(n + 77 — p+7°) remain
unchanged. Further, the isospin relations (Egs. (52)—(55))
are unaffected by SB effects, as expected.

Similarly,
1 k°
Oy vres = 3 7l (96)
and
1k°
6‘?{(5113/,2\/)enex = _5 Fhl . (97)

3. Strong isospin breaking to the scattering amplitude
from Fig. 1(a,b)

The evaluation of IB corrections to the scattering
amplitudes, hereafter denoted by § A, can be performed
in a manner similar to that for the flavor SB described in
the previous sections, except that the free flavor index is
now fixed to 3. The corresponding 1/N, expansion for
which I =1 reads

S AR(B+n" = B +71°) =
Z [N( S(ldim)kik,j<ﬂ'bB,|[P(dim)R(lij)](ab3)|7TaB>

dim
+N. S(zdim)kik/j<ﬂ,bBl|[P(dim)R(2ij)](ub3) |7TaB>

16
+ Z S(dim)kik/j<7TbB/|[7)<dim)R(_ij)](ah3) |7Z'aB>

r=3

1 71
+ ﬁ Z sf.dim) Kk ( ﬂ,b Bll[P(dim) Rgi_j)](ab3)| ¢ B)

€ r=17

1 170 )

+ ﬁ Z sgdim)kik/j<n_bB/|[p(dim)Rgij)](ah3)|ﬂaB>i| , (98)

¢ r=72

where s@m™ r=1,...,170, are undetermined coefficients,
which are expected to be of order one. The sum over dim
covers all six irreducible representations indicated in the
relation (Eq. (70)), and the sums over i and j are implicit.

The matrix elements of Eq. (98) can be straightfor-
wardly obtained following the lines of the previous sec-
tions. This enables one to obtain violations to isospin re-
lations (46)—(51) as
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1
FK° [5ﬂIB(p+n" - p+1)—0A(p+1° = p+ )+ —0AR(p+1 — n+ﬂ0)}

V2

1 1 3 1 1 1 1 3
S VOO B I 7W<1>} n [ w® Zp® 1 ® WO S y® e w® w® w®
H el Nc 3 Nc 4 4 1 2 3 4]\/C 19 Nc 20 Nc 2 2 N( 22 2 Nc 23 4 Nc 24

1 3 1 1 1 3 1 1 1 3 1
w® ®_ _— ® L - ® ® L W - — WS — <8>} " [ W@ Wi = — 2D

_ﬁc 257 4N, NCW27 N. 28 N\W29 4N. 30 Nc N. Wi N 4N. 2 N.

[eY; / n_ L g 3 s Lo 1 @ 8 ., 3 @ 1 @
e ML WY
1 1 1 3 1 1 1 3 1 1
(8 (8) 8) (8 (8) (8) (8) 8) 8) 8)
+ ﬁcww) 2N 2N, wi 4NCWI6) NCWW NCWIS N Wiz + = AN, wiy + ﬁc wig - EW&S]

