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Abstract: An SU(3) flavor projection operator technique is implemented to construct the baryon-meson scattering
amplitude within the framework of the  expansion of quantum chromodynamics (QCD), where  represents
the number of color charges. The operator technique is implemented to evaluate not only the lowest-order scattering
amplitude  but  also  effects  from  the  first-order  perturbative SU(3)  flavor  symmetry  breaking  and  strong  isospin
breaking. The most general expression is obtained by explicitly accounting for the effects of the decuplet-octet bary-
on mass difference. At order , a large number of unknown operator coefficients appear, and therefore, there
is little additional predictive power unless leading and subleading terms are retained. Although the resultant expres-
sion is sufficiently general that it can be applied to any incoming and outgoing baryons and pseudo scalar mesons,
provided  that  the  Gell-Mann--Nishijima  scheme  is  respected,  results  for  scattering processes  are  expli-
citly considered.
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I.  INTRODUCTION

SU(Nc)
Nc = 3

Nc

Quantum chromodynamics  (QCD) is  accepted  as  the
theory  of  the  strong  interaction,  with  quarks  and  gluons
as  fundamental  fields.  QCD  is  a  gauge  theory  with  the
local symmetry group ,  which acts in the internal
space  of  the  color  degrees  of  freedom with  color
charges.  However,  the  analytical  computation  of  hadron
properties from first principles is hampered because QCD
is  strongly  coupled  at  low  energies.  Two  major  theories
have shed light on the static properties of hadrons. One of
them is the large-  limit, and the other one is the chiral
perturbation theory (ChPT).

Nc = 3 Nc→∞
Nc

Nc

1/Nc 1/N2
c

1/Nc

The  generalization  of  QCD  from  to ,
which is commonly referred to as large-  QCD, has be-
come a remarkable tool for studying the structure and in-
teractions of mesons [1, 2] and baryons [3] in more gen-
erality. Physical quantities evaluated in the large-  limit
achieve corrections of relative orders , ,  and so
on, which originates the  expansion of QCD.

Nc

Baryon-meson  scattering  is  a  fundamental  nuclear
physics  process  that  has  been  analyzed  within  the  large-

 limit (and  of  course  ChPT  and  several  other  ap-

1/Nc

Nc

Nc

Nc

Nc

proaches). The earliest analysis of baryon-meson scatter-
ing amplitudes in the context of the  expansion was
introduced in the seminal paper by Witten [3]. Generally,
it takes  quarks (in a totally antisymmetric color state)
to  make  up  a  baryon,  and  therefore,  Witten  proposed
splitting the problem into two parts to first use graphical
methods to study n-quark forces in the large-  limit and
then  to  use  other  methods  for  analyzing  the  effects  of
these  forces  on  an -body  state.  From  the  analysis  of
large-  counting rules for baryon-meson scattering, Wit-
ten concluded that the corresponding amplitude at a fixed
energy must be of order one.

Nc

SU(4)

Nc

Subsequently, Gervais and Sakita [4] and Dashen and
Manohar  [5]  independently  proved  that  large-  QCD
has a contracted  symmetry (for two flavors of light
quarks), and they derived a set of consistency conditions
that must be satisfied. The equations obtained from these
consistency conditions admit a unique (minimal) solution
for baryon-meson coupling constants, which are identical
to  those  of  the  Skyrme  model  or  non-relativistic  quark
model. Dashen,  Jenkins,  and  Manohar  applied  the  ap-
proach  to  show  that  large-  power  counting  rules  for
multimeson–baryon-baryon scattering  amplitudes  lead  to
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Nc

∆ ≡ MT −MB MT MB

1/Nc

1/Nc

It = Jt

important constraints on baryon static properties [6, 7]. In
the  same  context,  Flores-Mendieta, Hofmann,  and  Jen-
kins  [8]  studied  tree-level  amplitudes  for  baryon-meson
scattering  and  obtained  generalized  large-  consistency
conditions valid to all orders in the baryon mass splitting

,  where  and  represent  the  baryon
decuplet  and  baryon  octet  masses,  respectively.  Cohen,
Lebed, and collaborators implemented a systematic meth-
od  to  derive  linear  relationships  among  meson-baryon
scattering  amplitudes  combining  the  expansion  of
QCD with the Wigner-Eckart theorem applied to both an-
gular  momentum and isospin [9−11].  In  this  framework,
scattering amplitudes  are  expressed  via  partial  wave  ex-
pansions, where  mesons  carry  fixed  orbital  angular  mo-
mentum  and  baryons  possess  definite  spin  and  isospin,
while  neglecting  baryon  recoil  effects.  The  scattering
matrix elements are further specified by the total spin and
total isospin of the meson-baryon system. This approach,
together with the  corrections to the t-channel isospin
and  angular  momentum  exchange  quantum  numbers,

,  enables  deriving  multiple  linear  relationships
among partial-wave amplitudes for meson-baryon scatter-
ing.

O(p3) O(p4)

In  the  context  of  baryon  chiral  perturbation  theory
(BChPT),  important  advancements  have  been  made  on
baryon-meson  scattering  over  the  past  three  decades.  A
detailed account of phenomenological models and/or dif-
ferent  approaches  proposed  prior  2016  is  presented  in
Ref. [12]. Besides the heavy baryon approach (HBChPT)
[13, 14],  some fully  relativistic  methods are  noteworthy,
namely,  the  infrared  regularization  of  covariant  BChPT
[15]  and  the  extended-on-mass-shell  scheme  for  BChPT
[16, 17].  Further  improvements  in  HBChPT  to  orders

 and  have been performed recently [18, 19].
Despite important  progress  achieved  in  the  under-

standing of baryon-meson scattering processes in both the
phenomenological  and  experimental  bent  [20],  various
challenges remain unsolved. In view of this, lattice QCD
has  become  an  essential  non-perturbative tool  for  tack-
ling  some  issues  with  first-principles  QCD  calculations
that cannot be dealt with otherwise. A comprehensive de-
scription of the state-of-the-art  computation of scattering
amplitude  for  the  baryon-meson  system  within  lattice
QCD can be found in Ref. [21].

1/Nc

The  baryon-meson  scattering  problem  is  a  mature
area  of  research that  has  been tackled from a  number  of
different  perspectives.  However,  the  aim  of  the  present
work is to analytically compute baryon-meson scattering
amplitudes at leading and subleading orders in the frame-
work of the  expansion using the projection operator
technique  developed  in  Ref.  [22]. This  approach  intro-
duces new and unique elements into the theory of baryon-
meson scattering,  expanding  existing  concepts  and  in-
sights. At  the  first  stage  in  the  analysis,  the  primary  ob-
jective is to perform a calculation in the exact SU(3) sym-

1/Nc

Nc

metry  limit.  At  the  second stage,  the  effects  of  the  first-
order  perturbative SU(3)  flavor  symmetry  breaking (SB)
and  strong  isospin  symmetry  breaking  (IB)  are  expected
to be separately incorporated. Thus, flavor projection op-
erators can be useful to fully classify all flavor represent-
ations involved  in  the  structure  of  the  scattering  amp-
litude. From this perspective, the present analysis is fun-
damentally  different  from  previous  works  [9−11].  Loop
graphs  contributing  to  the  scattering  amplitude  can  be
consistently  analyzed  in  a  combined  formalism  between
chiral and  corrections, which is the so-called large-

 chiral perturbation  theory  based  on  the  chiral  Lag-
rangian introduced in Ref. [23]. However, this requires a
non-negligible  effort  that  will  be  deferred  to  subsequent
work.

Nc

1/Nc

Nπ

The  remainder  of  this  paper  is  organized  as  follows.
Sec. II presents some elementary materials about scatter-
ing processes, along with a brief review of large-  QCD
to  introduce  notation  and  conventions.  The  expan-
sion  of  the  baryon  operator  whose  matrix  elements
between  baryon  states  yields  the  scattering  amplitude  in
the limit of the exact SU(3) limit is constructed. The most
complete form of  this  amplitude is  obtained by account-
ing  for  the  decuplet-octet baryon  mass  difference  expli-
citly.  In  Sec.  III,  the results  are  particularized  to  the 
system, and some isospin relationships are checked to be
respected  by  the  obtained  expressions.  In  Sec.  IV, the
analysis is  applied  to  two  processes  including  strange-
ness only as case studies. In Sec. V, the effects of first-or-
der  SB are  evaluated;  for  this  purpose,  flavor  projection
operators are  constructed  and  extensively  used  to  rigor-
ously  identify  components  from  different SU(3)  flavor
representations  participating  in  the  breaking.  First-order
IB effects  to  the scattering amplitude are  also evaluated.
Violations  to  the  isospin  relationships  discussed  in  Sec.
III  are  straightforward.  A  comparison  of  nucleon-pion
scattering amplitudes within this formalism and HBChPT
are  outlined  in  Sec.  V.B.  Applications  to  scattering
lengths are  sketched  in  Sec.  VI.  Some  concluding  re-
marks are  given in  Sec.  VII.  In  Appendix A,  the baryon
operator  basis  used  in  the  scattering  amplitude  is  listed.
The paper is complemented by some supplementary ma-
terial,  loosely  referred  to  as  the  Online  Resource,  which
contains 1)  the  reduction  of  the  different  baryon  struc-
tures in  terms  of  an  operator  basis  of  linearly  independ-
ent  operators,  2)  the full  list  of  the pertinent  coefficients
that accompany the baryon operators of Appendix A, and
3)  the  operator  basis  used  to  evaluate  SB  effects  along
with their respective matrix elements listed in tables. 

II.  BARYON-MESON SCATTERING
AMPLITUDE AT LEADING AND

SUBLEADING ORDERS

In this section, the analytical computation of the amp-
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litude of baryon-meson scattering presented in Ref. [8] is
explicitly conducted, specialized to the process 

B(p)+πa(k)→ B′(p′)+πb(k′). (1)

Nc

π
π η η′

k = (k0,k1,k2,k3) k′ = (k′0,k′1,k′2,k′3)

B′

p′

∆

Nc

The  amplitude  for  baryon-meson  scattering  at  fixed
meson  energy  is  dominated  in  the  large-  limit  by  the
diagrams displayed in Fig. 1. In Eq. (1),  represents one
of the nine pseudo scalar mesons , K, ,  and  of mo-
menta  and  and fla-
vors a and b for the  incoming and outgoing mesons,  re-
spectively. B and  represent the incoming and outgoing
baryons of momenta p and ,  respectively. Soft mesons
with energies of order unity are considered in the process.
The goal is to explicitly evaluate the corresponding scat-
tering amplitude at leading and subleading orders, incor-
porating  the  effects  of  the  baryon  mass  splitting 
defined in the previous section. Before tackling the prob-
lem,  it  is  convenient  to  introduce  some key  concepts  on
large-  QCD  to  set  notation  and  conventions.  Further
details on the formalism can be found in Refs. [6, 7].

Nc

SU(2N f ) N f

N f = 3

SU(6) Nc = 3
56 SU(6)

In the large-  limit, the baryon sector has a contrac-
ted  spin-flavor  symmetry,  where  represents
the number of light quark flavors. For , the lowest
lying baryon states  fall  into a  representation of  the spin-
flavor group . When , this corresponds to the

 dimensional representation of .

1/Nc

1/Nc

I

The  expansion of  a  QCD operator  can  be  writ-
ten  in  terms  of -suppressed  operators  with  well-
defined  spin-flavor transformation  properties.  A  com-
plete set of operators can be constructed using the 0-body
operator  and 1-body operators 

Jk = q†
ï
σk

2
⊗I
ò

q, (1,1) (2a)

 

T c = q†
ï
I⊗ λ

c

2

ò
q, (0,8) (2b)

 

Gkc = q†
ï
σ

2
⊗ λ

c

2

ò
q, (1,8) (2c)

Jk T c Gkc

( j,dim)
dim

SU(2N f )

where , ,  and  represent  the baryon spin,  baryon
flavor,  and  baryon  spin-flavor  generators,  respectively,
which transform under SU(2) × SU(3) as , where j
represent  the  spin  and  represents  the  dimension  of
the SU(3) flavor representation. The  spin-flavor
generators satisfy well-known commutation relationships
[7].

The  Feynman  diagrams  displayed  in Fig.  1 will  be
analyzed  separately  as  they  contribute  differently  to  the
scattering process. 

A.    Scattering amplitude from Fig. 1(a,b)
The amplitude for the scattering process (1) represen-

ted in Fig.  1(a,b), in the rest  frame of the initial  baryon,
can be represented by the baryon operator [8] 

Aab
LO =−

1
f 2

kik′ j

 1
k0

∞∑
n=0

1
k0n [A jb, [M, [M, . . . [M︸               ︷︷               ︸

n insertions

,Aia ] . . .]]︸ ︷︷ ︸]

 ,
(3)

f ≈ 93 MeV Aia

M
1/Nc

Aia Nc = 3

where  represents the pion decay constant, 
represents the baryon axial vector current, and  repres-
ents the baryon mass operator. Explicitly, the  expan-
sion of , at , is given by [7] 

Aia = a1Gia+
1
Nc

b2Dia
2 +

1
N2

c
b3Dia

3 +
1

N2
c

c3Oia
3 , (4)

a1 b2 b3 c3

Dia
2

Dia
3 Oia

3

where , , ,  and  represent  unknown coefficients
of order one, and the two- and three-body operators ,

, and  read 

Dia
2 = JiT a, (5a)

 

Dia
3 = {Ji, {Jr,Gra}}, (5b)

 

Oia
3 = {J2,Gia}− 1

2
{Ji, {Jr,Gra}}. (5c)

 

B+π→ B′ +π

Fig. 1.    Leading-order diagrams for the scattering
.

