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Abstract: In this study, we present several improvements of the non-relativistic Friedrichs-Lee model with mul-

tiple discrete and continuous states while retaining its solvability. Our findings establish a solid theoretical basis for

the exploration of resonance phenomena in scenarios involving multiple interfering states across various channels.

The scattering amplitudes associated with the continuum states naturally adhere to coupled-channel unitarity, render-

ing this framework particularly valuable for investigating hadronic resonant states appearing in multiple coupled

channels. Moreover, this generalized framework exhibits a wide-range applicability, enabling investigations into res-

onance phenomena across diverse physical domains, including hadron physics, nuclear physics, optics, cold atom

physics, etc.
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I. INTRODUCTION

Unstable states are ubiquitous phenomena in contem-
porary physics, manifesting across various disciplines
such as molecular physics, nuclear physics, and particle
physics. In hadronic physics, the prevalence of unstable
resonances is particularly notable within the context of
strong interactions, where new resonant states are fre-
quently encountered and documented. These resonances
assume significance in unraveling the fundamental char-
acteristics of hadrons and their interactions, perpetuating
their investigation as a vibrant research area within the
field of particle physics.

To explore the characteristics of unstable states across
diverse branches of physics, several models sharing a
similar conceptual framework have independently
emerged. Among these models, the Friedrichs model is
prominent as a simple non-relativistic Hamiltonian that
couples a bare discrete state to a bare continuous state [1].
Within this model, the solutions for unstable generalized
eigenstates can be rigorously obtained and expressed in
terms of the bare states. In the quantum field theory, the
Lee model was developed to investigate the properties of
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field renormalization [2]. This model considers two nuc-
leon states, denoted as NV and V, which can be converted
to each other by absorbing or emitting a bosonic 6
particle through processes V = N +6. Analogous models
can be found in various domains, such as the Jaynes-
Cummings model in quantum optics [3] and the Ander-
son model in condensed matter physics [4]. In this article,
we collectively refer to these models as the Friedrichs-
Lee (FL) model, highlighting their common conceptual
foundation. The generalized eigenstates of the full inter-
acting Hamiltonian within the FL model can be explicitly
determined in terms of the original discrete state and the
continuum states.

The original FL model, which involves only one dis-
crete and one continuous state, is often considered as a
toy model owing to its simplicity. It is often employed to
comprehend the properties of bound, virtual, and reson-
ant states that appear in the scattering processes. When
the bare discrete state is above the continuum threshold,
its pole position moves to the second sheet and becomes a
pair of resonance poles. If the bare discrete state is below
the threshold, an accompanied virtual state pole would
appear on the second sheet when the interaction is turned
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on. In addition to these states generated from the bare dis-
crete states, there could also be dynamically generated
states from the singularities of the interaction vertices [5].
The mathematical background of describing the unstable
states is the Rigged Hilbert Space (RHS) quantum mech-
anics [6—8], rather than the conventional Hilbert space. In
the RHS quantum mechanics, Hamiltonian H, as an Her-
mitian operator, could have generalized complex eigen-
values and the related eigenstates corresponding to the
pole of the S-matrix that lies on the unphysical sheet of
the analytically continued energy plane, commonly re-
ferred to as the Gamow states. The Friedrichs model was
also extended to include more continuous or discrete
states and with a more realistic interaction vertex func-
tion. Thus, it has been extensively applied in a wide range
of realistic scenarios, particularly to study hadronic scat-
tering processes [9—14]. Furthermore, coupled-channel
models sharing similar characteristics have demonstrated
success in describing various resonance phenomena in
different physical systems [15—25]. The widespread ap-
plicability and efficacy of these models in describing res-
onance phenomena render them as effective tools in
studying the properties of unstable states in different
physical contexts.

In hadron physics, the usual effective field theory cal-
culation of the scattering amplitude encounter challenges
pertaining to unitarity and analyticity. The perturbative S-
matrix generally fails to generate bound states or reson-
ance poles on the analytically continued Riemann sur-
face of the energy plane. Various unitarization methods
are used to address this, such as the K-matrix method.
The typical K-matrix parameterization of the S-matrix

such as, § = lacks a dynamical origin and en-

1+iK’
forces unitarity by hand. However, this parametrization
does not guarantee the absence of unphysical spurious
poles, including those located in the complex energy
plane of the first Riemann sheet, which violates causality.
In contrast, the FL model achieves unitarity as a con-
sequence of its dynamics, and the Hermitian property of
the Hamiltonian ensures the absence of spurious poles in
the first Riemann sheet. These are the immediate advant-
ages of these types of models over the K-matrix paramet-
erization.

