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Robust occurrence of AI =2 bifurcation in scissors rotational bands”
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Abstract: Based on the extended projected shell model — a microscopic nuclear many-body theory — our recently
published article [Phys. Rev. Lett. 129, 042502 (2022)] found an unexpected phenomenon (Al = 2 bifurcation) in ro-
tational bands associated with scissors vibrations in 1°°Gd. In the present work, we extended the study by systemat-

ically changing the model parameters (deformation and strength of the monopole-pairing force) for the %°Gd calcu-

lation. We also calculated additional isotopes and isotones with respect to 17°Gd. In all calculations, we found a sim-
ilar occurrence of the AI = 2 bifurcation in the results. Thus, we confirmed that the bifurcation behavior of the scis-

sors rotational bands originates from the self-organizing effects of deformed proton and neutron bodies during the

scissors motion, independently of the model parameters.
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I. INTRODUCTION

The geometric interpretation of scissors vibrational
states was originally introduced through the two-rotor
model [1], which describes the coupling between inde-
pendent neutron and proton rotors mediated by a residual
interaction. References [2—4] extended the framework of
the original Projected Shell Model (PSM) [5, 6] to
provide a microscopic description of the relative motion
between the intrinsic states of neutrons and protons.
Rather than employing a single BCS vacuum as the
product state, angular-momentum projection was per-
formed on separate neutron and proton BCS vacua. Al-
though the use of two separately projected BCS vacua
might appear to treat neutrons and protons as independ-
ent systems, the assumption of equal deformation in the
deformed basis inherently reflects strong correlations
between the two subsystems. To further account for neut-
ron-proton interactions, the residual quadrupole-quadru-
pole interaction of the neutron-proton type is explicitly
diagonalized within the basis constructed from the angu-
lar momentum-projected neutron and proton states (see
discussions in Section II). This approach ensures a more
comprehensive treatment of the collective dynamics and
correlations between neutrons and protons. The calcula-
tions presented in Refs. [2, 3] successfully reproduce the
conventional ground-state rotational band, which corres-
ponds to the coherently coupled BCS condensate of neut-
rons and protons. Moreover, these calculations predict the
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emergence of novel states built upon a more intricate va-
cuum, incorporating fluctuations in the relative orienta-
tion of the neutron and proton intrinsic fields. This high-
lights the ability of the extended framework to capture
richer collective dynamics beyond the traditional picture.
In Ref. [4], we predicted that rotational bands based on
nuclear scissors vibrations exhibit systematic splitting
between neighboring spin states (Al =2 bifurcation) in
which the energy levels of the scissors band in '*°Gd os-
cillate between states with even and odd spins.

The present study systematically varies the deforma-
tion parameters and monopole-pairing force parameters
in the theoretical model to perform an in-depth investiga-
tion of the influence of these critical parameters on the bi-
furcation behavior of the scissors rotational band. The
results demonstrate that the occurrence of the A7 =2 bi-
furcation phenomenon in the scissors rotational band is
not restricted to certain nuclei but is a phenomenon that
exists widely, insensitive to parameter changes. This
work provides additional theoretical support for under-
standing the intrinsic physical mechanisms underlying the
scissors mode.

II. METHOD

The original PSM [5] calculation begins with the de-
formed Nilsson single-particle basis, with pairing correla-
tions incorporated into the basis by a BCS calculation for
the Nilsson states. To create deformed Nilsson single-
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particle states, the standard Nilsson model [7] is adopted
with both the spin-orbit 1-s term and 1> term in the poten-
tial. The quasiparticle (qp) vacuum state |0) of an axially
deformed nucleus is taken to be a product of the Nilsson-
BCS qp vacua |0,) and |0,), namely

10> =10,)10x) -

The ground-state rotational band with angular mo-
mentum / is obtained by angular momentum projection
onto |0):

i1y = N'P'|0),

where N is the normalization and P’ is the (one-dimen-
sional) angular momentum projection operator [8].