Use of SU(3) flavor projection operators to construct baryon-meson scattering... Chin. Phys. C 50, 023106 (2026)

023106-3



The baryon mass operator is expressed as [7] 

M = m0NcI+
Nc−1∑
n=2,4

mn
1

Nn−1
c

Jn, (6)

mn

Mhyperfine

Nc = 3 Mhyperfine

where  represents unknown coefficients. Although the
first  term on the right-hand side is  the overall  spin-inde-
pendent  mass  of  the  baryon  multiplet,  the  remaining
terms  are  spin-dependent  and  make  up .  At

,  is simply
 

Mhyperfine =
m2

Nc
J2, (7)

m2 ∆

∆ = 0.237
where  can be set to . Numerically, the average value
is  GeV [24].

The  series  (Eq.  (3))  with  the  first  three  summands
reads 

Aab
LO = −

1
f 2

kik′ j
ï

1
k0

[A jb,Aia]+
1

k02 [A jb, [M,Aia]]

+
1

k03 [A jb, [M, [M,Aia]]]+ . . .
ò
. (8)

Aab
LO O(1)

Nc

The constraint that  should be at most  in the
large-  limit sets the consistency conditions [5, 8] 

[A jb,Aia] ≤ O(Nc), (9a)

 

[A jb, [M,Aia]] ≤ O(Nc), (9b)

 

[A jb, [M, [M,Aia]]] ≤ O(Nc), (9c)
 

...

k0 ∆ O(1) O(
√

Nc)
O(N−1

c )
where , f,  and  are  of  orders , ,  and

 in  that  limit,  respectively.  This  work  focuses  on
the explicit  analytical  computations of  the first  three op-
erator structures in Eq. (9); the results will be discussed in
the following sections. 

Aab
LO1.    Spin-flavor transformation properties of 

Aab
LO

8⊗8
(8⊗8)S

(8⊗8)A

The  baryon  operator  is  a  spin-zero  object  and
contains two adjoint (octet) indices. The tensor product of
two  adjoint  representations  can  be  split  into  the
symmetric product  and the antisymmetric product

 [7], which in turn can be decomposed in terms of
SU(3) multiplets as 

(8⊗8)S = 1⊕8⊕27, (10a)
 

(8⊗8)A = 8⊕10⊕10. (10b)

Aab
LO

∏n
i=1 ad j⊗

SU(N)

[P(dim)]abcd

dim

To  exploit  the  transformation  properties  of  un-
der the SU(2) × SU(3) spin-flavor symmetry, the spin and
flavor  projectors  introduced  in  Ref.  [22]  become  handy.
In a  few  words,  this  technique  exploits  the  decomposi-
tion of the tensor space formed by the product of the ad-
joint space with itself n times, ,  into subspaces
that can be labeled by a specific eigenvalue of the quad-
ratic Casimir operator C of the Lie algebra of . For
the  product  of  two SU(3)  adjoints,  the  flavor  projectors

 for the irreducible representation of dimension
 contained in Eq. (10) are given by [22] 

[P(1)]abcd =
1

N2
f −1
δabδcd, (11)

 

[P(8)]abcd =
N f

N2
f −4

dabedcde, (12)

 

[P(27)]abcd =
1
2

(δacδbd +δbcδad)− 1
N2

f −1
δabδcd

− N f

N2
f −4

dabedcde, (13)

 

[P(8A)]abcd =
1

N f
f abe f cde, (14)

and 

[P(10+10)]abcd =
1
2

(δacδbd −δbcδad)− 1
N f

f abe f cde, (15)

which fulfill the completeness relationship 

[P(1)+P(8)+P(27)+P(8A)+P(10+10)]abcd = δacδbd. (16)

[P(dim)ALO]ab

Aab
LO

dim

[P(dim)ALO]ab

[P(1)+P(8)+

P(27)]abcd [P(8A)+P(10+10)]abcd

Acd
LO

Aab
LO

Therefore,  effectively  projects  out  the
piece of  that transforms under the flavor representa-
tion  of  dimension  according  to  the  decomposition
(Eq.  (10)).  However,  for  computational  purposes,  it  is
more  convenient  to  group  the  operators 
based on their symmetry transformation properties under
the  interchange  of a and b.  Accordingly, 

 and , acting on the symmetric
and antisymmetric [antisymmetric and symmetric] pieces
of ,  respectively,  will  provide  the  symmetric  [anti-
symmetric] piece of  under the interchange of a and
b. 
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2.    Explicit form of the scattering amplitude

Nc = 3
1/N2

c

A  more  specialized  and  detailed  calculation  beyond
the  qualitative  analyses  of  baryon-meson  scattering
presented  in  previous  works  [5, 8]  can  be  performed  by
explicitly evaluating the first summands expressed in Eq.
(8);  succinctly,  all  baryon  operators  allowed  at 
(i.e., up to relative order  not discussed so far in the
literature) are accounted for in the terms kept in the series
(Eq. 8).

(n+m−1)

As a starting point, it should be recalled that the com-
mutator of an n-body operator and m-body operator is an

-body operator, i.e., 

[Om,On] = Om+n−1. (17)

[A jb,Aia]
Nc = 3 [O jb

3 ,Oia
3 ]

J2

A close inspection of Eq. (8) reveals that  for
 yields at most the operator structure , and

according to Eq. (17), it retains up to five-body operators.
Sequential insertions of one and two  operators add up
six- and  seven-body  operators,  respectively.  Therefore,
the first three summands displayed in Eq. (8) will be ex-
plicitly evaluated  and  sufficient  to  draw  some  conclu-
sions. Clearly, it would be desirable to perform a calcula-
tion including eight-body operators and higher; however,
this is beyond the scope of this work because of the con-
siderable amount of group theory involved.

[P(dim)ALO]ab

S (i j)(ab)
m m = 1, . . . ,139

The task  now  is  to  rewrite  the  baryon  operators  in-
volved in  in terms of a set of linearly inde-
pendent operators up to seven-body operators. A conveni-
ent operator basis  for  is listed in Ap-
pendix A. This is straightforward albeit the long and tedi-
ous exercise to compute those reductions.  However,  ow-
ing to the length and unilluminating nature of the full ex-
pressions,  only  symmetric  and  antisymmetric  pieces
rather  than  individual  results  for  each  representation  are
listed in the Online Resource. In passing, it is straightfor-
ward  to  verify  that  the  consistency  conditions  (Eq.  (9))
are fulfilled by all these reduced structures.

Aab
LO

SU(6)
The matrix elements of  given in Eq. (3) between

 baryon states,  where  mesons are  labeled with  fla-
vors a and b, yield  the  corresponding  scattering  amp-
litude, namely, 

ALO(B+πa→ B′+πb) ≡ ⟨πbB′|Aab
LO|πaB⟩. (18)¶

1∓i2√
2
,3, 4∓i5√

2
, 6−i7√

2
, 6+i7√

2
,8
©

{π±,π0,K±,K0,K
0
,η}

ALO(p+π−→ n+π0) ⟨π0n|A13
LO+

The  flavors  associated  to  mesons  are  conventionally
given by  for ,
respectively.1) For  instance,  an  expressions  such  as

 should  be  understood as 

iA23
LO|π−p⟩/

√
2.

Thus, with  the  operator  reductions  listed  in  the  On-
line  Resource,  the  scattering  amplitude  for  process  (1)
arising from Fig. 1(a,b) can be organized as 

ALO(B+πa→ B′+πb)

= − 1
f 2k0

139∑
m=1

(c(s)
m + c(a)

m )kik′ j⟨πbB′|S (i j)(ab)
m |πaB⟩, (19)

S (i j)(ab)
m

c(s)
m

c(a)
m

Aab
LO

where  constitute  a  basis  of  linearly  independent
spin-2 baryon operators with two adjoint indices, and 
and  are  well-defined  coefficients  that  come  along
with  the  symmetric  and  antisymmetric  pieces  of ;
these coefficients are listed in the Online Resource. In Eq.
(19), the sum over spin indices is implicit. 

B.    Scattering amplitude from Fig. 1(c)
The  two-meson-baryon-baryon  contact  interaction

represented  in Fig.  1(c)  contributes  to  the  baryon-meson
scattering amplitude with a term [8] 

Aab
vertex = −

1
2 f 2

(2k0+M−M′)i f abcT c, (20)

M′

Aab
vertex

[P(8A)Avertex]ab

Aab
vertex O(1)

Aab
LO O(1)

J ∼ O(1)

where M and  represents the masses of the initial  and
final  baryons,  respectively.  Since  is already  anti-
symmetric under the interchange of a and b, the only term
that  remains  once  the  projection  operators  are  applied  is

, and therefore, this term only contributes to
the  octet  piece.  Further,  both ,  of  order ,  and

 (Eq.  (3))  yield  the  leading  order  scattering
amplitude for baryons with spin . 

Nπ→ NπIII.  APPLICATION:  SCATTERING
AMPLITUDE

B+πa→
B′+πb

B′

Λ+K+→ p+π0 Ξ∗−+K+→ Σ∗0+π0

Ξ∗−+K0→ Σ−+π0

Nπ→ Nπ

The  formalism  presented  so  far  can  be  implemented
to  study  the  scattering  processes  of  the  form 

 provided that reactions in which these particles are
produced have  equal  total  strangeness  on  each  side,  ac-
cording to the Gell-Mann–Nishijima scheme. Since B and

 can be either octet or decuplet baryons from the theor-
etical  point  of  view,  the  possibilities  are  numerous.  The
examples  include , ,

,  and  so  on.  For  definiteness,  the
 scattering processes will  be analyzed to exem-

plify the approach.
I = 1 I = 1/2

I = 3/2 I = 1/2
A pion  and a nucleon  can be combined

in  a  or  a  state following  the  usual  addi-
tion  rules  of  angular  momenta  [27].  The  allowed  states
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η′ Ai ≡ Ai9

Gi9 = 1√
6

Ji T 9 = 1√
6

NcI
1) For simplicity only the octet of mesons is considered. Extending the analysis to include the  is straightforward by using the baryon axial vector current ,

which is written in terms of the 1-body operators  and  [23].
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Nπfor the  system are listed in Table 1.

A(T )

I = 3/2 I = 1/2

The  elastic  scattering  amplitude  for  the  process  (Eq.
(1)) can be decomposed using the usual Clebsch-Gordan
technique  into  two  non-interfering  amplitudes  with

 and .  Thus,  starting  from  the s-channel
isospin eigenstates
 

∣∣π+p
⟩
=

∣∣∣∣3
2
,+

3
2

∑
, (21)

 ∣∣π+n⟩ = …1
3

∣∣∣∣3
2
,+

1
2

∑
+

…
2
3

∣∣∣∣1
2
,+

1
2

∑
, (22)

 ∣∣π0 p
⟩
=

…
2
3

∣∣∣∣3
2
,+

1
2

∑
−
…

1
3

∣∣∣∣1
2
,+

1
2

∑
, (23)

 ∣∣π0n
⟩
=

…
2
3

∣∣∣∣3
2
,−1

2

∑
+

…
1
3

∣∣∣∣1
2
,−1

2

∑
, (24)

 ∣∣π−p
⟩
=

…
1
3

∣∣∣∣3
2
,−1

2

∑
−
…

2
3

∣∣∣∣1
2
,−1

2

∑
, (25)

 ∣∣π−n⟩ = ∣∣∣∣3
2
,−3

2

∑
, (26)

it is straightforward to obtain [28]
 

ALO(p+π+→ p+π+) =ALO(n+π−→ n+π−) =A(3/2),

ALO(p+π−→ p+π−) =ALO(n+π+→ n+π+)

=
1
3
A(3/2)+

2
3
A(1/2),

ALO(p+π0→ p+π0) =ALO(n+π0→ n+π0)

=
2
3
A(3/2)+

1
3
A(1/2),

√
2ALO(p+π−→ n+π0) =

√
2ALO(n+π+→ p+π0)

=
2
3
A(3/2)− 2

3
A(1/2).

(27)

A(+) A(−) Nπ
In addition, an alternative set of invariant amplitudes
 and  can  be  introduced  for  the  system,

which are defined as [29]
 

A(+) =
2
3
A(3/2)+

1
3
A(1/2),

 

A(−) = −1
3
A(3/2)+

1
3
A(1/2), (28)

and therefore, 

A(3/2) =A(+)−A(−),

A(1/2) =A(+)+2A(−). (29)

kik′ j⟨πbB′|S (i j)(ab)
r |πaB⟩

Nπ→ Nπ

ALO(B+πa→ B′+πb)
k ·k′

i(k×k′) i(k×k′)3

iϵ i j3kik′ j = i(k1k′2−
k2k′1)

The non-trivial matrix elements 
are displayed in Tables 2 and 3 for proton-pion and neut-
ron-pion  processes  (  processes for  short),  re-
spectively.1) It  can  be  easily  verified  that  the  symmetric
and antisymmetric pieces of  are re-
spectively  proportional  to  and  the  third  component
of , which will be denoted hereafter by .
The  latter  can  also  be  rewritten  as 

. 

B.    Scattering amplitude from Fig. 1(a,b)

Nπ
Collecting partial results from Eq. (19), the scattering

amplitude for the  system can be cast into 

f 2k0ALO(p+π+→ p+π+)

=

ï
−25

72
a2

1−
5
36

a1b2−
25
108

a1b3−
1

72
b2

2−
5

108
b2b3

− 25
648

b2
3+

2
9

ï
1− 2∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+

ï
25
72

a2
1+

5
36

a1b2+
25

108
a1b3

+
1

72
b2

2+
5

108
b2b3+

25
648

b2
3

− 2
9

ï
1− 1

2
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
i(k×k′)3

+O
ï
∆3

k03

ò
= f 2k0ALO(n+π−→ n+π−),

(30)

 

NπTable 1.    Allowed states for the  system.