While notable achievements have been made in the
application of such models, certain aspects still require
further improvement. From a quantum field theory per-
spective, the previous model only considers the contribu-
tion of intermediate s-channel discrete states to the amp-
litude. However, other types of interactions are not in-
cluded. The first one results from the crossed channels in
the two-to-two scattering amplitude, where the intermedi-
ate particle can also appear as the #- or u-channel propag-
ators. The second one involves the contact interactions,

such as the four-point vertex. When a partial wave pro-
jection is performed, both of these interactions can be
represented by continuum-continuum interactions. These
interactions introduce a mild background to the final ex-
perimental observation, potentially interfering with the s-
channel resonances and modifying the lineshape. It is cru-
cial to include these background contributions in the ana-
lysis of the experimental data while preserving analyti-
city and unitarity. The commonly used Breit-Wigner
parametrization to parameterize the ¢- or u-channel reson-
ance and a polynomial to parameterize the background
would violate the unitarity. A naive K-matrix unitariza-
tion may introduce unexpected spurious poles in the S-
matrix. Thus, incorporating the continuum-continuum in-
teractions into the FL-like models could overcome these
problems. However, a general continuum-continuum in-
teraction renders the model no longer solvable. In Refs.
[10, 26], a particular form of separable interaction in-
volving the continuum states is introduced, where the in-
teraction vertex function between the discrete states and
the continuum also appears as the factors of the separ-
able interaction between two continuum states. The
Hamiltonian is

D N 00
H= ZI:M,-|i)(iI+ZI: / dwwlw; iY(w;
C 0 )
+> vi( / dw filw)lws i) / dwf (w)w; jl)
i,j=1 j

D C o
0 ([ dof@xe)
j=1 i=1 ai
+u,»,.(/}wdwﬁ(w)|w;i>)<j|}, (1)

where form factor fi(w) is associated with the i-th con-
tinuum state |w;i), both for its interaction with different
discrete states and interaction with other continuum
states. Two aspects of this model could be improved.
First, the interaction between discrete states |j) and the
continuum could be extended to general function f;;(w)
for a more realistic description of the strong interaction in
the real world. Using the quark pair creation (QPC) mod-
el as an example, the interaction between a meson and
their decay products is expressed as a complicated integ-
ration between the wave function for the three states and
the pair production vertex [12, 27]. Thus, the form of the
interaction function depends both on the discrete state
and the continuum. Second, the interaction between the
continuum states need not be factorized using the same
factors as the interaction between the discrete state and
the continuum. In this paper, we demonstrate that after
factorizing the continuum-continuum interaction inde-
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pendent of the discrete-continuum interaction, the model
remains exactly solvable. In principle, the extra con-
tinuum-continuum interaction should be the residue inter-
action after subtracting the s-channel intermediate dis-
crete state contribution, which could have no relation
with the discrete-continuum interaction. Whether this in-
teraction can be expressed as a separable potential re-
mains an open question. Some physical applications of
the separable potentials in discussing real world prob-
lems already exist, for example, describing the interac-
tion between the open-flavor and hidden-flavor channels
in momentum space [28]. Our formalism differs from this
implementation by two key advances. First, we paramet-
erize all continuum-continuum couplings via separable
potentials without distinction between open-flavor and
hidden-flavor channels. This enables a more general de-
scription of coupled-channel systems. Second, through
the projection of potentials onto angular momentum ei-
genstates through spherical harmonic expansion, the
three-dimensional momentum integration reduces to a
one-dimensional radial integral. This systematically elim-
inates angular variables, significantly simplifying both
numerical implementation and analytical discussion of
momentum dynamics. Moreover, generally, a square-in-
tegrable interaction potential between continuum states
could be expanded using a series of general separable
basis. We can also expand both the discrete-continuum
interaction vertex and continuum-continuum interaction
vertices using the same function basis. Thus, the study of
such separable potentials may have broader physical ap-
plications. In this paper, our focus is on these two types
of improvements: the incorporation of a more general dis-
crete-continuum interaction and various separable con-
tinuum-continuum interactions among multiple bare dis-
crete and continuum states in the FL model. By rigor-
ously solving the eigenstates for the Hamiltonian, we ob-
tain the "in" and "out" states, the scattering S-matrix, the
discrete state solution, and other mathematical physics
properties. Our aim is to establish a solid foundation for
the further phenomenological applications of the FL mod-
el by including these additional physical features.