3 10+10 1 4osT0 1 10+10; I 27 I I 3 27
+|:ng +10) NLW(z )+ﬁw(3 + )]+|: NLWé )+WWE’ )+ﬁ(wg )_iwg )+TMW; )
1
+ N‘w(lf)7)”i(k><k’)3,+0 { }
(99)
K0 [6ﬂlB(p+7r+ > p+a)-0AR(p+n > p+n)— \/zéﬂlB(p+7r’ - n+7r0)]
2 2 4 1 1 2 4 2 4
= [N ] [P R R D e - ]
2 4 2 4 1
+[ﬁw(127)—ﬁw5427)ﬂk-k’+[[2w§1)+ﬁw21)}+[—4w(8) w()+w +2w(8) Nw(f;)—ﬁwﬁ)
1 2 2 2 4 4 0 2 4
+ﬁw('85)+ﬁ (187)+ﬁ (1?+ﬁ (383)+ﬁ (386)]+[_ﬁw(310+10)]+[ﬁw?7)+N, (27)]]1(kxk)3+0{ } (100)
K0 [5ﬂlg(p+n+ - p+a)+6Ag(p+r = p+r) =20 AR+’ — p+7r°)}
3(8) ®) ® 828282 3 38282 3 &
:HZ —2wy" - 2N, (19)_ﬁcw(20) N, ()"‘ﬁ 2N, Wy 2N, (26)_ﬁcw(27) N 2N, (%0)
2 g 2 g 3 o 2 o 22 ;o3 @ 8 8 9.3 ®., 3 @
—EWN—MW3£]+[2NCW(27)—EW(37) N (7)Hkk HZ w® 2w(5) 2w()+2w() 2w(9) 2NCW(”)
2 2 2 3 3 2 2 3 o 2 0
_ 282 ® = w® (8) . (8) ZW® (10+10) _ 4 (10+10)
N T N TN gy Wie T o et g Was Ty e ]+[2NW1 A
2 (10+T0) 3 .2 on. 2 on, 3 on, 2 (27) , 1
- ]+[TNCW6 T g s 0] |itkxKk); +0 N (101)
1
F2K° [6ﬂIB(n+7r’ —sn+r1)—6An+1° > n+n°)— %6.?{113(n+7r+ - p+7r°)]
1 1 3 s 3 1 1 1 1 3
= [N = ol = [l ) - 2l - - S s - )
1 3 1 1 1 3 1 1 1 3 1
L ] I B A
1 , | 1 3 & 1 1 3 3 1
_ﬁcWi )Hk.k+H—w(2)—ﬁ€wf‘)}+[—wa‘)+w§8)—w(68)—§w§8)—§w§8)—Z 5)8)— (1%)—4]\, (81)+ﬁc (182)
L oo 1 g 1 g 3 g 1 @ 1 g 1 g 3 g 1 g 1 g
_ﬁw(m)_zN W(M)_ZN W(IS)_4N W(16) NW(I7) NW(ls) NW(%) AN W(34)_ﬁWg5)+ﬁW(36)}
3 a0+t , 1 WU0+T0) I 0m0) 1 o 3 o 1 on, 1 o 3 o9
+[ 4N Wl "rﬁc ) NCW3 :|+|:—FCW5 —TMW6 —ﬁcW7 +ﬁc 8 —TMW9
1 . , 1
- —wiy]|itkkxk); +0 {ﬁ} :
(102)
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720 [6ﬂlB(n +1t s n+a) =0 AR+ > n+a)+ V25 A+t — p+ 710)]

2 2 4 1 1 2 4 2 4
1
L O B .
2 2 4 2 ’ 2 8 8 4 8 1 8 1 8 2 8
[ ] i ([0l - (8)+2w(1%)+ﬁcw(13)+ﬁcw(l4) Wl
2 2 4 4 10470 2 o 4 ,
+ ﬁcw(lg)+ ﬁcw(ﬁ)—ﬁcwgd + [ﬁcwg +l )} + [ﬁ(wg N _— T wh 7)Hl(k><k) +0 Nz
(103)
F2K° [6?(13(n+7r+ > n+a)+ A+ = n+n) = 20AgpMn +7°n — 1°)
3w a 3 2 2 2 3 3 2 2 3
= ([ w2 200 e T T T e T e Tl
2w 2 3 o 2 2 ) 3 3 3
+ ﬁcwgl) + ﬁcwgz)] + [— N, w(2 Dy ﬁcwm) + ﬁc (27)Hk-k + H EWEtS) +2w(8) +2W(8) 2w§8) - Ew(gg) - N, w(lgl)
2 2 2 3 3 2 2 3 o 2 o 2 15
F W = - W sl - T - T o[- W O s 20 ]
3 27) 2 (27) 2 27) 3 (27) 2 (27) ’
+[_TMW6 —ﬁCW7 _ﬁCWS —Tng Nc :|:|1(kxk)q+0
(104)
The effective coefficients w@™ can be written in w® = 5 ®
.. " We = 515105 (114)
terms of the original ones as 24
(1) (1) ®) _ 5 Q)
wil = =25, (105) Wy = esin (115)
5
wy! =5y, (106) wy' ==z, (116)
3 5
=2, aon =2, 17
3
wy) = _isg?, (108) wi) = ( & — s, (118)
1
Wi =& (109) wi = Esg?, (119)
W L® (110) ®_ 1
27478 Wiz = g5 (120)
W =L ® (111) ®_1®
3545 Wi = §s23, (121)
W(S) _ §S(8) (112) 8 _ 1 (8) 122
4T g% W14—5524, (122)
®_ O ® 113 ®__lw 123
Ws 2 S9 > (113) Wis = 2525’ (123)
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®)
Wi7