I = 3
2 I = 1

2

I3 = +
3
2 |π+p⟩

I3 = +
1
2

√
1
3 |π+n⟩+

√
2
3 |π0 p⟩

√
2
3 |π+n⟩−

√
1
3 |π0 p⟩

I3 = − 1
2

√
2
3 |π0n⟩+

√
1
3 |π−p⟩

√
1
3 |π0n⟩−

√
2
3 |π−p⟩

I3 = − 3
2 |π−p⟩

Víctor Miguel Banda Guzmán, Rubén Flores-Mendieta, Johann Hernández Chin. Phys. C 50, 023106 (2026)

J2 Nπ
kik′ j⟨πbB′ |S (i j)(ab)

17 |πaB⟩ kik′ j⟨πbB′ |S (i j)(ab)
37 |πaB⟩ = 3

2 kik′ j⟨πbB′ |S (i j)(ab)
15 |πaB⟩

1) Here,  non-trivial  matrix  elements  are  those  which  are  either  zero  or  obtained  as  anticommutators  with .  For  instance,  for  the  system,
 vanishes whereas , so they are not listed.
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Table 2.    Non-trivial matrix elements of operators involved in proton-pion scattering processes.

Operator p+π+→ p+π+ p+π−→ p+π− p+π0→ p+π0 p+π−→ n+π0

kik′ j⟨S (i j)(ab)
1 ⟩ −k ·k′ k ·k′ 0 −k ·k′

kik′ j⟨S (i j)(ab)
2 ⟩ i(k×k′)3 i(k×k′)3

1
2 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
3 ⟩ 1

6 i(k×k′)3
1
6 i(k×k′)3

1
12 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
4 ⟩ k ·k′ k ·k′ 1

2 k ·k′ 0

kik′ j⟨S (i j)(ab)
5 ⟩ 3

2 k ·k′ 3
2 k ·k′ 3

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
6 ⟩ 19

12 k ·k′ − 11
12 i(k×k′)3

19
12 k ·k′ + 11

12 i(k×k′)3
19
24 k ·k′ − 11

12 i(k×k′)3

kik′ j⟨S (i j)(ab)
7 ⟩ 19

12 k ·k′ + 11
12 i(k×k′)3

19
12 k ·k′ − 11

12 i(k×k′)3
19
24 k ·k′ 11

12 i(k×k′)3

kik′ j⟨S (i j)(ab)
8 ⟩ 19

4 k ·k′ 19
4 k ·k′ 19

8 k ·k′ 0

kik′ j⟨S (i j)(ab)
9 ⟩ 5

6 i(k×k′)3
5
6 i(k×k′)3

5
12 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
10 ⟩ 5

6 i(k×k′)3
5
6 i(k×k′)3

5
12 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
11 ⟩ 1

6 k ·k′ 1
6 k ·k′ 1

12 k ·k′ 0

kik′ j⟨S (i j)(ab)
12 ⟩ − 5

6 k ·k′ 5
6 k ·k′ 0 − 5

6 k ·k′

kik′ j⟨S (i j)(ab)
13 ⟩ − 5

6 k ·k′ 5
6 k ·k′ 0 − 5

6 k ·k′

kik′ j⟨S (i j)(ab)
14 ⟩ 1

2 k ·k′ 1
2 k ·k′ 1

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
15 ⟩ 1

2 i(k×k′)3 − 1
2 i(k×k′)3 0 1

2 i(k×k′)3

kik′ j⟨S (i j)(ab)
16 ⟩ 1

2 i(k×k′)3
1
2 i(k×k′)3

1
4 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
18 ⟩ i(k×k′)3 i(k×k′)3

1
2 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
19 ⟩ 19

4 i(k×k′)3
19
4 i(k×k′)3

19
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
20 ⟩ −k ·k′ k ·k′ 0 −k ·k′

kik′ j⟨S (i j)(ab)
23 ⟩ − 4

3 k ·k′ − 4
3 i(k×k′)3

4
3 k ·k′ − 4

3 i(k×k′)3 − 2
3 i(k×k′)3 − 4

3 k ·k′

kik′ j⟨S (i j)(ab)
24 ⟩ − 4

3 k ·k′ + 4
3 i(k×k′)3

4
3 k ·k′ + 4

3 i(k×k′)3
2
3 i(k×k′)3 − 4

3 k ·k′

kik′ j⟨S (i j)(ab)
25 ⟩ 4

3 k ·k′ − 4
3 i(k×k′)3 − 4

3 k ·k′ − 4
3 i(k×k′)3 − 2

3 i(k×k′)3
4
3 k ·k′

kik′ j⟨S (i j)(ab)
26 ⟩ 4

3 k ·k′ + 4
3 i(k×k′)3 − 4

3 k ·k′ + 4
3 i(k×k′)3

2
3 i(k×k′)3

4
3 k ·k′

kik′ j⟨S (i j)(ab)
27 ⟩ 25

12 i(k×k′)3
25
12 i(k×k′)3

25
24 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
28 ⟩ 25

12 i(k×k′)3
25
12 i(k×k′)3

25
24 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
29 ⟩ − 5

4 k ·k′ 5
4 k ·k′ 0 − 5

4 k ·k′

kik′ j⟨S (i j)(ab)
30 ⟩ 5

4 k ·k′ − 5
4 k ·k′ 0 5

4 k ·k′

kik′ j⟨S (i j)(ab)
38 ⟩ − 5

2 k ·k′ 5
2 k ·k′ 0 − 5

2 k ·k′

kik′ j⟨S (i j)(ab)
39 ⟩ 5

4 i(k×k′)3
5
4 i(k×k′)3

5
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
40 ⟩ 5

4 i(k×k′)3
5
4 i(k×k′)3

5
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
47 ⟩ 1

2 k ·k′ 1
2 k ·k′ 1

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
49 ⟩ 4i(k×k′)3 −4i(k×k′)3 0 4i(k×k′)3

kik′ j⟨S (i j)(ab)
54 ⟩ 4k ·k′ − i(k×k′)3 4k ·k′ + i(k×k′)3 2k ·k′ −i(k×k′)3

kik′ j⟨S (i j)(ab)
56 ⟩ 25

8 i(k×k′)3 − 25
8 i(k×k′)3 0 25

8 i(k×k′)3

kik′ j⟨S (i j)(ab)
60 ⟩ −8k ·k′ +2i(k×k′)3 −8k ·k′ −2i(k×k′)3 −4k ·k′ 2i(k×k′)3

kik′ j⟨S (i j)(ab)
67 ⟩ 5

4 k ·k′ 5
4 k ·k′ 5

8 k ·k′ 0

kik′ j⟨S (i j)(ab)
68 ⟩ 5

4 k ·k′ 5
4 k ·k′ 5

8 k ·k′ 0

kik′ j⟨S (i j)(ab)
83 ⟩ 25

4 i(k×k′)3
25
4 i(k×k′)3

25
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
84 ⟩ 5

2 k ·k′ 5
2 k ·k′ 5

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
85 ⟩ 5

2 k ·k′ 5
2 k ·k′ 5

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
86 ⟩ 4k ·k′ −4k ·k′ 0 4k ·k′

kik′ j⟨S (i j)(ab)
91 ⟩ 6k ·k′ −6i(k×k′)3 −6k ·k′ −6i(k×k′)3 −3i(k×k′)3 6k ·k′

Use of SU(3) flavor projection operators to construct baryon-meson scattering... Chin. Phys. C 50, 023106 (2026)
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Table 3.    Non-trivial matrix elements of operators involved in neutron-pion scattering processes.

Operator n+π+→ n+π+ n+π−→ n+π− n+π0→ n+π0 n+π+→ p+π0

kik′ j⟨S (i j)(ab)
1 ⟩ k ·k′ −k ·k′ 0 −k ·k′

kik′ j⟨S (i j)(ab)
2 ⟩ i(k×k′)3 i(k×k′)3 − 1

2 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
3 ⟩ 1

6 i(k×k′)3
1
6 i(k×k′)3 − 1

12 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
4 ⟩ k ·k′ k ·k′ 1

2 k ·k′ 0

kik′ j⟨S (i j)(ab)
5 ⟩ 3

2 k ·k′ 3
2 k ·k′ 3

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
6 ⟩ 19

12 k ·k′ + 11
12 i(k×k′)3

19
12 k ·k′ − 11

12 i(k×k′)3
19
24 k ·k′ − 11

12 i(k×k′)3

kik′ j⟨S (i j)(ab)
7 ⟩ 19

12 k ·k′ − 11
12 i(k×k′)3

19
12 k ·k′ + 11

12 i(k×k′)3
19
24 k ·k′ 11

12 i(k×k′)3

kik′ j⟨S (i j)(ab)
8 ⟩ 19

4 k ·k′ 19
4 k ·k′ − 19

8 k ·k′ 0

kik′ j⟨S (i j)(ab)
9 ⟩ 5

6 i(k×k′)3
5
6 i(k×k′)3

5
12 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
10 ⟩ 5

6 i(k×k′)3
5
6 i(k×k′)3

5
12 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
11 ⟩ 1

6 k ·k′ 1
6 k ·k′ 1

12 k ·k′ 0

kik′ j⟨S (i j)(ab)
12 ⟩ 5

6 k ·k′ − 5
6 k ·k′ 0 − 5

6 k ·k′

kik′ j⟨S (i j)(ab)
13 ⟩ 5

6 k ·k′ − 5
6 k ·k′ 0 − 5

6 k ·k′

kik′ j⟨S (i j)(ab)
14 ⟩ 1

2 k ·k′ 1
2 k ·k′ 1

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
15 ⟩ − 1

2 i(k×k′)3
1
2 i(k×k′)3 0 1

2 i(k×k′)3

kik′ j⟨S (i j)(ab)
16 ⟩ 1

2 i(k×k′)3
1
2 i(k×k′)3

1
4 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
18 ⟩ i(k×k′)3 i(k×k′)3

1
2 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
19 ⟩ 19

4 i(k×k′)3
19
4 i(k×k′)3

19
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
20 ⟩ k ·k′ −k ·k′ 0 −k ·k′

kik′ j⟨S (i j)(ab)
23 ⟩ 4

3 k ·k′ − 4
3 i(k×k′)3 − 4

3 k ·k′ − 4
3 i(k×k′)3 − 2

3 i(k×k′)3 − 4
3 k ·k′

kik′ j⟨S (i j)(ab)
24 ⟩ 4

3 k ·k′ + 4
3 i(k×k′)3 − 4

3 k ·k′ + 4
3 i(k×k′)3

2
3 i(k×k′)3 − 4

3 k ·k′

kik′ j⟨S (i j)(ab)
25 ⟩ − 4

3 k ·k′ − 4
3 i(k×k′)3

4
3 k ·k′ − 4

3 i(k×k′)3 − 2
3 i(k×k′)3

4
3 k ·k′

kik′ j⟨S (i j)(ab)
26 ⟩ − 4

3 k ·k′ + 4
3 i(k×k′)3

4
3 k ·k′ + 4

3 i(k×k′)3
2
3 i(k×k′)3

4
3 k ·k′

kik′ j⟨S (i j)(ab)
27 ⟩ 25

12 i(k×k′)3
25
12 i(k×k′)3

25
24 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
28 ⟩ 25

12 i(k×k′)3
25
12 i(k×k′)3

25
24 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
29 ⟩ 5

4 k ·k′ − 5
4 k ·k′ 0 − 5

4 k ·k′

kik′ j⟨S (i j)(ab)
30 ⟩ − 5

4 k ·k′ 5
4 k ·k′ 0 5

4 k ·k′

kik′ j⟨S (i j)(ab)
38 ⟩ 5

2 k ·k′ − 5
2 k ·k′ 0 − 5

2 k ·k′

kik′ j⟨S (i j)(ab)
39 ⟩ 5

4 i(k×k′)3
5
4 i(k×k′)3

5
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
40 ⟩ 5

4 i(k×k′)3
5
4 i(k×k′)3

5
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
47 ⟩ 1

2 k ·k′ 1
2 k ·k′ 1

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
49 ⟩ −4i(k×k′)3 4i(k×k′)3 0 4i(k×k′)3

kik′ j⟨S (i j)(ab)
54 ⟩ 4k ·k′ + i(k×k′)3 4k ·k′ − i(k×k′)3 2k ·k′ −i(k×k′)3

kik′ j⟨S (i j)(ab)
56 ⟩ − 25

8 i(k×k′)3
25
8 i(k×k′)3 0 25

8 i(k×k′)3

kik′ j⟨S (i j)(ab)
60 ⟩ −8k ·k′ −2i(k×k′)3 −8k ·k′ +2i(k×k′)3 −4k ·k′ 2i(k×k′)3

kik′ j⟨S (i j)(ab)
67 ⟩ 5

4 k ·k′ 5
4 k ·k′ 5

8 k ·k′ 0

kik′ j⟨S (i j)(ab)
68 ⟩ 5

4 k ·k′ 5
4 k ·k′ 5

8 k ·k′ 0

kik′ j⟨S (i j)(ab)
83 ⟩ 25

4 i(k×k′)3
25
4 i(k×k′)3

25
8 i(k×k′)3 0

kik′ j⟨S (i j)(ab)
84 ⟩ 5

2 k ·k′ 5
2 k ·k′ 5

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
85 ⟩ 5

2 k ·k′ 5
2 k ·k′ 5

4 k ·k′ 0

kik′ j⟨S (i j)(ab)
86 ⟩ −4k ·k′ 4k ·k′ 0 4k ·k′

kik′ j⟨S (i j)(ab)
91 ⟩ −6k ·k′ −6i(k×k′)3 6k ·k′ −6i(k×k′)3 −3i(k×k′)3 6k ·k′
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f 2k0ALO(p+π−→ p+π−)

=

ï
25
72

a2
1+

5
36

a1b2+
25

108
a1b3+

1
72

b2
2+

5
108

b2b3+
25

648
b2

3 −
2
9

ï
1+

2∆
k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+

ï
25
72

a2
1+

5
36

a1b2+
25

108
a1b3+

1
72

b2
2+

5
108

b2b3+
25

648
b2

3 −
2
9

ï
1+

1
2
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
i(k×k′)3+O

ï
∆3

k03

ò
= f 2k0ALO(n+π+→ n+π+),

(31)

 

f 2k0ALO(p+π0→ p+π0)