We organize the remainder of the paper as follows. In
Sec. 11, the solution of the FL. model with more general
interactions between discrete and continuum states is de-
rived. Sec. III discusses a case with extra separable con-
tinuum-continuum interactions. Sec. IV studies a case
when the interaction potential between continuum states
can be approximated by a sum of separable potentials and
considers cases when both the continuum-continuum po-
tential and continuum-discrete potentials are approxim-
ated by a truncated series. In Sec. V, as an application, we
consider some simple examples and discuss the behavior
of the discrete states after turning on various interactions.
Sec. VI provides the conclusion.

II. EXTENDED FRIEDRICHS-LEE MODEL WITH
MULTIPLE DISCRETE STATES AND
CONTINUUM STATES

First, we consider a system with D types of discrete
states and C types of continuum states, where C and D
denote the numbers of the continuum and discrete states,
respectively. If no interaction exists, the mass of the j-th
discrete state |j) is M;, whereas the energy spectrum of
the n-th continuum state ranges as [a,,o0) with threshold
energy a,. The interaction between the j-th discrete and
n-th continuum states can be generally represented by
coupling function f;,(w). The full Hamiltonian can be ex-
pressed as

H=H,+H, 2)

where free Hamiltonian H, can be expressed explicitly
as

D C oo
Hy = Milixil+» / dwwlw;n)w:nl, 3)
i=1 n=1 *dn

and interaction part H; is

m=3% ([ dws@xwn)

j=1 n=1 an

o / dwfi@orm )] (4)

n

The free eigenstates are orthogonal to each other and the
normalization conditions satisfy (i|j) = ¢;;, (ilw;n) =0 and
{win|lw';n') = §(w—w')b,,y . For simplicity, we first as-
sume that no degenerate threshold and degenerate dis-
crete states exist. If degenerate states with the same
threshold and same interactions with the other states ex-
ist, the corresponding solutions will also be degenerate
with the same expression after the interactions are turned
on, and we will consider them as one state with degener-
ate degrees of freedom, similar to different magnetic
quantum numbers in the absence of a magnetic field. If
the states with degenerate threshold partake in different
interactions, the following discussion will not be modi-
fied significantly. We will return to this case later.

The general solution for energy eigenvalue problem
H|Y(E)) = E|¥(E)) can be represented as a linear combin-
ation of the discrete and continuum states:

D C
W(E) = aiB)liy+Y / dwy,(E, w)w;n),  (5)
i=1 n=1 v dn

where the «;(FE) and y,(E,w) functions are defined as the
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coefficient functions of the discrete and continuum states,
respectively. By substituting this ansatz into the eigen-
value equation and carefully examining the coefficients
preceding the discrete and continuum states, we can de-
rive two distinct sets of equations:

C o
(M;-E)a;(E)+ / dwf; (@Wn(E,w) =0

forj=1,...,D (6)

D
> () fin(w) + (= EW,(E,w) =0

j=1

for n=1,...C, and w > a,. @)

An important observation to make is that the formula ex-
hibits a nontrivial complexity, which does not appear in
the single-channel scenario. Specifically, for a given en-
ergy range a; < w < ayg, only / equations are present in
Eq. (7).

Consequently, the eigenvalue problem yields both
continuum and discrete solutions. These solutions corres-
pond to different regimes of the spectrum, which will be
addressed carefully in the following.

1. Continuum state solutions

When energy E is above the highest threshold, that is
E > ac, there will be C continuum states when the inter-
actions are turned on; therefore, the m-th continuum solu-
tion will be