(8)
Wisg

8)

Woz =

(8)
Woq

(8)
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(®)
Wae

(8)

(8)
Wos

®)
Wa9

(8)
W30

1
= 5(527

1 (8)

2S29’

(8)

5
= 6(530 + 533

® _ (®

$28 )

(8))

5
= 27 (551 + 55,

5
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8)

5
= 8(536 + 538

S

(8))

) (8))

S37 + S
37 3
6 9

5
= 15 (%o + 47,

8
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3 (8)

4S49,

_3®

4550’

_3®

5S51’

3 (8)

5S52’

_3 (8)

1
_ ) (8) (8) (8) (8) (8)
= 8(_542 + 543 — Sas — S45 ~ Sa6 — S47)s

= %553’

_3 (8)

=20

3
=— 115 (s

(8) (8) (8) (8) (8) (8)
57 — 858 TS50 + 8560 — Se1 T Se2

),

(124)

(125)
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(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

11
(8) (3) (8)
Wiy = —(Se3 + 5, .
34 30 ( 63 66 )
11
(8) (8) (8)
=———(S¢q T8 .
35 120 ( 64 67 )

® _ _L( ROJRRON

3 = 7120 65 + S8
(10+10) _ 1 (10+10)
1 - _g 66 4
(10+10) _ _is(10+ﬁ)
2 ]2 67 ’
(10+10) __ 1 (10+10) (10+10)
3 =775 Ses —Ses )
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en_ 1 e
T
2
QN _ “ @D
Wy, = 5552 >
W(27) _ i (27)
3 - 10 53 »
1
@7 _ @7
Wy = Essa, >
1
en _ en ., @n .@2n .@H, .Qh @D
Ws —%(_557 +5855 — 59" —Se0 T S61 —Se2 )
en_ 2 o
6 - 15 63
en__ L o
7 - 30 64 o
1
Q7 _ QN , @D
Wwg —_%(565 + 865 )
W@ 3 @7
9 - 15 66 *
27 _ _is(27)
10 =735%7 -

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

Unfortunately, unlike flavor SB corrections, strong IB
corrections cannot be further simplified in terms of fewer
effective operator coefficients. The reason is consider-
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ably simple. The operator basis {R)@9} is constituted by
170 linearly independent operators so that they all con-
tribute to the 1/N, expansion (Eq. (98)). This is not a
single rule to eliminate some of them. In Egs. (99)—(104),
the explicit dependence on N, that comes along the oper-
ators involved in the 1/N, expansion have been kept.
Those expressions are evaluated at N, = 3, which is a use-
ful artifact to identify leading and subleading terms in
them. Recall that > ~ O(N.), and therefore, the unitarity
of the scattering amplitudes is not compromised.
Therefore, the usefulness of relations (Eqgs. (99)—
(104)) can be better appreciated by retaining leading and
subleading terms in N.. Specifically, Eqgs. (101) and (104)

fzk0 [6ﬂIB(p+7r0 - p+7r0) —5ARm+n° — n+7r0)]

obtain leading corrections from the 8 representation,
whereas 10+10 and 27 representations are 1/N, sup-
pressed. The relevant operators for the symmetric part are
OUsPT3, §76T?, and 676" T“, whereas for the antisym-

metric part, the relevant operators are ie/"6*G™,
iEij'n5a3G’nb , iEijm6b3 Gma , ieijmfaSefhegGmg , and
iéij)ndahed3eg Gms

Equations (99), (100), (102), and (103) obtain import-
ant corrections from the singlet and octet representations,
whereas 10+ 10 and 27 representations obtain 1/N,-sup-
pressed factors.