= − 4
9
∆

k0

ï
a2

1+a1c3+
1
4

c2
3

ò
k ·k′+

ï
25
72

a2
1+

5
36

a1b2+
25

108
a1b3+

1
72

b2
2+

5
108

b2b3+
25
648

b2
3

−2
9

ï
1+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
i(k×k′)3+O

ï
∆3

k03

ò
= f 2k0ALO(n+π0→ n+π0), (32)

 √
2 f 2k0ALO(p+π−→ n+π0)

=

ï
−25

36
a2

1−
5
18

a1b2−
25
54

a1b3−
1
36

b2
2−

5
54

b2b3−
25

324
b2

3 +
4
9

ï
1+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+
2
9
∆

k0

ï
a2

1+a1c3+
1
4

c2
3

ò
i(k×k′)3+O

ï
∆3

k03

ò
=
√

2 f 2k0ALO(n+π+→ p+π0). (33)

Nc = 3

C H

1/Nc a1 b2 b3 c3 Nc = 3

Scattering amplitudes  including  all  operator  struc-
tures  enabled  for  in Eq.  (8)  can  be  evaluated  be-
cause  the  above  results  can  be  rewritten  in  terms  of  the
SU(3)  invariant  couplings D, F, ,  and  introduced in
HBChPT  [25, 26].  These  couplings  are  related  to  the

 coefficients , , , and  for  as [23] 

D =
1
2

a1+
1
6

b3, (34a)
 

F =
1
3

a1+
1
6

b2+
1
9

b3, (34b)
 

C = −a1−
1
2

c3, (34c)

 

H = −3
2

a1−
3
2

b2−
5
2

b3. (34d)

∆

A further simplification can be achieved if the power
series expansion in  of the function
 

t1
k0

k0−∆ + t2
k0

k0+∆
= t1+ t2+ (t1− t2)

∆

k0
+ (t1+ t2)

∆2

k02

+ (t1− t2)
∆3

k03 +O
ï
∆4

k04

ò
, (35)

tkwhere  are  some  coefficients,  is  substituted  into  Eqs.
(30)−(33) to rewrite the final forms of the scattering amp-
litudes as

 

f 2k0ALO(p+π+→ p+π+) =
ï
−1

2
(D+F)2+

1
9

ï
− k0

k0−∆ +3
k0

k0+∆

ò
C2
ò

k ·k′

+

ï
1
2

(D+F)2− 1
18

ï
k0

k0−∆ +3
k0

k0+∆

ò
C2
ò

i(k×k′)3 = f 2k0ALO(n+π−→ n+π−), (36)

 

f 2k0ALO(p+π−→ p+π−) =
ï

1
2

(D+F)2− 1
9

ï
3

k0

k0−∆ −
k0

k0+∆

ò
C2
ò

k ·k′

+

ï
1
2

(D+F)2− 1
18

ï
3

k0

k0−∆ +
k0

k0+∆

ò
C2
ò

i(k×k′)3 = f 2k0ALO(n+π+→ n+π+), (37)
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f 2k0ALO(p+π0→ p+π0) = − 2
9

ï
k0

k0−∆ −
k0

k0+∆

ò
C2k ·k′

+

ï
1
2

(D+F)2− 1
9

ï
k0

k0−∆ +
k0

k0+∆

ò
C2
ò

i(k×k′)3 = f 2k0ALO(n+π0→ n+π0), (38)

 

√
2 f 2k0ALO(p+π−→ n+π0) =

ï
−(D+F)2+

2
9

ï
k0

k0−∆ +
k0

k0+∆

ò
C2
ò

k ·k′

+
1
9

ï
k0

k0−∆ −
k0

k0+∆

ò
C2i(k×k′)3 =

√
2 f 2k0ALO(n+π+→ p+π0), (39)

O(∆3/k03)which are valid to order .

Nπ→ Nπ
C

BBπ gA = D+F

C T Bπ
∆→ 0

C2

A glance  at  the  above  expression  shows that  scatter-
ing  amplitudes  for  processes  are  written  in
terms of the SU(3) invariants F, D, and  [25, 26], which
is  a  totally  expected and consistent  result  because F and
D come along  vertices, where  represents
the  axial  coupling  for  neutron  beta  decay  in  the  limit  of
exact SU(3) symmetry, whereas  comes along  ver-
tices.  Further,  in  the  limit ,  the  coefficients  of  the

 terms do not vanish.
A(3/2)

LO A(1/2)
LOAs for the  and  amplitudes, they are found

to be 

f 2k0A(3/2)
LO =

ï
− 25

72
a2

1−
5

36
a1b2−

25
108

a1b3

− 1
72

b2
2−

5
108

b2b3−
25

648
b2

3 (40)

 

+
2
9

ï
1− 2∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+

ï
25
72

a2
1+

5
36

a1b2+
25
108

a1b3+
1

72
b2

2+
5

108
b2b3+

25
648

b2
3

−2
9

ï
1− 1

2
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
i(k×k′)3+O

ï
∆3

k03

ò
,

(41)

and 

f 2k0A(1/2)
LO =

ï
25
36

a2
1+

5
18

a1b2+
25
54

a1b3

+
1

36
b2

2+
5
54

b2b3+
25
324

b2
3 (42)

 

− 4
9

ï
1+
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+

ï
25
72

a2
1+

5
36

a1b2+
25
108

a1b3+
1

72
b2

2+
5

108
b2b3+

25
648

b2
3

−2
9

ï
1+
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
i(k×k′)3+O

ï
∆3

k03

ò
,

(43)

or equivalently, 

f 2k0A(3/2)
LO =

ï
−1

2
(D+F)2+

1
9

ï
− k0

k0−∆ +3
k0

k0+∆

ò
C2
ò

k ·k′

+

ï
1
2

(D+F)2− 1
18

ï
k0

k0−∆ +3
k0

k0+∆

ò
C2
ò

i(k×k′)3,

(44)

and 

f 2k0A(1/2)
LO =

ï
(D+F)2− 4

9
k0

k0−∆C
2
ò

k ·k′

+

ï
1
2

(D+F)2− 2
9

k0

k0−∆C
2
ò

i(k×k′)3, (45)

O(∆3/k03)which are valid to order .
 

1.    Isospin relations

Nπ→ NπThe  scattering amplitudes  satisfy  the  fol-
lowing isospin relations: 

ALO(p+π−→ p+π−)−ALO(p+π0→ p+π0)

+
1√
2
ALO(p+π−→ n+π0) = 0, (46)

 

ALO(p+π+→ p+π+)−ALO(p+π−→ p+π−)

−
√

2ALO(p+π−→ n+π0) = 0, (47)

 

ALO(p+π+→ p+π+)+ALO(p+π−→ p+π−)

−2ALO(p+π0→ p+π0) = 0, (48)

 

ALO(n+π−→ n+π−)−ALO(n+π0→ n+π0)

− 1√
2
ALO(n+π+→ p+π0) = 0, (49)

 

ALO(n+π+→ n+π+)−ALO(n+π−→ n+π−)

+
√

2ALO(n+π+→ p+π0) = 0, (50)
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ALO(n+π+→ n+π+)+ALO(n+π−→ n+π−)

−2ALO(n+π0→ n+π0) = 0. (51)

 

B.    Scattering amplitude from Fig. 1(c)
NπFollowing  the  lines  of  Eq.  (18),  for  the  system,

the scattering amplitudes arising from Fig. 1(c) read 

Avertex(p+π+→ p+π+) =
1
4

k0

f 2

=Avertex(n+π−→ n+π−), (52)

 

Avertex(p+π−→ p+π−) = −1
4

k0

f 2

=Avertex(n+π+→ n+π+), (53)

 

Avertex(p+π0→ p+π0) = 0

=Avertex(n+π0→ n+π0), (54)

 

Avertex(p+π−→ n+π0) =
1

2
√

2
k0

f 2

=Avertex(n+π+→ p+π0), (55)

from which the following amplitudes can be obtained, 

A(3/2)
vertex =

1
4

k0

f 2
, (56)

and 

A(1/2)
vertex = −

1
2

k0

f 2
. (57)

 

1.    Isospin relations

In a close analogy of the previous case, the isospin re-
lations between these scattering amplitudes are 

Avertex(p+π−→ p+π−)−Avertex(p+π0→ p+π0)

+
1√
2
Avertex(p+π−→ n+π0) = 0,

(58)

 

Avertex(p+π+→ p+π+)−Avertex(p+π−→ p+π−)

−
√

2Avertex(p+π−→ n+π0) = 0,

(59)
 

Avertex(p+π+→ p+π+)+Avertex(p+π−→ p+π−)

−2Avertex(p+π0→ n+π0) = 0,

(60)
 

Avertex(n+π−→ n+π−)−Avertex(n+π0→ n+π0)

− 1√
2
Avertex(n+π+→ p+π0) = 0,

(61)
 

Avertex(n+π+→ n+π+)−Avertex(n+π−→ n+π−)

+
√

2Avertex(n+π+→ p+π0) = 0,

(62)
 

Avertex(n+π+→ n+π+)+Avertex(n+π−→ n+π−)

−2Avertex(n+π0→ n+π0) = 0.

(63)
 

IV.  PROCESSES WITH STRANGENESS: TWO
CASE STUDIES

Λ+K+→
p+π0 Ξ0+K0→ Λ+η

To test  the  applicability  of  the  approach,  two  pro-
cesses  including  strangeness  have  been  selected  with  no
specific  criteria.  They  are  two  case  studies: 

 and .  The  respective  scattering
amplitudes from Fig. 1(a,b) read 

4
√

3 f 2k0ALO(Λ+K+→ p+π0)

=

ï
−17

12
a2

1−
1
2

a1b2−
17
18

a1b3−
1

12
b2

2−
1
6

b2b3−
17

108
b2

3

+
2
3

ï
1+
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+

ï
−13

12
a2

1−
5
6

a1b2−
13
18

a1b3−
1
12

b2
2−

5
18

b2b3−
13

108
b2

3

+
1
3

ï
1+
∆

k0
+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
(k×k′)3+O

ï
∆

k0

ò3

,

(64)

and 

4
√

3 f 2k0ALO(Ξ0+K0→ Λ+η)

=

ï
−3

4
a2

1−
1
6

a1b2−
1
2

a1b3−
1

12
b2

2−
1

18
b2b3−

1
12

b2
3

+
4
3
∆

k0

ï
a2

1+a1c3+
1
4

c2
3

òò
k ·k′

+

ï
−11

12
a2

1−
1
6

a1b2−
11
18

a1b3+
1
12

b2
2−

1
18

b2b3−
11

108
b2

3
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+
2
3

ï
1+
∆2

k02

òï
a2

1+a1c3+
1
4

c2
3

òò
(k×k′)3+O

ï
∆

k0

ò3

,

(65)

or equivalently, 

4
√

3 f 2k0ALO(Λ+K+→ p+π0)

=

ï
−3D2−2DF −3F2+

2
3

ï
k0

k0−∆

ò
C2
ò

k ·k′

+

ï
D2−6DF −3F2+

1
3

ï
k0

k0−∆

ò
C2
ò

(k×k′)3+O
ï
∆

k0

ò3

,

(66)

and 

4
√

3 f 2k0ALO(Ξ0+K0→ Λ+η)

=

ï
−3D2+2DF −3F2+

2
3

ï
k0

k0−∆ −
k0

k0+∆

ò
C2
ò

k ·k′

+

ï
−D2−6DF +3F2+

1
3

ï
k0

k0−∆ +
k0

k0+∆

ò
C2
ò

(k×k′)3

+O
ï
∆

k0

ò3

.

(67)

The above expressions have been obtained in a com-
plete  parallelism  to  the  nucleon-pion  processes,  and
therefore, no additional details are required. 

V.  FIRST-ORDER SU(3) SYMMETRY BREAKING
IN THE SCATTERING AMPLITUDE

The SU(3) flavor symmetry is not an exact symmetry
and is  actually  broken.  Flavor  SB and strong IB refer  to
the deviation of the strong force from the ideal  symmet-
ric  limit  where  all  quark  flavors  are  treated  on  an  equal
footing  (flavor  symmetry)  and  where  the  up  and  down
quarks are considered identical (isospin symmetry).

Two  major  sources  of SU(3)  symmetry  breaking  are
identified.  The  first  one  is  caused  by  the  light  quark
masses,  and  the  perturbation  transforms  as  the  adjoint
(octet) irreducible representation of SU(3), 

ϵH8+ ϵ′H3. (68)

ϵ ∼ ms/ΛQCD

ϵ ∼ 0.3
1/Nc

The first term in Eq. (68) is considered the dominant
SU(3)  breaking  and  transforms  as  the  eighth  component
of a flavor octet, where  represents a (dimen-
sionless) measure of SB; , which is comparable to
an  effect.  The  second  term  represents  the  leading
QCD isospin breaking effect, i.e., the one associated with
the  difference  of  the  up  and  down  quark  masses  and

ϵ′ ∼ (md −mu)/ΛQCD ϵ′≪ ϵ
transforms as the third component of a flavor octet, where

; therefore, . This isospin break-
ing mechanism is referred to as strong isospin breaking.

ϵ′′ ∼ αem/4π

The  second  source  of  symmetry  breaking  is  induced
by  electromagnetic  interactions.  Second-order electro-
magnetic  mass  splittings  in  the  quark  charge  matrix  can
obtain a suppression factor of . To a good ap-
proximation, 

md −mu

ΛQCD
∼ αem

4π
. (69)

ALO

Nc

In this section, effects caused by first-order SB and IB
to the scattering amplitude are discussed by extending the
projection operator technique applied to the diagrams dis-
played in Figs. 1(a,b) and 1(c) separately as they involve
different  operator  structures.  These  effects  are  added  to
the lowest-order results  to obtain more accurate ex-
pressions. Loop graphs that complement the analysis will
be  attempted  elsewhere  in  the  framework  of  large-
chiral perturbation theory. 