D C
Wu(E)) =Y am(ENid+Y / dwi(E, w)|w;n),
i=1 n=1 Y dn

m=12,...,C. (8

However, when energy E is lower than the highest
threshold, e.g., E € [a;,a1,1), | < C, there will be [ degener-
ate continuum eigenstates, m=1,2...,/, and the other
states are not well-defined below their thresholds and are
set to 0. To remove the ambiguity of the degenerate
states, we require that when the interaction is turned off,
i.e., fin(w)— 0, [¥,) tends to free continuum state |E;m).
We expect that, when eigenvalue F €[a;,a,], we can
solve a;; and ¢, in |¥;(E)) and then analytically extend
these parameters to E € [ay,a;] to solve |[V,(E)), etc.
Thus, the eigenfunctions can be uniquely determined.
From Eq. (6,7) in terms of the coefficients in Eq. (8),
coefficient function ,,,(E,w) before the continuum state
in different energy regions can be expressed as

(fOI' n< l) Wmn(E»w) = ynénlné(w - E)

e Zam,w)f,n(w)

1
(for 1> 1) Yruy(E,w) = Zam]<E>m<w)

This equation can be concisely expressed in one equation
by using Heaviside step function ®(x):

W (E,0) = ¥,0,,0(w— E)O(E —ay,)

1 D
TE-w=i0 ;fw(@%@)- ©)

Notice that ¢, is a generalized function, and to distin-
guish between different integral contours, we have in-
cluded +i0 in the denominator of the integral in Eq. (8).
The y* state corresponds to the coefficient for the in-
state, whereas ¢~ corresponds to those of the out-state.
For the convenience of the future discussions, we will
omit superscripts + in the notations. The appropriate su-
perscript can be easily inferred based on the context.
When there is a need to explicitly indicate the in-state or
out-state, we will use the superscript accordingly.
Inserting this equation back into Eq. (6), we can ob-

tain the equations for coefficient functions «,;(E) for
m=1,2,...1

o ﬁm(w)f,i(w)]
E-w=i0

D C o0
= e B oy (E-M)->" / d
k=1 n=1 v dn

C
+ Yl EYounfj(E) = 0. (10)

n=1

With many different discrete and continuum states in-
volved, the representation becomes much more complex
than the simplest version. The formula and derivation
procedure can be simplified by introducing the matrix
form. In the following, the matrices are represented in
bold type, the dot symbol "-" represents the matrix
product, and the matrix element is expressed in the form
of (#);;. For example, Eq. (10) can be expressed in mat-
rix form as

~a*(E)-n.(E) +y(E)-f'(E) = 0,

where « and f are the C x D and D x C matrices for coef-
ficients «,, and fj,, respectively. Matrix y is defined as a
diagonal matrix of dimension C X C
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(7)n1n(E) = yn(smn(a(E - an)s

whose diagonal elements y, can differ in principle for
different n values, and the values can be determined by
the normalization conditions. The 5. matrix, the inverse
of the resolvent function matrix, has dimension DX D,
and every matrix element is

@)
, Jin @ (@)

C
(n+)k,(E)=<E—M,)6k,—;Ald oaio (D

Generally, the determinant of the # matrix does not van-
ish for ¢; < E < a;;1, and matrix a* can be represented as

a*(E)=y(E)-£'(E) - n. (E).

Inserting this result into Eq. (9), coefficient functions v,
before the continuum states can be obtained in matrix
representation:

. _ _ 1 Y n LB
Yo (E,w) =yo(w E)+E—a)ii07(E) f'(E)-n. (BE) - f(w).

The solution of the continuum eigenstate can then be ex-
pressed as

W (E)) = Zam,(E>|z>+Z / dwys, (E, w)lw;n)

n=1

= ¥ O(E —a,)|E, m>+Z y(E)-11(E)-n;'(E))

|k>+Z/

mk

Il ).

(12)

Note that in energy region g; < E <a;,;, wave function
[¥:) for m > [ should vanish. Another required condition
is that, when coupling function fj, vanishes, [V (E))
tends to |E,m). Therefore, coefficient v,, is determined to
be 1. We can check that the normalization satisfies
(WZ(E)|Y:(E")) = 6(E —E')6,n. From the perspective of
the scattering theory, |[¥*) is the "in" state and [¥~) is the
"out" state; therefore, the S-matrix can be obtained by in-
ner product of the "in" and "out" states as

(W (E)NYS(E)) =¥ yu0(E - E') = 2mi6(E - E') (y(E")
A1E)-n(E)-£(E) -y (E))
=6(E-E)[y

(127" (E)-n; (E)-£°(E)) 7],
(13)

The 5.(E) function can be analytically extended to the
complex E plane with n,(F) and n_(E) coinciding with
n(E) on the upper and lower edges of the real axis above
the thresholds, respectively. We can also define the ana-
lytically continued S-matrix as