In addition,

L ® o 0® 4 0y® W 2 W 2 1 L o, 2 o 2 1 W® 2 W 2 ®
= +2w; +2 + +— + —Wwy + — + +—
Hz W2 AW T ON. N, 0T N A T gy M Ty Wae Ty War Ty s T o NN, W)
2 2 1 1 2 2 1 1
@7) (27) (27> ’ w® (8) (8) (8) (8) w® w® (8) (8)
+[2N wy +ﬁcw3 +— Hkk HZ +2ws + 2w, +2w9 +2N l+ﬁc 2+ﬁc 13+2Nc 16+2NC v
2 8) 2 8) 1 (10+10) 2 (10+10) 2 (10+10) 1 27) 2 @7 _ 2 (27) 1 (27)
_ﬁCWSS _EWSG} + [ZN 1 +ﬁCW2 +ﬁc 3 ] + {TMwé —ﬁCW7 NC +2N 9
2 ’
i ] Jitexk); +0 va}
(158)

In this case, there is a type of octet dominance because
the 10+10 representation starts contributing at order

O(1/N?) and the 27 representation is at least one factor of

1/N. suppressed relative to the octet representation.

fzko[éAIB(p +n1 > p+n) —6AIB(p+7r0 - p+710) +
3 3 1 1 15
— (2N + S0+ [0 = 2l 0 0 -

] ] | 1
(8) (8) (8) (8)
N4 TN TN el +O{NZ}

T8N,

4. Strong isospin breaking to the scattering amplitude
from Fig. 1(c)

Strong IB corrections emerging from Fig. 1(c) can be
cast into

1
25AIB(p +17 > n+a°)]

5 5 5

FUSAR(p+1" = p+r)—0Ag(p+n > p+r)— \/§6AIB(p+7r’ - n+a")]

5 5 5
= [—4ch(l]) — —vgl)] + [— yW_ = @ = B

SN aN T 2N,

FUSAR(p+1" = p+a)+0A(p+1 = p+1)—20AR(p+1° = p+7°)]

3 1 1 15 5 5 5
— §v<38> _ EVE‘S) _ 5V(js) L= o 2 ® w = ® ®)

4N, 0T N

(159)
1 1 | ]
=t - il w0 . (160)
5 ®
AN, ””LO{NZ} (161
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F6AR(n+7 > n+1)—6Asm+1" - n+x°) -

SAp(n+n1" — p+n°)]

V2
= [N+ Zichgw] e 8%;& b - - Y- = - 41;0 S 0 2]1% oo
_ ZI‘VC W+ 5] 40 [H ,
(162)
FAUSAR(n+7" > n+r)—6Ap(n+n > n+n)+ V26Apn+at — p+1°)]
= [N - Nicvg”] [P - %v?) F i > Y lesc W - Nicvﬁ) " Nicvgsg
-0 5] (163)
FUbARn+7t 5 n+1")+6AMm+1 = n+7)—20An+7° = n+1")]
= el 2 4ichf,8) b 0 [H (164)

Equations (159)—(164) cannot be reduced further in
terms of effective operator coefficients. In a manner sim-
ilar to that in the previous section, Eqs. (161) and (164)
are dominated by corrections from the octet representa-
tions, and numerically, they should be at least a factor of
1/N,. smaller than Egs. (159), (160), (162), and (163),
which are dominated by the singlet representation.