A.    Flavor projection operators for the product
of three adjoints

(2,8⊗8) (0,8)

8⊗8⊗8

First-order flavor symmetry breaking contributions to
the  scattering  amplitude  are  computed  from  the  tensor
product of  the  scattering  amplitude  itself,  which  trans-
forms under  the  spin-flavor  symmetry SU(2)  × SU(3)  as

, and the perturbation, which transforms as .
The  tensor  product  of  three  adjoint  representations

 decomposes as 

8⊗8⊗8 = 2(1)⊕8(8)⊕4(10⊕10)⊕6(27)⊕2(35⊕35)⊕64.

(70)

1/Nc

(2,1) (2,8) (2,10⊕10)
(2,27) (2,35⊕35) (2,64)

1/Nc

{R(i j)(a1a2a3)
k } R(i j)(a1a2a3)

k

Nc = 3

a3 = 8

a3 = 3

R(i j)(a1a28)

R(i j)(a1a23) I = 0 I = 1

Thus, the effects of SB can be evaluated by construct-
ing  the  expansions  of  the  pieces  of  the  scattering
amplitude  transforming  as , , ,

, ,  and  under SU(2)  × SU(3).
These  expansions need to be expressed in terms of a
complete  basis  of  linearly  independent  operators

,  where  a  generic  operator  repres-
ents a spin-2 object with three adjoint indices. For ,
up  to  three-body  operators  should  be  retained  in  the
series.  Accordingly,  first-order  SB  can  be  accounted  for
by  setting  one  of  the  flavor  indices  to  8, v.gr., ,
whereas first-order strong IB can be accounted for by set-
ting one of the flavor indices to 3, v.gr., . For com-
pleteness, the set of up to three-body operators used as a
basis  is  listed  in  the  Online  Resource.  The  set  contains
170  linearly  independent  operators,  where  and

 represent operators with  and , respect-
ively. Naively,  isospin  breaking  induced  by  electromag-
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I = 2 I = 3netism should appear from operators with  and ,
which  emerge  from  the  tensor  product  of  four  and  five
adjoint presentations, respectively. These tensor products
are not treated here.

The task  of  constructing  operators  that  yield  SB  ef-
fects is  facilitated  by  the  implementation  of  the  projec-
tion  operator  technique  presented  in  Ref.  [22],  extended
to the decomposition (Eq. (70)). The projection operators
can be constructed as 

[
P(m)

]c1c2c3b1b2b3
=

ïÅ
C− cn1I
cm− cn1

ãÅ
C− cn2I
cm− cn2

ãÅ
C− cn3I
cm− cn3

ã
×
Å

C− cn4I
cm− cn4

ãÅ
C− cn5I
cm− cn5

ãòc1c2c3b1b2b3

,

(71)

ni

where m indicates the  flavor  representation  of  each  pro-
jector  and  the  indicates  flavor  representations  besides
m. The quadratic Casimir operator reads 

[C]c1c2c3b1b2b3 = 6δc1b1δc2b2δc3b3 −2δc1b1 f ac2b2 f ac3b3

−2δc2b2 f ac1b1 f ac3b3 −2δc3b3 f ac1b1 f ac2b2 , (72)

and 

c1 = 0, c8 = 3, c10+10 = 6, c27 = 8, c35+35 = 12, c64 = 15,

(73)

are its corresponding eigenvalues.î
P(dim)R(i j)

k

óc1c2c3

R(i j)(c1c2c3)
k

dim

Therefore,  the  product  effectively
provides  the  component  of  the  operator  trans-
forming  in  the  irreducible  representation  of  dimension

 according to decomposition (Eq. (70)).[
P(dim)

]c1c2c3b1b2b3

C5

[
P(dim)

]c1c2c3b1b2b3

However,  the  explicit  analytic  construction  of
faces  several  algebraic  challenges.  The

most evident one is dealing with the products of up to ten
f symbols contained in the  operator, which cannot be
reduced in  terms containing fewer f or d symbols.  Thus,
the algebraic  forms of  contain  hundreds
of  terms,  which,  in  practice,  become  unmanageable.  A
more  pragmatic  approach  such  as  the  matrix  method
should be adopted to solve this problem.

86

c1 c2 c3 b1 b2 b3

To  start  with,  each  projection  operator  (or  quadratic
Casimir  operator)  is  an  object  with  six  adjoint  indices,
each  one  with  eight  possible  values,  and  therefore,  all
these objects have  elements. However, Casimir operat-
ors  have  all  or  half  of  their  indices  contracted,  and  the
projectors are applied on three-body operators with three
adjoint indices; therefore, half of the projector indices are
always contracted. Thus, it  is  possible to collect the first
three indices ( , , ) and last three indices ( , , ) of

83 = 512

512×512

î
P(dim)R(i j)

k

óc1c2c3

both the Casimir and projectors in only two indices,  one
for each set.  These new indices have  values.  In
this way, a matrix representation for the projectors can be
constructed. They comprise  matrices. Similarly,
the three-body operators with three adjoint indices can be
represented as  vectors  with  512  entries.  Therefore,  in-
stead  of  performing  the  index  contractions

,  the  problem  reduces  to  ordinary  matrix
multiplications. The whole procedure is very reliable and
effectively simplifies the analysis.

P(dim) [
P(dim)

]c1c2c3b1b2b3
Let  represent  the  matrix  corresponding  to  the

projection operator . With the method im-
plemented, a series of consistency checks have been per-
formed, namely, 

P(m)P(m) = P(m), P(m)P(n) = 0, n , m, (74)

along with 

P(1)+P(8)+P(10+10)+P(27)+P(35+35)+P(64) = I512, (75)

I512where  represents the identity matrix of order 512. The
above  relations  are  the  usual  properties  that  projection
operators  must  satisfy.  No  further  details  on  the  method
are presented here.

The  matrix  method  to  construct  projection  operators
can  be  extended  to  the  tensor  products  of  four  and  five
adjoint representations. In the first case, 

8⊗8⊗8⊗8 = 8(1)⊕32(8)⊕33(27)⊕12(64)⊕125

⊕20(10⊕10)⊕2(28⊕28)⊕15(35⊕35)⊕3(81⊕81).

(76)

I = 0 I = 1 I = 2

This decomposition (Eq. (76)) contains operators with
four  flavor  indices,  two  of  which  can  be  fixed  to  {8,8},
{3,8}, and {3,3}, which will help identify operators with

, , and , respectively. Numerically, the pro-
cedure to construct projections operators would be rather
involved,  requiring  a  considerable  amount  of  computing
time; however, this procedure can still be performed. 

1.    Flavor SB effects on the scattering amplitude from
Fig. 1(a,b)

{T a, {T b,T c}}
n+π+→ n+π+

a = (1− i2)/
√

2 b = (1− i2)/
√

2 c = 8

The mechanism of flavor projection operators can be
better  understood  through  a  few examples.  The  operator

 contributes to the scattering amplitude of the
process  through  components  with  flavor
indices , ,  and .  Using
the matrix method, the {1,1,8} component of the flavor 8
piece becomes
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[P(8)]118cde{T c, {T d,T e}} = 1
15

T 1T 1T 8+
1

30
√

3
T 1T 4T 6+
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√

3
T 1T 5T 7+

1
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√
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√

3
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+
1
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√
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√
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√
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√
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+
1
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√

3
T 3T 4T 4+

1
30
√

3
T 3T 5T 5− 1

30
√

3
T 3T 6T 6− 1

30
√

3
T 3T 7T 7+

4
15

T 3T 8T 3

− 1
15
√

3
T 4T 1T 6+

1
15
√

3
T 4T 2T 7− 1

15
√

3
T 4T 3T 4+

1
30
√

3
T 4T 4T 3+

1
10

T 4T 4T 8+
1

30
√

3
T 4T 6T 1

− 1
30
√

3
T 4T 7T 2+

1
5

T 4T 8T 4− 1
15
√

3
T 5T 1T 7− 1

15
√

3
T 5T 2T 6− 1

15
√

3
T 5T 3T 5+

1
30
√

3
T 5T 5T 3

+
1

10
T 5T 5T 8+

1
30
√

3
T 5T 6T 2+

1
30
√

3
T 5T 7T 1+

1
5

T 5T 8T 5− 1
15
√

3
T 6T 1T 4− 1

15
√

3
T 6T 2T 5

+
1

15
√

3
T 6T 3T 6+

1
30
√

3
T 6T 4T 1+

1
30
√

3
T 6T 5T 2− 1

30
√

3
T 6T 6T 3+

1
10

T 6T 6T 8+
1
5

T 6T 8T 6

− 1
15
√

3
T 7T 1T 5+

1
15
√

3
T 7T 2T 4+

1
15
√

3
T 7T 3T 7− 1

30
√

3
T 7T 4T 2+

1
30
√

3
T 7T 5T 1

− 1
30
√

3
T 7T 7T 3+

1
10

T 7T 7T 8+
1
5

T 7T 8T 7+
1

15
T 8T 1T 1+

1
15

T 8T 2T 2+
1

15
T 8T 3T 3+

1
10

T 8T 4T 4

+
1

10
T 8T 5T 5+

1
10

T 8T 6T 6+
1

10
T 8T 7T 7+

2
5

T 8T 8T 8.

(77)

Similar  expressions  to  Eq.  (77)  can  be  found  for  the
{2,2,8}, {1,2,8}, and {2,1,8} components required in the
example. Therefore, it can be shown that
 

[P(1)+P(8)+P(10+10)+P(27)+P(35+35)

+P(64)]118cde{T c, {T d,T e}} = {T 1, {T 1,T 8}}, (78)

which is  the  expected  result.  Computing  the  matrix  ele-
ments of the operator (Eq. (77)) is straightforward; there-
fore,
 

⟨π+n|[P(8)]118cde{T c, {T d,T e}}|π+n⟩ = 1
2

√
3, (79)

and
 

⟨π+n|[P(r)]118cde{T c, {T d,T e}}|π+n⟩ = 0, (80)

r , 8for .

{T a, {T b,T c}}
n+π+→ n+π+

The procedure  can  be  repeated  for  each  flavor  com-
bination so that the different contributions of the operator

 to  the  scattering  amplitude  of  the  process
 can be made available.  For  the  canonical

example, the final expression can be summarized as
 

1√
2

1√
2

kik′ jδi j⟨π+n|[P(8)](1−i2)(1−i2)8cde{T c, {T d,T e}}|π+n⟩

=
1
2

√
3k ·k′,

(81)

and
 

1√
2

1√
2

kik′ jδi j
[
⟨π+n|[P(r)](1−i2)(1−i2)8cde

]
{T c, {T d,T e}}|π+n⟩= 0,

(82)

r , 8for .

ALO

δASB I = 0

Gathering  partial  results,  the  first-order  SB  to  the
scattering  amplitude  Eq.  (19)  (denoted  hereafter  by

 and for which ) can be organized as
 

f 2k0δASB(B+πa→ B′+πb)

=
∑
dim

î
Ncg

(dim)
1 kik′ j⟨πbB′|[P(dim)R(i j)

1 ](ab8)|πaB⟩

+Ncg
(dim)
2 kik′ j⟨πbB′|[P(dim)R(i j)

2 ](ab8)|πaB⟩

+

16∑
r=3

g(dim)
r kik′ j⟨πbB′|[P(dim)R(i j)

r ](ab8)|πaB⟩
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+
1
Nc

71∑
r=17

g(dim)
r kik′ j⟨πbB′|[P(dim)R(i j)

r ](ab8)|πaB⟩

+
1

N2
c

170∑
r=72

g(dim)
r kik′ j⟨πbB′|[P(dim)R(i j)

r ](ab8)|πaB⟩
ó
, (83)

g(dim)
r r = 1, . . . ,170

dim
where , ,  are  undetermined  coefficients
expected to be of order one. The sum over  covers all
six  irreducible  representations  indicated  in  the  relation
(Eq. (70)), and the sums over i and j are implicit.

δASB(n+π+→
n+π+)

For  example,  the  flavor  1  piece  of 
 using  the  corresponding  matrix  elements  of  the

operators listed in the Online Resource becomes

 

2
√

3 f 2k0δASB(n+π+→ n+π+) =
î
6g(1)

2 +
1
3

g(1)
18 +

1
2

g(1)
20 +

1
2

g(1)
52 +

1
2

g(1)
53 +

1
2

g(1)
54 +

1
18

g(1)
95 +

1
18

g(1)
96 +

1
18

g(1)
97 +

1
18

g(1)
98

+
1
18

g(1)
99 +

1
18

g(1)
100+

1
3

g(1)
110+

1
3

g(1)
111+

1
3

g(1)
112+

1
9

g(1)
116+

1
9

g(1)
117+

1
9

g(1)
118+

1
9

g(1)
119

+
1
9

g(1)
120+

1
9

g(1)
121+

1
6

g(1)
134+

1
6

g(1)
135+

1
6

g(1)
136+

1
6

g(1)
137+

1
6

g(1)
138+

1
6

g(1)
139+

1
6

g(1)
140+

1
6

g(1)
141

+
1
6

g(1)
142+

1
6

g(1)
143+

1
6

g(1)
144+

1
6

g(1)
145−

1
18

g(1)
146−

1
18

g(1)
147−

1
18

g(1)
148−

1
18

g(1)
149

ó
k ·k′

+
î
g(1)

4 +
1
6

g(1)
63 +

1
6

g(1)
64 +

1
6

g(1)
65 +

1
6

g(1)
66 +

1
6

g(1)
67 +

1
6

g(1)
68 +

1
6

g(1)
73 +

1
6

g(1)
80 +

1
6

g(1)
81 +

1
6

g(1)
82

+
1
12

g(1)
122+

1
12

g(1)
123+

1
12

g(1)
124+

1
8

g(1)
125+

1
8

g(1)
126+

1
8

g(1)
127−

1
24

g(1)
128−

1
24

g(1)
129−

1
24

g(1)
130

− 1
16

g(1)
150−

1
16

g(1)
151−

1
16

g(1)
152−

1
16

g(1)
153−

1
16

g(1)
154−

1
16

g(1)
155−

1
16

g(1)
156−

1
16

g(1)
157−

1
16

g(1)
158

− 1
16

g(1)
159−

1
16

g(1)
160−

1
16

g(1)
161−

1
16

g(1)
162−

1
16

g(1)
163−

1
16

g(1)
164+

1
16

g(1)
165+

1
16

g(1)
166+

1
16

g(1)
167

+
1
16

g(1)
168+

1
16

g(1)
169+

1
16

g(1)
170

ó
i(k×k′)3. (84)

Nπ→ Nπ

g(dim)
r

However,  the  applicability  of  expressions  such  as  Eq.
(84)  is  hindered  by  several  disadvantages.  The  obvious
one is  the  impossibility  of  determining  all  free  paramet-
ers.  For  the  process,  simpler  expressions  are
obtained  by  defining  effective  coefficients  expressed  in
terms of linear combinations of the  ones. In view of
this, Eq. (84) can be written as
 

f 2k0δASB(n+π+→ n+π+) = d(1)
1 k ·k′+ e(1)

1 i(k×k′)3. (85)

d(1)
1 e(1)

1where the  and  coefficients are easily read off us-
ing Eq. (84).