The Hamiltonian employed in the PSM consists of the
usual separable forces

H:HO—EXE QWQ“—GMPTP—GQE PP (1)
M M

where H° is the spherical one-body term including the
spin-orbit force, and the remainder is the two-body quad-
rupole+pairing interaction, which contains three parts: the
quadrupole-quadrupole (QQ) force and monopole and
quadrupole pairing forces. The strength of the QQ force y
is determined in a self-consistent manner such that it is
related to the deformation of the basis [5]. The monopole-
pairing strength is taken to be G, = [20.12F13.13(N - Z)/
A]/A, with "=" for neutrons and "+" for protons, which is
determined such that it reproduces the known odd-even
effect. Finally, it is assumed that the strength of the quad-
rupole pairing Gy, is proportional to G, with the propor-
tionality constant being fixed as 0.20 in this paper. The
calculation is conducted in a model space that contains
single-particle states from three major harmonic-oscilla-
tion shells (N = 4,5 and 6 for neutrons and N = 3,4 and 5
for protons).

In the second term of the Hamiltonian (1), the sum for
the QQ interaction includes three parts: 070, 010, and
0! Q.. Equation (1) can be rewritten in the isospin form-
alism as A = H,+ H, + H,,, where H, (7 = v,7) is the like-
particle quadrupole+pairing Hamiltonian with inclusion
of the quadrupole pairing:

A= B~ Sy Y OV Q=G PP ~Gy Y PIPL (@)
4 U

and H,, is the n-p QQ residual interaction

I:Iwr:_/\/wrZQiHQﬁ' (3)
u

Note that Egs. (2) and (3) are rewritten based on Eq.
(1) with no extra terms or new parameters introduced.
The interaction strengths y., (7 =v or x) are related self-
consistently to the quadrupole deformation &, by [5]

%szmw»z
" 1w Qo) + Qo)

X 4)

Following Ref. [5], the strength y,, of the neutron-
proton quadrupole—quadrupole residual interaction is cal-
culated to be x,r = (ryxae)'/?, which determines the excit-
ation energy of the 1* scissors state. Similar parameteriz-
ations were used in earlier works [9, 10].

To describe the microscopic neutron (proton) rotor,
we first project out the neutron (proton) states |,) (|7,))
with angular momentum [, (I;) from the vacuum-state
|0, (10.)). The projected states |I,) and |I,) are then
coupled to form the basis states |(I, ® I,)I) for total angu-
lar momentum /. These basis states are used to construct
the matrix of the total Hamiltonian of Egs. (2) and (3)

(LS IVIHII,RINI) = [(LIHNY + L\ HALY) 61,1,61,1;

—Xo{(L, ® IO O (L. @ I
(%)

The term (I|H,|I,) ({I|H,|I)) is the energy of the
state |1,) (|I,)) projected from the intrinsic state [0,) (|0,)),
with the neutron (proton) part of Hamiltonian A, (H,)
given by Eq. (5). The last term in Eq. (5) can be written
explicitly as [11]

(L@ IO QNI ® INI) = WL I 1) (L 11 Oy 11 1))

L Qa1 1)/ /L + DRI+ 1),
(6)

where W is the re-coupling coefficient.

The Hamiltonian matrix of Eq. (5) is diagonalized and
the resulting PSM eigenstates |, I) are expressed as a lin-
ear combination of the basis states |(I, ® I,)I):

o,y = > L DI, ® LD, (7)

LI,

where a labels different eigenstates with the same angu-
lar momentum.

III. RESULTS AND DISCUSSION

In the present work, we study the dependence of the
scissors vibration band and its Al =2 oscillation charac-
teristics by varying the model parameters, namely, the
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quadrupole deformation &, and monopole-pairing interac-
tion strength G (namely, G7, in Eq. (2)). We would like to
confirm whether the results in Ref. [4] depend on a spe-
cific choice of model parameters or the predicted bifurca-
tion behavior of the scissors rotational bands is truly an
emergent phenomenon of a quantum many-body system,
independently of model parameters.

Figure 1 shows a comparison between the calculated
and experimental energy spectra of the ground-state band
and the 17, scissors band in '"°Gd. In this calculation,
quadrupole deformation is set to &, =0.275, and the
strength of monopole-pairing is G}, =0.1139 and
G7%, =0.1441 MeV for neutrons and protons, respectively.
From Fig. 1, it can be observed that, overall, the calcu-
lated results show excellent agreement with the experi-
mental data. The theoretical values for the scissors band
are slightly lower in energy than the experimental data.
However, the important feature, that the 1* and 2* of the
scissors rotational band are nearly degenerate [12], is re-
produced correctly.