In addition, for the relation

F6AR(p+7° = p+7°) = AR +7° = n+1°)]

1 1 l g 5 5 5
= g+ 3+ P e )
+]2chl3 +0 N
(165)

a kind of octet dominance is found in the sense that fla-
vor 10+ 10 and 27 representations start contributing at a
relative order O(1/N?), so they can be safely ignored.

B. Some remarks about a comparison with HBChPT
expressions

Scattering amplitudes for the Nz system obtained
here through the use of SU(3) flavor projection operators
are (partially) compared with HBChPT theory results at
the tree-level order. At this point, the three terms re-
tained in Eq. (8) for N. =3 can be completely evaluated.
The success of SU(2) HBChPT to investigate the low-en-
ergy processes of pions and nucleons is undeniable.
However, the inclusion of particles with strangeness re-
quires the use of SU(3) HBChPT. For example, s-wave
pseudoscalar meson octet-baryon scattering lengths to the

[
third chiral order in that framework have been studied
with only baryon octet contributions [32] and both bary-
on octet and decuplet contributions [33]. The latter refer-
ence decuplet contributions to the threshold 7-matrices
are found to vanish in complete opposition to the present
analysis where non-vanishing decuplet baryon contribu-
tions proportional to C are obtained, even in the degener-
acy limit A — 0. In a more recent work [34], the 7-
matrices of pseudoscalar meson octet-baryon scattering to
one-loop order are computed in HBChPT. For elastic
meson-baryon scattering, the leading order O(g) amp-
litudes resulting from tree diagrams for nN scattering
contributing at the first chiral order are given in Eq. (10)
and (11) of that reference, which can be compared to Eqs.
(44) and (56) as well as (45) and (57) of this work in the
limit A — 0 and by excluding decuplet baryon contribu-
tions. In addition to the kinematic factors relating the rest
system of the initial baryon and the center of mass sys-
tem, which can be linked through a Lorentz transforma-
tion, the Clebsch-Gordan structures coincide up to a glob-
al minus sign that might be traced back to the different
conventions used. Other scattering processes such as n¥,
n=, and KN discussed in Ref. [34] can be evaluated in
the present formalism. A recent analysis with the inclu-
sion of decuplet effects [35] reveals some interesting
facts in the comparison with the present analysis. Except
for some kinematic factors, the comparison is achieved
for A replaced by —A in Eqgs. (13)—(16) of that reference.
At the next-to-leading order, the explicit chiral sym-
metry breaking part of the meson-baryon effective chiral
Lagrangian £V with no inclusion of decuplet baryon
effects is presented in Eq. (8) of Ref. [34]. It yields the
amplitudes T'% in terms of 11 LECs. For the 7N system,
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they are given in Egs. (64) and (65) of that reference. In
principle, these LECs should (partially) correspond to the
12 operator coefficients contained in Egs. (90) and (96)
as well as (91) and (97), respectively. Although relation-
ships among them should be linear, it is difficult to identi-
fy them, except for the vertex diagram for which
C; = —koh, /8 for the fixed incident meson energy. A full
identification requires including decuplet baryons in the
framework of that reference and the computation of addi-
tional amplitudes in the framework discussed here. The
latter will be attempted elsewhere.

VI. SS-WAVE SCATTERING LENGTHS

The Nr forward scattering amplitude for a nucleon at
rest can be readily obtained from Eqgs. (45) and (44) at the
threshold. Following the lines of Ref. [13], the s-wave
scattering lengths including the baryon mass splitting and
first-order SB are found to be

1 m { m, ]! 4 A A?
L b ”} {D+F2—f{1+—+—}02
e M, (PTG T

v P+ 4|

=a " +2a,
(166)
and
—~1 2
gt = LM {1+ m"] {—l(D+F)2+% [1 —%+A—} c?
4r f? My 2 9 m; m
+d +d® - 2410 24?7 ¢ %df) + %dﬂ
=a*-a,
(167)

which are valid to order O(A’/m?).
In the limit A — 0 and by removing SB effects,

a'? +24°? =, (168)
which is a well-known result obtained in the context of
current algebra [30, 31]. Equation (168) is fulfilled even
in the presence of the C* term, which accounts for the
contribution of decuplet baryons. Thus, violations to Eq.
(168) arise not only from SB but also from a linear term
in A.