N +π→ N +π
Thus, the final expressions obtained for first-order SB

effects to the scattering amplitudes for the 
process are given by
 

f 2k0δASB(p+π+→ p+π+)

= (d(1)
1 +d(8)

1 +d(10+10)
1 +d(27)

1 )k ·k′

+ (e(1)
1 + e(8)

1 + e(10+10)
1 + e(27)

1 )i(k×k′)3

= f 2k0δASB(n+π−→ n+π−), (86)
 

f 2k0δASB(p+π−→ p+π−)

= (d(1)
1 +d(8)

1 −d(10+10)
1 −d(27)

1 +d(8)
2 +d(27)

2 )k ·k′

+ (e(1)
1 + e(8)

1 − e(10+10)
1 + e(8)

2 )i(k×k′)3

= f 2k0δASB(n+π+→ n+π+), (87)

 

f 2k0δASB(p+π0→ p+π0)

=
1
2

(2d(1)
1 +2d(8)

1 +d(8)
2 +d(27)

2 )k ·k′

+
1
2

(2e(1)
1 +2e(8)

1 + e(27)
1 + e(8)

2 )i(k×k′)3

= f 2k0δASB(n+π0→ n+π0), (88)

 

√
2 f 2k0δASB(p+π−→ n+π0)

= (2d(10+10)
1 +2d(27)

1 −d(8)
2 −d(27)

2 )k ·k′

+ (2e(10+10)
1 + e(27)

1 − e(8)
2 )i(k×k′)3

=
√

2 f 2k0δASB(n+π+→ p+π0). (89)

Expressions  (86)−(89) are  written  in  terms  of  11  un-
known  parameters  that  contain  implicit  suppression
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Nc O(N0
c )

O(N−1
c ) O(N−2

c )
10+10

35+35

factors  in ;  thus,  they  are  expected  to  be ,
, and  for coefficients coming from 1, 8 and
,  and 27 representations,  respectively.  Neither  the

flavor  nor the  flavor  64  representation  particip-
ates in the final expressions.

The isospin relations (Eqs. (46)−(51)) are satisfied by
corrections  to  scattering  amplitudes  (Eqs.  (86)−(89)),
which is a completely expected result.

Furthermore, 

f 2k0δA(3/2)
SB = (d(1)

1 +d(8)
1 +d(10+10)

1 +d(27)
1 )k ·k′

+ (e(1)
1 + e(8)

1 + e(10+10)
1 + e(27)

1 )i(k×k′)3, (90)

and 

f 2k0δA(1/2)
SB =

ï
d(1)

1 +d(8)
1 −2d(10+10)

1 −2d(27)
1 +

3
2

d(8)
2 +

3
2

d(27)
2

ò
k ·k′

+

ï
e(1)

1 + e(8)
1 −2e(10+10)

1 − 1
2

e(27)
1 +

3
2

d(8)
2

ò
i(k×k′)3.

(91)
 

2.    SB effects to the scattering amplitude from Fig. 1(c)

Aab
vertex

R(i j)(abcd)
k

δi j

{Vabc}

The SB effects  to  the  scattering  amplitude  from Fig.
1(c) are obtained following the lines of the previous sec-
tion.  In  this  case,  in  Eq.  (20)  is  a  spin-zero object
and  contains  two  adjoint  indices.  A  straightforward  way
to obtain the spin-0 operators with three adjoint indices to
account for SB is forming tensor products of  lis-
ted  in  the  Online  Resource  with  to saturate  spin  in-
dices. With this procedure, out of the 170 original operat-
ors,  only  59  remain.  The  corresponding  operator  basis

 is  also  listed  in  the  Online  Resource.  However,
after  repeating  the  computation  of  the  action  of  flavor
projectors on  these  59  operators,  computing  matrix  ele-
ments, and gathering together partial results, only one un-
known  parameter  is  required  to  parametrize  SB  effects
from Fig. 1(c). The final forms of the amplitudes read 

δAvertex(p+π+→ p+π+) = −1
4

k0

f 2
h1

= δAvertex(n+π−→ n+π−), (92)

 

δAvertex(p+π−→ p+π−) = −1
4

k0

f 2
h1

= δAvertex(n+π+→ n+π+), (93)

 

δAvertex(p+π0→ p+π0) = −1
4

k0

f 2
h1

= δAvertex(n+π0→ n+π0), (94)
 

δAvertex(p+π−→ n+π0) = 0

= δAvertex(n+π+→ p+π0), (95)

h1

Avertex(p+π0→ p+π0) Avertex(n+π0→
n+π0)
Avertex(p+π−→ n+π0) Avertex(n+π+→ p+π0)

where  represents a new unknown parameter, which is
a linear combination of 1, 8, and 27 operator coefficients.
Note  that  and 

 no  longer  vanish  because  of  SB,  whereas
 and  remain

unchanged. Further, the isospin relations (Eqs. (52)−(55))
are unaffected by SB effects, as expected.

Similarly, 

δA(3/2)
SB,vertex =

1
4

k0

f 2
h1, (96)

and 

δA(1/2)
SB,vertex = −

1
2

k0

f 2
h1. (97)

 

3.    Strong isospin breaking to the scattering amplitude
from Fig. 1(a,b)

δAIB

1/Nc

I = 1

The  evaluation  of  IB  corrections  to  the  scattering
amplitudes, hereafter denoted by , can be performed
in a manner similar to that for the flavor SB described in
the previous sections, except that the free flavor index is
now  fixed  to  3.  The  corresponding  expansion  for
which  reads 

f 2k0δAIB(B+πa→ B′+πb) =∑
dim

î
Ncs(dim)

1 kik′ j⟨πbB′|[P(dim)R(i j)
1 ](ab3)|πaB⟩

+Ncs(dim)
2 kik′ j⟨πbB′|[P(dim)R(i j)

2 ](ab3)|πaB⟩

+

16∑
r=3

s(dim)
r kik′ j⟨πbB′|[P(dim)R(i j)

r ](ab3)|πaB⟩

+
1
Nc

71∑
r=17

s(dim)
r kik′ j⟨πbB′|[P(dim)R(i j)

r ](ab3)|πaB⟩

+
1

N2
c

170∑
r=72

s(dim)
r kik′ j⟨πbB′|[P(dim)R(i j)

r ](ab3)|πaB⟩
ó
, (98)

s(dim)
r r = 1, . . . ,170

dim
where , , are undetermined coefficients,
which are expected to be of order one. The sum over 
covers  all  six irreducible representations indicated in the
relation (Eq. (70)), and the sums over i and j are implicit.

The matrix  elements  of  Eq.  (98)  can  be  straightfor-
wardly obtained  following  the  lines  of  the  previous  sec-
tions. This enables one to obtain violations to isospin re-
lations (46)−(51) as 
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f 2k0
î
δAIB(p+π−→ p+π−)−δAIB(p+π0→ p+π0)+

1√
2
δAIB(p+π−→ n+π0)

ó
=
îî
−Ncw

(1)
1 −

1
Nc

w(1)
3 −

1
Nc

w(1)
4

ó
+
î3

4
w(8)

1 −w(8)
2 +w(8)

3 +
3

4Nc
w(8)

19 −
1
Nc

w(8)
20 +

1
Nc

w(8)
21 +

1
2Nc

w(8)
22 +

1
2Nc

w(8)
23 +

3
4Nc

w(8)
24

− 1
Nc

w(8)
25 +

3
4Nc

w(8)
26 −

1
Nc

w(8)
27 +

1
Nc

w(8)
28 −

1
Nc

w(8)
29 +

3
4Nc

w(8)
30 −

1
Nc

w(8)
31 +

1
Nc

w(8)
32

ó
+
î
− 1

Nc
w(27)

1 +
3

4Nc
w(27)

2 −
1
Nc

w(27)
3

+
1
Nc

w(27)
4

óó
k ·k′+

îî
−w(1)

2 −
1
Nc

w(1)
4

ó
+
î3

4
w(8)

4 −w(8)
5 +w(8)

6 +
1
2

w(8)
7 +

1
2

w(8)
8 +

3
4

w(8)
9 −w(8)

10 +
3

4Nc
w(8)

11 −
1
Nc

w(8)
12

+
1
Nc

w(8)
13 +

1
2Nc

w(8)
14 +

1
2Nc

w(8)
15 +

3
4Nc

w(8)
16 −

1
Nc

w(8)
17 −

1
Nc

w(8)
18 −

1
Nc

w(8)
33 +

3
4Nc

w(8)
34 +

1
Nc

w(8)
35 −

1
Nc

w(8)
36

ó
+
î 3

4Nc
w(10+10)

1 − 1
Nc

w(10+10)
2 +

1
Nc

w(10+10)
3

ó
+
î
− 1

Nc
w(27)

5 +
3

4Nc
w(27)

6 +
1
Nc

w(27)
7 −

1
Nc

w(27)
8 +

3
4Nc

w(27)
9

+
1
Nc

w(27)
10

óó
i(k×k′)3,+O

ï
1

N2
c

ò
(99)

 

f 2k0
î
δAIB(p+π+→ p+π+)−δAIB(p+π−→ p+π−)−

√
2δAIB(p+π−→ n+π0)

ó
=
îî

2Ncw
(1)
1 +

2
Nc

w(1)
3 +

2
Nc

w(1)
4

ó
+
î
−4w(8)

3 −
4
Nc

w(8)
21 −

1
Nc

w(8)
22 +

1
Nc

w(8)
23 +

2
Nc

w(8)
25 −

4
Nc

w(8)
28 +

2
Nc

w(8)
29 −

4
Nc

w(8)
32

ó
+
î 2

Nc
w(27)

1 −
4
Nc

w(27)
4

óó
k ·k′+

îî
2w(1)

2 +
2
Nc

w(1)
4

ó
+
î
−4w(8)

6 −w(8)
7 +w(8)

8 +2w(8)
10 −

4
Nc

w(8)
13 −

1
Nc

w(8)
14

+
1
Nc

w(8)
15 +

2
Nc

w(8)
17 +

2
Nc

w(8)
18 +

2
Nc

w(8)
33 +

4
Nc

w(8)
36

ó
+
î
− 4

Nc
w(10+10)

3

ó
+
î 2

Nc
w(27)

5 +
4
Nc

w(27)
8

óó
i(k×k′)3+O

ï
1

N2
c

ò
, (100)

 

f 2k0
î
δAIB(p+π+→ p+π+)+δAIB(p+π−→ p+π−)−2δAIB(p+π0→ p+π0)

ó
=
îî3

2
w(8)

1 −2w(8)
2 −2w(8)

3 +
3

2Nc
w(8)

19 −
2
Nc

w(8)
20 −

2
Nc

w(8)
21 +

2
Nc

w(8)
23 +

3
2Nc

w(8)
24 +

3
2Nc

w(8)
26 −

2
Nc

w(8)
27 −

2
Nc

w(8)
28 +

3
2Nc

w(8)
30

− 2
Nc

w(8)
31 −

2
Nc

w(8)
32

ó
+
î 3

2Nc
w(27)

2 −
2
Nc

w(27)
3 −

2
Nc

w(27)
4

óó
k ·k′+

îî3
2

w(8)
4 −2w(8)

5 −2w(8)
6 +2w(8)

8 +
3
2

w(8)
9 +

3
2Nc

w(8)
11

− 2
Nc

w(8)
12 −

2
Nc

w(8)
13 +

2
Nc

w(8)
15 +

3
2Nc

w(8)
16 +

3
2Nc

w(8)
34 +

2
Nc

w(8)
35 +

2
Nc

w(8)
36

ó
+
î 3

2Nc
w(10+10)

1 − 2
Nc

w(10+10)
2

− 2
Nc

w(10+10)
3

ó
+
î 3

2Nc
w(27)

6 +
2
Nc

w(27)
7 +

2
Nc

w(27)
8 +

3
2Nc

w(27)
9 +

2
Nc

w(27)
10

óó
i(k×k′)3+O

ï
1

N2
c

ò
, (101)

 

f 2k0
î
δAIB(n+π−→ n+π−)−δAIB(n+π0→ n+π0)− 1√

2
δAIB(n+π+→ p+π0)

ó
=
îî
−Ncw

(1)
1 −

1
Nc

w(1)
3 −

1
Nc

w(1)
4

ó
+
î
− 3

4
w(8)

1 +w(8)
2 −w(8)

3 −
3

4Nc
w(8)

19 +
1
Nc

w(8)
20 −

1
Nc
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f 2k0
î
δAIB(n+π+→ n+π+)−δAIB(n+π−→ n+π−)+

√
2δAIB(n+π+→ p+π0)
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f 2k0
î
δAIB(n+π+→ n+π+)+δAIB(n+π−→ n+π−)−2δAIB(n+π0n→ π0)

=
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(104)

w(dim)
mThe  effective  coefficients  can  be  written  in

terms of the original ones as 

w(1)
1 = −2s(1)

1 , (105)

 

w(1)
2 = s(1)

3 , (106)

 

w(1)
3 = −s(1)

17 −
3
2

s(1)
19 , (107)

 

w(1)
4 = −
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2
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51 , (108)
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1 = s(8)

5 , (109)

 

w(8)
2 =

1
4

s(8)
6 , (110)

 

w(8)
3 =

1
4

s(8)
7 , (111)

 

w(8)
4 =

5
6

s(8)
8 , (112)

 

w(8)
5 =

5
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s(8)
9 , (113)

 

w(8)
6 =

5
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s(8)
10 , (114)

 

w(8)
7 =

5
6

s(8)
11 , (115)

 

w(8)
8 = −

5
6

s(8)
12 , (116)

 

w(8)
9 =

5
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s(8)
13 , (117)
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14 − s(8)
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w(8)
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s(8)
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s(8)
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w(8)
13 =

1
8

s(8)
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w(8)
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1
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s(8)
24 , (122)
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15 = −

1
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25 , (123)
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w(8)
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6 =

2
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63 , (153)

 

w(27)
7 = − 1

30
s(27)
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Unfortunately, unlike flavor SB corrections, strong IB
corrections cannot be further simplified in terms of fewer
effective operator  coefficients.  The  reason  is  consider-
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{R(i j)(abc)}

1/Nc

Nc

1/Nc

Nc = 3

f 2 ∼ O(Nc)

ably simple. The operator basis  is constituted by
170 linearly  independent  operators  so  that  they  all  con-
tribute  to  the  expansion  (Eq.  (98)).  This  is  not  a
single rule to eliminate some of them. In Eqs. (99)−(104),
the explicit dependence on  that comes along the oper-
ators  involved  in  the  expansion  have  been  kept.
Those expressions are evaluated at , which is a use-
ful  artifact  to  identify  leading  and  subleading  terms  in
them.  Recall  that ,  and therefore,  the  unitarity
of the scattering amplitudes is not compromised.