S =1-27if"(E)- " (E)-f*(E), (14)

where E is analytically continued to the complex energy
plane, and only when E is real and on the upper edge of
the cut above the lowest threshold a, is the S-matrix the
physical one. Given the presence of C continuous states
with distinct thresholds, 2¢ different Riemann sheets gen-
erally exist for the analytically continued S-matrix. Be-
cause only the Riemann sheets nearest to the physical re-
gion affect the physical S-matrix the most, we label the
m-th sheet as the Riemann sheet continued from the phys-
ical region (a,,a,.1), where the first sheet in which the
physical S-matrix resides is called the physical sheet by
convention.

Note that the formula of the scattering matrix in Eq.
(14) has important phenomenological applications. For
example, in studying the particle-particle scattering pro-
cesses, the two particles that collide or those final states
(often called channels in the scattering experiments) form
continuum states, whereas the intermediate resonance
states are considered the discrete states. The (n,m)-th ele-
ment of the scattering matrix in Eq. (14) can describe the
scattering amplitudes from the channel of the n-th con-
tinuum state to the m-th channel. The coupled-channel
unitarity is naturally satisfied among all the related scat-
tering amplitudes owing to the apparent relation SS™ =1.
Furthermore, when the coupling function between the
discrete and continuum states is reliably described by
some dynamical models, the physical observables, such
as cross sections, can be predicted or calculated [28].

2. Discrete state solutions:

In Egs. (6) and (7), if eigenvalue E ¢ [a,,c) for
n=1,...,C, +i0 need not be introduced in the denominat-
or of the integrand, we have

1
wn(E,w):aijn(w)aj(E), (forn=1,...C) (15)
J

D
(@(E) - 1(E)); = Z (E) [@,-(M -E)

—Z / fk,,.(mf,,,,(w) o,

m=1

(for j=1,...,D). (16)
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To obtain nonzero solutions of a(E), the condition
detn(E) =0 is necessary. This condition implies that dis-
crete energy solutions may exist for this equation, which
generally correspond to the poles of the S-matrix ele-
ments. If solutions exist on the first sheet, they must
reside on the real axis below the lowest threshold be-
cause the eigenvalue of a Hermitian Hamiltonian for a
normalizable eigenstate should be real. Additionally,
solutions can also exist on the unphysical sheets, which
may correspond to complex conjugate resonance poles on
the complex energy plane or to virtual state poles located
on the real axis below the lowest threshold. At least D
discrete solutions may tend to the bare discrete states, i.e.,
(z}f) — 6y and E— M, for [=1,2,...,D, as all coupling
function f;, — 0. Furthermore, there could also be other
solutions corresponding to dynamically generated states
that do not go to the bare states when the interactions are
switched off. Generally, the solutions does not exhibit de-
generacy, indicating that the poles for S-matrix are simple
poles. If the degenerate solutions occur for detn(E) =0,
this implies that two or more poles may coincide and
form a higher order pole. This scenario is considered to
be accidental and only occurs for some special coupling
functions. For our discussion, we will not consider this
special case and assume that the solutions are non-degen-
erate. Subsequently, for each energy solution E;, we can
also determine eigenvector a}f)(E,») and y(E;,w), and the
wave function of discrete state is expressed as

. =y - fin(w)
|‘P<:>(Ei)>=;a;l>(5i)<|j)+;/an dwﬁlw;n)). (17)

When E; lies on the real axis of the first Riemann sheet
below the lowest threshold, this wave function corres-
ponds to a bound state. In this case, the integrals in n(E;)
and a(,f)(Ei) are real. The normalization for this state is
well defined, and a}c")(E,-) can be selected such that