The usefulness of Eqgs. (166) and (167) relies entirely
on the precise determination of the SU(3) invariants D, F,
and C and the six parameters d"™ involved in those
equations. For instance, these invariants can be extracted
from baryon semileptonic decays. The latter set can be

obtained by comparing the theoretical expressions with
the available experimental data [20] via a least-squares
fit. A detailed analysis requires additional theoretical ex-
pressions for which data are available and would involve
processes including strangeness.

Isospin IB effects obtained here can also be incorpor-
ated into Egs. (166) and (167) in a straightforward man-
ner.

VII. CONCLUDING REMARKS

The material discussed in this work represents an en-
terprising program to understand the baryon-meson scat-
tering processes in the context of the 1/N, expansion. It
presents new ideas, perspectives, or analytical frame-
works that contribute to a more comprehensive under-
standing of the subject matter. The scattering amplitude
for the process Br — B’m, including the decuplet-octet ba-
ryon mass splitting and flavor symmetry breaking, has
been computed, specialized to the process Nm — Nr.
Evidently, processes such as Ar — Nx and Anr — An or
those including strangeness can be evaluated because the
formalism is sufficiently general to cover the cases when
B and B’ are any baryon states and n¢ and n’ are any
pseudo scalar mesons provided that the Gell-
Mann—Nishijima scheme is fulfilled. The expressions for
Nn — Nn scattering amplitudes obtained here get simple
forms [Egs. (36)—(39) and Egs. (52)—(55)] once all in-
gredients are put together regardless of the original ex-
pressions such as Eq. (19). However, the inclusion of
strong isospin breaking introduces a rather large number
of operator coefficients such that the series have minimal
utility, unless stringent suppressions in 1/N. are per-
formed to achieve only leading contributions. Violations
to strong isospin breaking uncovered by relations
(99)—(104) reveal which SU(3) flavor representations
dominate over the others.

One important result extracted from the present ana-
lysis is worth mentioning:It is evident that the spin-1/2
and spin-3/2 baryons are present from the outset because
they together form an irreducible representation of the
spin-flavor symmetry.

As mentioned in the introductory section, previous
analyses about scattering amplitudes in the context of the
1/N, expansion [9—11] focused their goals on some spe-
cific aspects of the theory. The analysis presented here
with the extensive use of projection operators to classify
operator structures contributes to the subject from a dif-
ferent perspective; the approaches complement them.

A comparison of the results obtained here with the
HBChHPT results obtained at the tree-level order can be
made. Rewriting scattering amplitudes in terms of the
SU(3) invariant baryon-meson couplings D, F, C, and H,
Egs. (36)—(39) enable a comparison with the tree-level
values [in the SU(3) exact limit] from HBChPT by drop-
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ping the mass difference A and possibly the C* terms,
i.e., under the degeneracy limit and with the decuplet ba-
ryon degrees of freedom integrated out, which is usually
the common procedure advocated in literature. A full
comparison will require the computation of loops in the
combined formalism in 1/N, and chiral corrections. This
requires a formidable effort that will be attempted else-
where.

VIII. SUPPLEMENTARY INFORMATION

This paper is complemented by some supplementary

S(lij)(ab) —isi fabeTL”
Sgij)(ab) = §ligeb Jz,
S(gij)(ab) - ie_[jr{Gra7Th},
S(1i3j)(ab) =i fabe{ Jj’Gie},
g (li 7j)(ab) — i lir gabe o,
S(zilj)(ab) - idijfabe{JZ’ T},
S(zi'{)(ab) - iejmr{Gia’{Jm’Grb}},
S(2i7j)(ah) - ifijm{Gma’{Jr’Grh}}’
Sgig)(ab) — idaegfbeh{Tg’ {]j,Gih}},
SgiSj)(ab) =i fabe [ Jz’ { Ji ’Gje}]’
Sgig)(“") — ieijr[JZ’ {Grb’Ta}]’
Sgié)(ub) - ieijm{Dlznb’{Jr,Gra}}’
Sf‘izj)(ah) _ ie_ijr{JZ’{Grh’ T,
Sf‘isj)(ab) — {Jz,{Gi“,Gjb}},