Figure 2 shows the variations of the scissors band-
head energy calculated with changing parameters. Panel
(a) presents the evolution of the scissors band-head en-
ergy with the quadrupole deformation &,. It can be seen
that within the range of &, =0.14-0.32, the calculated
band-head energies change slowly, maintaining values
close to 3 MeV, indicating that deformation variation in
this range has a minimal impact on the band-head energy.
However, when &, falls below 0.14, the band-head en-
ergy shows a more rapid increase as the deformation de-
creases. Meanwhile, when &, exceeds 0.32, the band-
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Fig. 1. Comparison of the calculated spectrum of the ground
band and 17,-band in %°Gd with available experimental data.
Data are taken from Refs. [12, 13].

head energy shows a gradual upward trend with increas-
ing deformation. These results suggest that in the large
range of &, = 0.14—0.32, the scissors mode band-head en-
ergy, 1., remains stable around 3 MeV for this rare-earth
nucleus. This is consistent with the conclusion from the
systematic experimental observations [14]. Significant
deviations from 3 MeV occur only when the deformation
parameter is set unrealistically to be very small.

In contrast, the monopole-pairing force has a relat-
ively small effect on the scissors mode band-head energy,
as demonstrated in Fig. 2(b). Calculations with different
monopole-pairing strength G by applying a scaling factor,
ranging from 0.9 to 1.1, to the strengths used in the res-
ults in Fig. 1 reveal a linear correlation between the scis-
sors band-head energy and monopole-pairing strength: as
G increases, the calculated 1}, energy increases gradually.
The change is only moderate, with band-head energy
variations ranging from 2.56 to 3.28 MeV, again around 3
MeV.

Figure 3 illustrates the Al =2 bifurcation behavior of
the scissors rotational band based on the "°Gd example,
represented byE(I)—E(I-1) plots as functions of (a)
quadrupole deformation & and (b) monopole-pairing
strength G. From Fig. 3, it can be observed that the oscil-
lation characteristics exhibit the following pattern: As &,
decreases, the oscillation amplitude gradually increases,
and the change is more pronounced in the small deforma-
tion region. When &, exceeds 0.24, the oscillation amp-
litude changes less significantly and remains relatively
stable. Notably, the oscillation amplitude of the odd-spin
state consistently changes more than that of the even-spin
state. In comparison, the effect of the pairing force on the
oscillation (Panel (b)) is smaller.
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Fig. 2. Band-head energies of the scissors band, calculated

with variation in input deformation parameter &, (a) and
monopole-pairing strength G (b). The horizontal line refers to
the experimental value of the 1}, energy [13].

084108-3



Cui-Juan Lv

Chin. Phys. C 49, 084108 (2025)

1‘0 0~4 T T T T
—=—G*0.90 ()
0.8 —A— G*0.95
——G*1.00 °
—_
> 0.6
5
=
~ 04
=
D
[
0.2
ol
=
‘La’ 0.0
-0.2
_0 4 1 1 1 1 0.0 1 1 1 1
2 4 6 8 2 4 6 8
Spin (h) Spin (h)
Fig. 3. (color online) Staggering behavior of the scissors ro-

tational band shown by E(I)-E(I—-1) as a function of spin /,
calculated with changing parameters in the °°Gd calculation.
(a) Change in deformation parameters e;. (b) Change with
scaled monopole-pairing strengths G.

Because electromagnetic transitions play a signific-
ant role in understanding the scissors mode, we further
investigate the influence of the deformation parameters
and monopole-pairing force parameters on the -electro-
magnetic transition values. Figure 4 illustrates the
B(M1,13, — 0y) values calculated with variation in input
deformation parameter &, and monopole-pairing strength
G. As the deformation parameter increases, the B(M1)
values show a significant upward trend; meanwhile, with
increasing strength of the monopole-pairing force, the
B(M1) values exhibit a slight downward trend. It is clear
that between these two factors, the influence of the de-
formation parameter on B(M1) values is substantially
greater than that of the monopole-pairing force. The res-
ult that the B(M1,1, — 0y) values due to scissors vibra-
tion decrease quickly with decreasing deformation, while
all other calculation conditions remain equal, is consist-
ent with the recent conclusion of Chen ef al. [15].

Based on the current calculation, we conclude that de-
formation has a large impact on the band-head energy,
oscillatory characteristics of the scissors rotational band,
and B(M1,1;, — 0;) values, while the effect from the
pairing force is smaller. In particular, when the deforma-
tion is small, both the band-head energy and oscillatory
characteristics of the scissors mode exhibit substantial
changes. This indicates that deformation is the primary
factor that influences the behavior of the scissors mode,
whereas the influence of pairing is comparatively second-
ary.