D c .
i Jm(w) f,(w) i)
D . .
=Y a(En (Ena"(E). (18)
jk

with 7;;(E) being the derivative of n;(E) w.r.t. E. This
equation has a probabilistic explanation. The first term on
the right-hand side represents the probability of finding
the bare discrete states in the bound state, whereas the
second one represents those of determining the bare con-
tinuum states in it. If we define

i i 2
7 =1 (E),

D "
X3 => o (E)( / o E), (19

k.j=1 am (El - w)Z

then z?=5,7" is called the elementariness and
X® =3¢ X is called the compositeness for the bound
state. When solution E; resides on the unphysical sheet,
the integral contour must be deformed to bypass the pole
position in different integrals, as shown in Fig. 1. For res-
onance poles on the m-th sheet, the integral contour for
the first m-th integral should be deformed accordingly,
following the contour shown in Fig. 1. In such cases, the
usual normalization may not be well-defined, as the in-
tegral contour for the pole and its conjugate pole are not
consistent. Therefore, the normalization must be defined
through the inner product of the state and its conjugate
state that corresponds to the conjugate pole. The result-
ing normalization is similar to Eq. (18) with E; replaced
by the pole position on the unphysical sheet and the in-
tegral contour suitably deformed. However, note that the
probabilistic interpretation of each term in the sum will
no longer hold, as the terms may not be real or positive
for poles on the unphysical plane.

Next, we study the case with the degenerate
threshold. If different continuum states exist with the
same threshold a,, with degeneracy h,, we must add an-
other label « to the continuum to denote the different con-
tinuum states sharing the same threshold, |w,n«). Thus,
all the indices in the equations labeling the continuum
states would include the additional indices « to label the
degenerate states, for example, f,(w), @u, Vi, Y, and
\Pm become ﬁ,nk, Xpijis Vi and !//mk,nk“ b = Zf:]hn con-
tinuum states will exist. The sum over the continuum
states must also sum over x. Matrix y is defined as
Voo (E) = 6nOiw O(E —a,). The f matrix becomes a
D x 1 matrix and 5 is still a Dx D matrix. With all these
changes, the previous discussion and equations can be
smoothly used in this case.

III. INCLUDING SEPARABLE CONTINUUM-
CONTINUUM INTERACTIONS

In the previous case, we considered a scenario in
which a bare continuum state is only coupled to the bare
discrete states but not to the other continuum states.

ImE

Re E

Eq

Fig. 1. Integral contour for the resonance solution.
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However, when the direct interactions between con-
tinuum states become significant, it is more appropriate to
include the corresponding term in the interaction
Hamiltonian H;. Analytically solving the Hamiltonian
with a general continuum-continuum interaction is gener-
ally not feasible. Therefore, in this section, we focus on a
case with a separable interaction, which still enables an
exactly solvable solution.

The Hamiltonian including D discrete states and C
continua with factorizable self-interacting contact terms
can be expressed as

D C )
H=" Mlixil+» / dw wlw;n)w;n|
i=1 n=1 v dn
C 0 )
+y vmn( / dwgm(w)lw;m>) < / dwgi;(wxw;nl)

mn=1 n “
+ Xl::z:: {U) ( /: dwﬁ;(wxw;nl)

+ /: dwf,-n(w)lw;n>)<jl} .

(20)

In this case, new coupling constants v,, between two
continuum states have been incorporated in the interac-
tion terms, and v, = v, is satisfied to meet the Hermiti-
city requirement. Form-factor functions g,(w) are in-
volved in the interaction between two continuum
states, and fj,(w) represents the interaction vertex
between the j-th discrete and n-th continuum states. We
assume that the fj, matrix is of full rank; otherwise, we
can always construct a decoupled state using a linear
combination of the discrete or continuum states. For sim-
plicity, we first assume that the coupling constant matrix
v,.n 18 non-degenerate and will return to the degenerate
v Case later.

Similar to the previous case, we will also solve
Hamiltonian eigenfunction H|Y(E))= E|¥(E)). The ei-
genstate of the Hamiltonian with eigenvalue E can be be
expanded in terms of the discrete and continuum states as

D C
W(E) =) aiEMliy+ ) / dwy,(E,w)lwin).  (21)
i=1 n=1 ' an

Inserting this ansatz into the eigenvalue equation and pro-
jecting to the discrete eigenstates or the continuum ones,
we find two sets of equations:

(M;-E)aj(E)+Aj(E)=0, j=1,...,D (22)

D C
> B fin(w) + (= EWn(E, )+ Y VunBu(E)ga(w) = 0

j=1 m=1

n=1,...,C, andw>aq, (23)

where two new integration functions A;(E) and B,(E)
have been defined as

AJE) = Z / do f;, (W (E, w),

n=1

B.(E) = / 4w g (Wn(E,). (24)

an

Because we have assumed that continuum-continuum
coupling constants v, are not degenerate, C-independ-
ent B,(E) functions exist. In contrast, if v,,, matrix is de-
generate, the only change is that fewer g, and B, func-
tions will exist.