iy,
ng)(ab) _ {Gi”,G"b},
s e, 1oy

D) — siigabe( yr Grey,

Db _ iiir(yr a Ty,

S(2i2j)(ub) — iEijréab{JZ,Jr},

i Nab .
S(31_7/)(a ) e abez)ze’

Sf‘ig)(ab) — {JZ’{Gib,Gja}}’
Sffg)(”b) — 5(zb{J2’{Ji’Jj}}’
Sgi_li)(ab) — iejm][{Ji’{Jm’Gla}}’{Jr,Grb}],
S5 =ie" I I G AT G,
S5 = i€, [G™ (.G ),
S(slg)(ab) — 5ij6ab{J2,J2}, Sg(j)')(ab) — {[Jz,Gi“],[Jz,Gjb]},
S UPab) _ i gabe gye, §UDab) _ giir pabegye
S(6i_5/‘)(ab) — {Oga’ Déb}, S(ﬁig)(ab) = { Dé",OQ” L
S = AP AT .G,
SV = i s (I AT TN,
SUPD) _ jeinr( 2 (Gia (Jm G,

Sgi ab) _ i€l dabeGre,
SUND) _ i Gib Gy,
S(;‘{)(ah) — dahe { Jj, Gie},
S(IiSj)(ah) = (ir fabe D;e’
S(ligj)(ab) — iEijm{Jm’{Gra’Grb}}’
S;i?{)(ab) — iEimr{Gja, {Jm,Grb}},
S = ie™M(GP AT, G,
S = ie™G™ (T, G,
Sgilj)(ab) — dabe[JZ’ {Ji’Gje}]’
S;i{)(ab) — ifube[‘]z, {]j,Gie}],
S(}ié’)(ab) =i “bg{{Ji’Jj},{Jr,Gm}},
S =ie"MD TG,
S =if UL GRY,
S = d" WL TG,
Sg)(ab) — Eijkerml{Jk’{Gm’{Jm’Glb}}},
SG =i I GG,
S — (Gia oy,
Sé"{)(“") = U2, (G™, G™)),

material where explicit reductions of baryon operators
and their corresponding matrix elements (as tables) are
presented. The pdf file can be obtained from authors by
request.

A. Baryon operator basis used in baryon-meson

scattering

The operators S )@ that constitute the basis used in
baryon-meson scattering at the lowest order, comprising
up to seven-body operators, read

Sz(‘ij)(ab) — (Sab{Ji,Jj},
S(gij)(ab) - 5ij{Gra Grb}
S(lizj)(ah) — ifabe{Ji’GjE},
S (lié')(ab) — ieijrdabez)ge,

S(zi({)(ab) — ifabe{Te,{Ji,Jj}},

S(Zig)(ab) _ iejmr{Gib’{Jm’Gra}}’

S;igj)(ah) — ifaL’gdhEh{Th,{J[,ng}},

S = d™ AP, GE),
S = e[ J2 (G, T,

Sailj)(ab) — ieijr{JZ’{Gm’ Tb}},
S =il (I, Gy,

Sgg)(ab) - ieiml[{Jj’{Jm’Gla}}’ {Jr,Grb}],
S;isj)(ah) — ieijm[JZ’{Gmh,{Jr’ Grd}}],

Sgg)(ab) - 5ijdabe{J2’{Jr’Gre}}’
S = i (GP "G,

S(Giz{)(ab) — i€l dabeoge,
S = (P AT (T ,G ),
Sgg)(ah) — ifabe{JZ,{Te’{Ji’Jj}}},
S5 =i "G .G,