It is important to note that regardless of how the de-
formation and pairing vary, the oscillatory characteristics
exhibited by the rotational band of the scissors mode per-
sist. Notably, although the parameters have large vari-
ations from the original ones (e.g., the G parameter re-
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Fig. 4. B(M1,1}, — 0g) values calculated with variation in

input deformation parameter e, (a) and monopole-pairing
strength G (b). The horizontal line refers to the calculated
value of P°Gd[4].

duces by a factor of 0.95 or smaller, or &, reaches a high-
er value of 0.3), the energy oscillation effect, although
with reduced amplitude, the basic characteristics remain
preserved. This indicates a true physical effect, rather
than a coincidence in the parameterization. As long as
there is an appropriate restoring force between the two
blades of the scissors (i.e., neutron and proton rotors), bi-
furcation phenomena will naturally occur. This further
supports the hypothesis that this novel mode of collective
nuclear motion may originate from some geometric ef-
fect, a direction that warrants further investigation. The
main purpose of the present work is to show the robust
existence of the scissors band oscillations against model
parameter changes. In-depth theoretical research is still
required and is of great importance for a comprehensive
understanding of the quantum dynamical behavior of the
scissors mode.

Of course, energy oscillation can also be seen in nor-
mal rotational bands. However, the scissors motion shows
a completely different picture and therefore a different
physical emphasis as the motion of normal rotational
bands. The scissors motion emphasizes a relative motion
between neutrons and protons in the rotating frame,
whereas in normal rotation, neutrons and protons are
stuck together as a unity. The important observation ef-
fect to distinguish the odd-even staggering in the scissors
motion versus the normal rotation is that for usual odd-
even energy staggerings of normal rotational bands, the
staggering phase varies with orbits that the valence
particles occupy. In contrast, the staggering phase of the
scissors rotational bands is universally fixed (with even
spins always favored), as shown in the present article.

Figure 5 further illustrates the effect for systems with
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Fig. 5. (color online) Staggering behavior in scissors rota-

tional bands. Solid lines denote the Gd (Z = 64) isotopes (a)
and dashed lines denote the N = 92 isotones (b).

different neutron and proton numbers. We employ the
same parameters as '*°Gd for the calculation, with only
the neutron or proton number altered. In this way, we
compare the results for different proton and neutron sys-
tems, not realistic isotopes. As the figure shows, the amp-
litude of the scissors mode oscillation remains slightly re-
duced as the neutron number varies. In contrast, the amp-
litude of the scissors mode oscillation increases with the
addition of protons. This behavior reflects the sensitivity
of the scissors mode to the relative sizes of the proton and
neutron systems, a sensitivity that varies oppositely in
systems with fixed neutron and proton configurations.
We expect that, with all other calculation conditions
equal, the strongest oscillations would occur in nuclei
with similar sizes of protons and neutrons, i.e., N = Z sys-
tems. This observation is based on current computational
results. A more systematic investigation is required to

fully understand the influence of neutron and proton
numbers on the scissors mode and to provide a compre-
hensive analysis of their respective roles.

IV. SUMMARY AND FUTURE PROSPECTS

Through a systematic analysis of the scissors-mode
rotational band in the nucleus of ’°Gd, as well as in some
of its isotopes and isotones, we investigated the effects of
quadrupole deformation and the strength of the mono-
pole-pairing on its band-head energy and oscillatory char-
acteristics. This study revealed that when the quadrupole
deformation is relatively small, the band-head energy of
the scissors rotational band increases significantly. Con-
versely, when the quadrupole deformation is larger, the
band-head energy tends to stabilize, with only minor vari-
ations as the deformation changes. Therefore, for nuclei
with large and stable deformations, the band-head energy
of the scissors mode band typically remains within a cer-
tain energy range. Additionally, there is a clear depend-
ence between the quadrupole deformation and oscillation
amplitude of the scissors mode band: the smaller the de-
formation, the larger the oscillation amplitude. Notably,
regardless of changes in deformation, the oscillatory
characteristics of the scissors mode band persist, with
only differences in oscillation amplitude. In comparison,
the influence of the monopole-pairing strength on the
band-head energy and oscillatory characteristics of the
scissors mode band is relatively minor and can be con-
sidered a secondary factor compared to the effects of de-
formation.
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