Nc

Therefore,  the  usefulness  of  relations  (Eqs.  (99)−
(104)) can be better appreciated by retaining leading and
subleading terms in . Specifically, Eqs. (101) and (104)

10+10 1/Nc

δi jδabT 3 δi jδa3T b δi jδb3T a

iϵ i jmδabGm3

iϵ i jmδa3Gmb iϵ i jmδb3Gma iϵ i jm f a3e f begGmg

iϵ i jmdabed3egGmg

obtain  leading  corrections  from  the  8  representation,
whereas  and  27  representations  are  sup-
pressed. The relevant operators for the symmetric part are

, ,  and , whereas  for  the  antisym-
metric  part,  the  relevant  operators  are ,

, , ,  and
.

10+10 1/Nc

Equations (99), (100), (102), and (103) obtain import-
ant corrections from the singlet and octet representations,
whereas  and 27  representations  obtain -sup-
pressed factors.

In addition,
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δAIB(p+π0→ p+π0)−δAIB(n+π0→ n+π0)

]
=
îî1

2
w(8)

1 +2w(8)
2 +2w(8)

3 +
1

2Nc
w(8)

19 +
2
Nc

w(8)
20 +

2
Nc

w(8)
21 +

1
2Nc

w(8)
24 +

1
2Nc

w(8)
26 +

2
Nc

w(8)
27 +

2
Nc

w(8)
28 +

1
2Nc

w(8)
30 +

2
Nc

w(8)
31 +

2
Nc

w(8)
32

ó
+
î 1

2Nc
w(27)

2 +
2
Nc

w(27)
3 +

2
Nc

w(27)
4

óó
k ·k′+

îî1
2

w(8)
4 +2w(8)

5 +2w(8)
6 +

1
2

w(8)
9 +

1
2Nc

w(8)
11 +

2
Nc

w(8)
12 +

2
Nc

w(8)
13 +

1
2Nc

w(8)
16 +

1
2Nc

w(8)
34

− 2
Nc

w(8)
35 −

2
Nc

w(8)
36

ó
+
î 1

2Nc
w(10+10)

1 +
2
Nc

w(10+10)
2 +

2
Nc

w(10+10)
3

ó
+
î 1

2Nc
w(27)

6 −
2
Nc

w(27)
7 −

2
Nc

w(27)
8 +

1
2Nc

w(27)
9

− 2
Nc

w(27)
10

óó
i(k×k′)3+O

ï
1

N2
c

ò
.

(158)

10+10
O(1/N2

c )

1/Nc

In  this  case,  there  is  a  type  of  octet  dominance  because
the  representation  starts  contributing  at  order

 and the 27 representation is at least one factor of
 suppressed relative to the octet representation.

 

4.    Strong isospin breaking to the scattering amplitude
from Fig. 1(c)

Strong IB corrections emerging from Fig. 1(c) can be
cast into
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f 2k0[δAIB(p+π+→ p+π+)−δAIB(p+π−→ p+π−)−
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f 2k0[δAIB(p+π+→ p+π+)+δAIB(p+π−→ p+π−)−2δAIB(p+π0→ p+π0)]
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f 2k0[δAIB(n+π−→ n+π−)−δAIB(n+π0→ n+π0)− 1√
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f 2k0[δAIB(n+π+→ n+π+)+δAIB(n+π−→ n+π−)−2δAIB(n+π0→ n+π0)]

=
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1/Nc

Equations  (159)−(164)  cannot  be  reduced  further  in
terms of effective operator coefficients. In a manner sim-
ilar  to  that  in  the  previous  section,  Eqs.  (161)  and  (164)
are dominated  by  corrections  from  the  octet  representa-
tions, and numerically, they should be at least a factor of

 smaller  than  Eqs.  (159),  (160),  (162),  and  (163),
which are dominated by the singlet representation.

In addition, for the relation 
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=
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(165)

10+10
O(1/N2

c )

a kind of  octet  dominance is  found in the sense that  fla-
vor  and 27 representations start  contributing at  a
relative order , so they can be safely ignored. 

B.    Some remarks about a comparison with HBChPT
expressions

Nπ

Nc = 3

Scattering  amplitudes  for  the  system  obtained
here through the use of SU(3) flavor projection operators
are  (partially)  compared  with  HBChPT  theory  results  at
the  tree-level order.  At  this  point,  the  three  terms  re-
tained in Eq. (8) for  can be completely evaluated.
The success of SU(2) HBChPT to investigate the low-en-
ergy  processes  of  pions  and  nucleons  is  undeniable.
However, the  inclusion  of  particles  with  strangeness  re-
quires  the  use  of SU(3)  HBChPT.  For  example, s-wave
pseudoscalar meson octet-baryon scattering lengths to the

C
∆→ 0

O(q)
πN

∆→ 0

πΣ

πΞ KN

∆ −∆

third  chiral  order  in  that  framework  have  been  studied
with only baryon octet contributions [32] and both bary-
on octet and decuplet contributions [33]. The latter refer-
ence  decuplet  contributions  to  the  threshold T-matrices
are found to vanish in complete opposition to the present
analysis  where  non-vanishing decuplet  baryon  contribu-
tions proportional to  are obtained, even in the degener-
acy  limit .  In  a  more  recent  work  [34],  the T-
matrices of pseudoscalar meson octet-baryon scattering to
one-loop  order  are  computed  in  HBChPT.  For  elastic
meson-baryon  scattering,  the  leading  order  amp-
litudes  resulting  from  tree  diagrams  for  scattering
contributing at the first chiral order are given in Eq. (10)
and (11) of that reference, which can be compared to Eqs.
(44) and (56) as well as (45) and (57) of this work in the
limit  and by  excluding  decuplet  baryon  contribu-
tions. In addition to the kinematic factors relating the rest
system of  the  initial  baryon  and  the  center  of  mass  sys-
tem, which  can  be  linked  through  a  Lorentz  transforma-
tion, the Clebsch-Gordan structures coincide up to a glob-
al  minus  sign  that  might  be  traced  back  to  the  different
conventions used. Other scattering processes such as ,

,  and  discussed  in  Ref.  [34]  can  be  evaluated  in
the present  formalism.  A  recent  analysis  with  the  inclu-
sion  of  decuplet  effects  [35]  reveals  some  interesting
facts in the comparison with the present analysis. Except
for  some  kinematic  factors,  the  comparison  is  achieved
for  replaced by  in Eqs. (13)−(16) of that reference.

L(2,ct)

T (I)
πN πN

At  the  next-to-leading order,  the  explicit  chiral  sym-
metry breaking part of the meson-baryon effective chiral
Lagrangian  with  no  inclusion  of  decuplet  baryon
effects  is  presented  in  Eq.  (8)  of  Ref.  [34].  It  yields  the
amplitudes  in terms of 11 LECs. For the  system,
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C3 = −k0h1/8

they are given in Eqs. (64) and (65) of that reference. In
principle, these LECs should (partially) correspond to the
12  operator  coefficients  contained  in  Eqs.  (90)  and  (96)
as well as (91) and (97), respectively. Although relation-
ships among them should be linear, it is difficult to identi-
fy  them,  except  for  the  vertex  diagram  for  which

 for the fixed incident meson energy. A full
identification  requires  including  decuplet  baryons  in  the
framework of that reference and the computation of addi-
tional  amplitudes  in  the  framework  discussed  here.  The
latter will be attempted elsewhere. 

VI.  S-WAVE SCATTERING LENGTHS

NπThe  forward scattering amplitude for a nucleon at
rest can be readily obtained from Eqs. (45) and (44) at the
threshold.  Following  the  lines  of  Ref.  [13],  the s-wave
scattering lengths including the baryon mass splitting and
first-order SB are found to be 

a(1/2) =
1

4π
mπ
f 2

ï
1+

mπ
MN

ò−1 ï
(D+F)2− 4

9

ï
1+
∆

mπ
+
∆2

m2
π

ò
C2

+d(1)
1 +d(8)

1 +d(10+10)
1 +d(27)

1

ò
= a++2a−,

(166)

and 

a(3/2) =
1

4π
mπ
f 2

ï
1+

mπ
MN

ò−1 ï
−1

2
(D+F)2+

2
9

ï
1− 2∆

mπ
+
∆2

m2
π

ò
C2

+ d(1)
1 +d(8)

1 −2d(10+10)
1 −2d(27)

1 +
3
2

d(8)
2 +

3
2

d(27)
2

ò
= a+−a−,

(167)

O(∆3/m3
π)which are valid to order .

∆→ 0In the limit  and by removing SB effects, 

a(1/2)+2a(3/2) = 0, (168)

C2

∆

which  is  a  well-known  result  obtained  in  the  context  of
current  algebra [30, 31].  Equation (168) is  fulfilled even
in  the  presence  of  the  term,  which  accounts  for  the
contribution of decuplet  baryons.  Thus,  violations to Eq.
(168) arise not only from SB but also from a linear term
in .

C d(dim)
k

The usefulness of Eqs. (166) and (167) relies entirely
on the precise determination of the SU(3) invariants D, F,
and  and  the  six  parameters  involved  in  those
equations. For instance, these invariants can be extracted
from  baryon  semileptonic  decays.  The  latter  set  can  be

obtained  by  comparing  the  theoretical  expressions  with
the  available  experimental  data  [20]  via  a  least-squares
fit. A detailed analysis requires additional theoretical ex-
pressions for which data are available and would involve
processes including strangeness.

Isospin IB effects obtained here can also be incorpor-
ated into Eqs.  (166) and (167) in a straightforward man-
ner. 

VII.  CONCLUDING REMARKS

1/Nc

Bπ→ B′π

Nπ→ Nπ
∆π→ Nπ ∆π→ ∆π

B′ πa πb

Nπ→ Nπ

1/Nc

The material discussed in this work represents an en-
terprising program to understand the baryon-meson scat-
tering  processes  in  the  context  of  the  expansion.  It
presents new  ideas,  perspectives,  or  analytical  frame-
works that  contribute  to  a  more  comprehensive  under-
standing  of  the  subject  matter.  The  scattering  amplitude
for the process , including the decuplet-octet ba-
ryon  mass  splitting  and  flavor  symmetry  breaking,  has
been  computed,  specialized  to  the  process .
Evidently,  processes  such  as  and  or
those including strangeness can be evaluated because the
formalism is sufficiently general to cover the cases when
B and  are  any  baryon  states  and  and  are  any
pseudo  scalar  mesons  provided  that  the  Gell-
Mann–Nishijima scheme is fulfilled. The expressions for

 scattering amplitudes obtained here get  simple
forms  [Eqs.  (36)−(39)  and  Eqs.  (52)−(55)] once  all  in-
gredients are  put  together  regardless  of  the  original  ex-
pressions  such  as  Eq.  (19).  However,  the  inclusion  of
strong isospin breaking introduces a  rather  large number
of operator coefficients such that the series have minimal
utility,  unless  stringent  suppressions  in  are per-
formed to  achieve only  leading contributions.  Violations
to  strong  isospin  breaking  uncovered  by  relations
(99)−(104)  reveal  which SU(3)  flavor  representations
dominate over the others.

One important  result  extracted  from the  present  ana-
lysis  is  worth  mentioning:It  is  evident  that  the  spin-1/2
and spin-3/2 baryons are present from the outset because
they  together  form  an  irreducible  representation  of  the
spin-flavor symmetry.

1/Nc

As  mentioned  in  the  introductory  section,  previous
analyses about scattering amplitudes in the context of the

 expansion [9−11] focused their  goals on some spe-
cific  aspects  of  the  theory.  The  analysis  presented  here
with the extensive use of projection operators to classify
operator structures  contributes  to  the  subject  from a  dif-
ferent perspective; the approaches complement them.