S =i (I AGP (I".G™W),

S(7i({)(ah) — iéi/f“be{Jz, {12’ Te}},
S =i (GG,
S5 =i (PGP I G,
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S(7i7j)(ab) — ifijm{JZ’{Gma’{‘]r’Grb}}},
S(7i9j)(ab) - ifaegdbeh{JZ’{Th’{]i’ng}}},
Sglj)(ab) — dabe{JZ,[JZ’{Ji,Gje}]}’

SE ) = 1M A.GL UG,
S = (WL IWAT AT G,
S =i (S AT G NG,
Sg;’)(ab) — iejlm{{Ji,{Jl’Gmb}}’{Jr,Gra}},
o = 1€ (GP AT G,
Sgé‘)(ab) — ieijr{JZ’ [JZ’{Grb,Ta}]}’
Sgsj)(ab) — ifahe{JZ’[JZ,{Jj,Gie}]}’
S = if UL TG,
S(gig)(ab) — iEijm{JZ’{D;Zna,{Jr,Grb}}}’
S(li(ﬁ(ab) — ifijr{JZ’{JZ,{Grb’Ta}}}’
IR = AP G,
Sis " = 22 1G", G,

Sio " = 8P AP,

Sﬁ’;{é(“b) — iEjml{JZ’[{Ji,{Jm’Glb}}’{Jr,Gra}]}’
S = 174G, 07,

TR =i IG™ AT, G ),
S(lilj;(ab) — 5ijdahe{.]2,{JZ,{Jr,Gre}}},
ST = AP ALP.GHLLP, G,
Siie™” =i (I, L2 AG". (", G W),
S(li g:(ab) = i€l gabe O;e’

S(liii;(ab) — i5i/f“he{J2,{J2,{J2,Te}}},
St = i€ (AL UG (I G

S =i (PP AG? (I, G,

S = i€ (I AG™ AT, G,

S =i fes @M (P AT (T, GF),
SR = db (P PP [P AT G,
SN =M 2 I (T, G AT G,
SN = ie™ 2, (I TG WAT G,
SR = 1M (PGP (S AT, G

S%)(am — ifijm{Jz’{Gmb’{Jr’Gm}}L
Sgé')(am — idaegfbeh{]Z,{Tg’{Jj,Gih}}}’
Sgg)(ab) — dabe{J2’ [J2,{Jj’Gie}]},

S@ ) = (UL PTG,
Sg_é‘)(ab) - iemlr{{‘]i,‘]j}’ {Gmh’{‘]l,Gm}}}’
g =i (AT G DA G,
Se " =1 (TGN G),
SG =1L UG T,

Sol ) =i UL LGN,

S gé‘)(ab) = €l fabeDge,

So " = 1€ML DY TGN,
S(;g())(ab) — i 2 (2 NG, T,
S =i P AT AT G,
Sin™ = (UGG,

S{RD = d (2 (T, TGN,
SR =12 [T AT G AT, G,
SN = i€ (I, [ A" G AT, G,
SN = 1M, [P AG™ I, G W]
SV = 6P AP AG™, G,
S(liljé(ab) — 6ij6ah{J2’{J2,J2}}’

SN = 1€ (2 [P AG? (I, G,
S(lié'())(ab) =i ei jir dabe Z);e,

SUD =i fe P AT AT AT, I,
S(li_zii(ab) — ieijréab{fz,{Jz,{.]2,J'}}},
SN =1 (2 TG (I, G,

SR = i (P PG I G W),
S = i P2 (PAG™ (I, G W),
SR = idees fem 2 {2 AT (07, G,
SUND = dP (P AT [T, G,
Sii}jé(ah) — iemlr{JZ’{{Ji’Jj}’{Gmh’{Jl’Gra}}}}’
SR = 1™ (I I G, G,

For completeness, the operator coefficients ¢® and ¢® that accompany these operators are listed in the Online Re-

source for this paper.
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