C H

A  comparison  of  the  results  obtained  here  with  the
HBChPT  results  obtained  at  the  tree-level  order  can  be
made.  Rewriting  scattering  amplitudes  in  terms  of  the
SU(3) invariant baryon-meson couplings D, F, , and ,
Eqs.  (36)−(39)  enable  a  comparison  with  the  tree-level
values [in the SU(3) exact limit] from HBChPT by drop-
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∆ C2

1/Nc

ping  the  mass  difference  and  possibly  the  terms,
i.e., under the degeneracy limit and with the decuplet ba-
ryon degrees of freedom integrated out,  which is usually
the  common  procedure  advocated  in  literature.  A  full
comparison  will  require  the  computation  of  loops  in  the
combined formalism in  and chiral corrections. This
requires a  formidable  effort  that  will  be  attempted  else-
where. 

VIII.  SUPPLEMENTARY INFORMATION

This  paper  is  complemented  by  some  supplementary

material  where  explicit  reductions  of  baryon  operators
and  their  corresponding  matrix  elements  (as  tables)  are
presented.  The  pdf  file  can  be  obtained  from authors  by
request.
 

A.  Baryon operator basis used in baryon-meson
scattering

S (i j)(ab)
mThe operators  that constitute the basis used in

baryon-meson  scattering  at  the  lowest  order,  comprising
up to seven-body operators, read

 

S (i j)(ab)
1 = iδi j f abeT e, S (i j)(ab)

2 = iϵ i jrδabJr, S (i j)(ab)
3 = iϵ i jrdabeGre, S (i j)(ab)

4 = δab{Ji, J j},

S (i j)(ab)
5 = δi jδabJ2, S (i j)(ab)

6 = {Gia,G jb}, S (i j)(ab)
7 = {Gib,G ja}, S (i j)(ab)

8 = δi j{Gra,Grb},

S (i j)(ab)
9 = iϵ i jr{Gra,T b}, S (i j)(ab)

10 = iϵ i jr{Grb,T a}, S (i j)(ab)
11 = dabe{J j,Gie}, S (i j)(ab)

12 = i f abe{Ji,G je},

S (i j)(ab)
13 = i f abe{J j,Gie}, S (i j)(ab)

14 = δi jdabe{Jr,Gre}, S (i j)(ab)
15 = ϵ i jr f abeDre

2 , S (i j)(ab)
16 = iϵ i jrdabeDre

3 ,

S (i j)(ab)
17 = iϵ i jrdabeOre

3 , S (i j)(ab)
18 = iϵ i jr{Jr, {T a,T b}}, S (i j)(ab)

19 = iϵ i jm{Jm, {Gra,Grb}}, S (i j)(ab)
20 = i f abe{T e, {Ji, J j}},

S (i j)(ab)
21 = iδi j f abe{J2,T e}, S (i j)(ab)

22 = iϵ i jrδab{J2, Jr}, S (i j)(ab)
23 = iϵ imr{G ja, {Jm,Grb}},

S (i j)(ab)
24 = iϵ jmr{Gia, {Jm,Grb}}, S (i j)(ab)

25 = iϵ imr{G jb, {Jm,Gra}}, S (i j)(ab)
26 = iϵ jmr{Gib, {Jm,Gra}},

S (i j)(ab)
27 = iϵ i jm{Gma, {Jr,Grb}}, S (i j)(ab)

28 = iϵ i jm{Gmb, {Jr,Gra}}, S (i j)(ab)
29 = i f aegdbeh{T h, {Ji,G jg}},

S (i j)(ab)
30 = idaeg f beh{T g, {J j,Gih}}, S (i j)(ab)

31 = dabe[J2, {Ji,G je}], S (i j)(ab)
32 = dabe[J2, {J j,Gie}],

S (i j)(ab)
33 = i f abe[J2, {Ji,G je}], S (i j)(ab)

34 = i f abe[J2, {J j,Gie}], S (i j)(ab)
35 = iϵ i jr[J2, {Gra,T b}],

S (i j)(ab)
36 = iϵ i jr[J2, {Grb,T a}], S (i j)(ab)

37 = ϵ i jr f abeDre
4 , S (i j)(ab)

38 = i f abe{{Ji, J j}, {Jr,Gre}},

S (i j)(ab)
39 = iϵ i jm{Dmb

2 , {Jr,Gra}}, S (i j)(ab)
40 = iϵ i jm{Dma

2 , {Jr,Grb}}, S (i j)(ab)
41 = iϵ i jr{J2, {Gra,T b}},

S (i j)(ab)
42 = iϵ i jr{J2, {Grb,T a}}, S (i j)(ab)

43 = i f abe{J2, {Ji,G je}}, S (i j)(ab)
44 = i f abe{J2, {J j,Gie}},

S (i j)(ab)
45 = {J2, {Gia,G jb}}, S (i j)(ab)

46 = {J2, {Gib,G ja}}, S (i j)(ab)
47 = dabe{{Ji, J j}, {Jr,Gre}},

S (i j)(ab)
48 = δab{J2, {Ji, J j}}, S (i j)(ab)

49 = ϵ i jkϵrml{Jk, {Gra, {Jm,Glb}}}, S (i j)(ab)
50 = iϵ iml[{J j, {Jm,Gla}}, {Jr,Grb}],

S (i j)(ab)
51 = iϵ jml[{Ji, {Jm,Gla}}, {Jr,Grb}], S (i j)(ab)

52 = iϵ jml[{Ji, {Jm,Glb}}, {Jr,Gra}],

S (i j)(ab)
53 = iϵ iml[{J j, {Jm,Glb}}, {Jr,Gra}], S (i j)(ab)

54 = {Gia,O jb
3 }, S (i j)(ab)

55 = iϵ i jm[J2, {Gmb, {Jr,Gra}}],

S (i j)(ab)
56 = iϵ i jm{J2, [Gmb, {Jr,Gra}]}, S (i j)(ab)

57 = δi j{J2, {Gra,Grb}}, S (i j)(ab)
58 = δi jdabe{J2, {Jr,Gre}},

S (i j)(ab)
59 = δi jδab{J2, J2}, S (i j)(ab)

60 = {[J2,Gia], [J2,G jb]}, S (i j)(ab)
61 = iϵ jmr[J2, {Gib, {Jm,Gra}}],

S (i j)(ab)
62 = iϵ i jrdabeDre

5 , S (i j)(ab)
63 = ϵ i jr f abeOre

5 , S (i j)(ab)
64 = iϵ i jrdabeOre

5 ,

S (i j)(ab)
65 = {Oia

3 ,D
jb
2 }, S (i j)(ab)

66 = {Dia
2 ,O

jb
3 }, S (i j)(ab)

67 = {J2, {T a, {J j,Gib}}},

S (i j)(ab)
68 = {J2, {T b, {Ji,G ja}}}, S (i j)(ab)

69 = i f abe{J2, {T e, {Ji, J j}}}, S (i j)(ab)
70 = iδi j f abe{J2, {J2,T e}},

S (i j)(ab)
71 = iϵ i jrδab{J2, {J2, Jr}}, S (i j)(ab)

72 = iϵ i jm{J2, {Jm, {Gra,Grb}}}, S (i j)(ab)
73 = iϵ imr{J2, {G ja, {Jm,Grb}}},

S (i j)(ab)
74 = iϵ jmr{J2, {Gia, {Jm,Grb}}}, S (i j)(ab)

75 = iϵ imr{J2, {G jb, {Jm,Gra}}}, S (i j)(ab)
76 = iϵ jmr{J2, {Gib, {Jm,Gra}}},
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S (i j)(ab)
77 = iϵ i jm{J2, {Gma, {Jr,Grb}}}, S (i j)(ab)

78 = iϵ i jm{J2, {Gmb, {Jr,Gra}}},

S (i j)(ab)
79 = i f aegdbeh{J2, {T h, {Ji,G jg}}}, S (i j)(ab)

80 = idaeg f beh{J2, {T g, {J j,Gih}}},

S (i j)(ab)
81 = dabe{J2, [J2, {Ji,G je}]}, S (i j)(ab)

82 = dabe{J2, [J2, {J j,Gie}]},

S (i j)(ab)
83 = iϵ i jl{Jl, {{Jr,Gra}, {Jm,Gmb}}}, S (i j)(ab)

84 = {{Ji, J j}, {T a, {Jr,Grb}}},

S (i j)(ab)
85 = {{Ji, J j}, {T b, {Jr,Gra}}}, S (i j)(ab)

86 = iϵmlr{{Ji, J j}, {Gmb, {Jl,Gra}}},

S (i j)(ab)
87 = iϵ jlm{{Ji, {Jl,Gma}}, {Jr,Grb}}, S (i j)(ab)

88 = iϵ ilm{{J j, {Jl,Gma}}, {Jr,Grb}},

S (i j)(ab)
89 = iϵ jlm{{Ji, {Jl,Gmb}}, {Jr,Gra}}, S (i j)(ab)

90 = iϵ ilm{{J j, {Jl,Gmb}}, {Jr,Gra}},

S (i j)(ab)
91 = iϵ imr{G jb, {J2, {Jm,Gra}}}, S (i j)(ab)

92 = iϵ i jr{J2, [J2, {Gra,T b}]},

S (i j)(ab)
93 = iϵ i jr{J2, [J2, {Grb,T a}]}, S (i j)(ab)

94 = i f abe{J2, [J2, {Ji,G je}]},

S (i j)(ab)
95 = i f abe{J2, [J2, {J j,Gie}]}, S (i j)(ab)

96 = ϵ i jr f abeDre
6 ,

S (i j)(ab)
97 = i f abe{J2, {{Ji, J j}, {Jr,Gre}}}, S (i j)(ab)

98 = iϵ i jm{J2, {Dmb
2 , {Jr,Gra}}},

S (i j)(ab)
99 = iϵ i jm{J2, {Dma

2 , {Jr,Grb}}}, S (i j)(ab)
100 = iϵ i jr{J2, {J2, {Gra,T b}}},

S (i j)(ab)
101 = iϵ i jr{J2, {J2, {Grb,T a}}}, S (i j)(ab)

102 = i f abe{J2, {J2, {Ji,G je}}},

S (i j)(ab)
103 = i f abe{J2, {J2, {J j,Gie}}}, S (i j)(ab)

104 = {J2, {J2, {Gia,G jb}}},

S (i j)(ab)
105 = {J2, {J2, {Gib,G ja}}}, S (i j)(ab)

106 = dabe{J2, {{Ji, J j}, {Jr,Gre}}},

S (i j)(ab)
107 = δab{J2, {J2, {Ji, J j}}}, S (i j)(ab)

108 = iϵ jml{J2, [{Ji, {Jm,Gla}}, {Jr,Grb}]},

S (i j)(ab)
109 = iϵ jml{J2, [{Ji, {Jm,Glb}}, {Jr,Gra}]}, S (i j)(ab)

110 = iϵ iml{J2, [{J j, {Jm,Glb}}, {Jr,Gra}]},

S (i j)(ab)
111 = {J2, {Gia,O jb

3 }}, S (i j)(ab)
112 = iϵ i jm{J2, [J2, {Gmb, {Jr,Gra}}]},

S (i j)(ab)
113 = iϵ i jm{J2, {J2, [Gmb, {Jr,Gra}]}}, S (i j)(ab)

114 = δi j{J2, {J2, {Gra,Grb}}},

S (i j)(ab)
115 = δi jdabe{J2, {J2, {Jr,Gre}}}, S (i j)(ab)

116 = δi jδab{J2, {J2, J2}},

S (i j)(ab)
117 = {J2, {[J2,Gia], [J2,G jb]}}, S (i j)(ab)

118 = iϵ imr{J2, [J2, {G jb, {Jm,Gra}}]},

S (i j)(ab)
119 = iϵ jmr{J2, [J2, {Gib, {Jm,Gra}}]}, S (i j)(ab)

120 = iϵ i jrdabeDre
7 ,

S (i j)(ab)
121 = iϵ i jrdabeOre

7 , S (i j)(ab)
122 = i f abe{J2, {J2, {T e, {Ji, J j}}}},

S (i j)(ab)
123 = iδi j f abe{J2, {J2, {J2,T e}}}, S (i j)(ab)

124 = iϵ i jrδab{J2, {J2, {J2, Jr}}},

S (i j)(ab)
125 = iϵ imr{J2, {J2, {G ja, {Jm,Grb}}}}, S (i j)(ab)

126 = iϵ jmr{J2, {J2, {Gia, {Jm,Grb}}}},
 

S (i j)(ab)
127 = iϵ imr{J2, {J2, {G jb, {Jm,Gra}}}}, S (i j)(ab)

128 = iϵ jmr{J2, {J2, {Gib, {Jm,Gra}}}},

S (i j)(ab)
129 = iϵ i jm{J2, {J2, {Gma, {Jr,Grb}}}}, S (i j)(ab)

130 = iϵ i jm{J2, {J2, {Gmb, {Jr,Gra}}}},

S (i j)(ab)
131 = i f aegdbeh{J2, {J2, {T h, {Ji,G jg}}}}, S (i j)(ab)

132 = idaeg f beh{J2, {J2, {T g, {J j,Gih}}}},

S (i j)(ab)
133 = dabe{J2, {J2, [J2, {Ji,G je}]}}, S (i j)(ab)

134 = dabe{J2, {J2, [J2, {J j,Gie}]}},

S (i j)(ab)
135 = iϵ i jl{J2, {Jl, {{Jr,Gra}, {Jm,Gmb}}}}, S (i j)(ab)

136 = iϵmlr{J2, {{Ji, J j}, {Gmb, {Jl,Gra}}}},

S (i j)(ab)
137 = iϵ jlm{J2, {{Ji, {Jl,Gma}}, {Jr,Grb}}}, S (i j)(ab)

138 = iϵ jlm{J2, {{Ji, {Jl,Gmb}}, {Jr,Gra}}},

S (i j)(ab)
139 = iϵ imr{J2, {G jb, {J2, {Jm,Gra}}}}.

c(s)
m c(a)

mFor completeness, the operator coefficients  and  that accompany these operators are listed in the Online Re-
source for this paper.
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