Similarly, as discussed previously, if the eigenvalue
E € [a;,a;,,) for [ < C, there should be / continuum solu-
tions |¥,(E)), m=1,2,...,] with the same eigenvalue E.
As the interactions are gradually deactivated, these con-
tinuum solutions should tend to well-defined states |E, m).
This ensures that in the absence of interactions, the con-
tinuum solutions can be uniquely determined as the con-
tinuum states |E,m), thus eliminating any ambiguity in
their characterization. This requirement guarantees a
smooth transition from the interacting system to the non-
interacting system.

Under these specific conditions, the / contiuum state
solutions for a; < E < a;,; coincide with the first / states
for E > ac. Consequently, it is sufficient to solve for the
solutions when E > ac, and then the first / solutions can
be obtained for the E <a; range. For each continuum
state |¥,,(E)) with E > ac, the corresponding coefficients
are denoted as «@j,, Yum(E,w), A;,, and B,, as in Egs.
(21), (22), and (23). Subsequently, we can obtain

Gn(E) = g An(E). (25)
lp;fm(E’ (A)) = 6,1,,,6(0) - E) + m
E)f ¢
X (Z ’”1( )f () Zvnn/B:,mw)gn(w)) :
(26)

The procedure of solving Eq. (26) is straightforward
but intricate. The strategy is to apply the operations
>ou ), dwf(E)x and S, vi,, [ dwgi(w)x on the left-hand
side of Eq. (26). After this, we can derive the following
expressions:
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0= f;,(E)- Z ”"(E?(JAE M;)- Z/

Sfin(w)g,(w)
E—w=+i0

mm’gm(E) + Z @ jm Z vnm

n=1 dn

C
ﬁg(wj)fffg)) + Z ( n m(E) Z Vo / fjn(‘”)gn(“)) (27)

E - a)+10

n’=1 an

(W) (w)
ZBnm(E)( Vi Zvnm/v,m / %) (28)

an

The matrix representation proves to be a valuable tool in simplifying the derivation process and achieving concise
results. In this context, we introduce matrices Y and F with (C+ D)x C dimension, matrices V* and V? with dimen-
sions Dx D and C x C, respectively, matrices VA2 and V2 with dimensions Dx C and C x D, respectively, and finally, a
(C + D)X (C + D) matrix M encompassing V4, V&, VA8 and V2 as follows

A'm(E) * .
(Y)jm = a/m = E/_ Mj’ (F)]m :f/.m, fOl"m = 1,"' 5 = 19 ,D’
(Y)mn= m—D,ns (F)ngVrz,m—Dg;v f0rn=1,~~~,C;m=D+1,---,D+C, (29)
A dop O (@) e D=1
(V4),j = 6;(E— M) - Z 0T o ord Dij=1,.D,
B gz(w)g/(w) _ o
VB = (Vi = val ln/E ). form=1. Cin=1.0.C.,
ABY  _ _ f;:l(w)gn(w) ; — . =
V)i = Zvn’m/anE—wiiO’ fori=1,---,Dym=1,---,C,
Sin(w)g,(w) .
(VBA)mjz_ nm/ E-wii0 —w=i0"’ forj=1,---.Dim=1,---,C,
VA(E) VAB(E)
M, = , forl,J=1,---,C+D. (30)
VEA(E) VB(E)

Similar to coefficients a and w, we have omitted super-
script + in the notations of matrices Y, V, and M, which
can be inferred from the surrounding context. With these
matrices, Egs. (27) and (28) can be expressed in matrix
form

M-Y =F. (31)

or in component form

D C
> ViE)mE)+ > Val(E)Bu(E) = f,(E), (32)
=1

n=1

Z VI E)aju(E) + Z V2 (E)Byn(E) = g, (E)y-

n’=1

(33)

Before proceeding further, let us examine some prop-
erties of these matrices. From relation v}, = v,,, we can
observe the following symmetric properties:

(VA+)%. =
(VAB+

(V) jis
= (V¥

V) = (V5 ),
M* =M. (34)

When v, fin(w), and g,(w) are real for real w values,
these function matrices possess real analyticity. Con-
sequently, they can be analytically continued to the en-
tire complex £ plane and satisfy the Schwartz reflection
property. Moreover, the analytically continued function
matrices can relate the +i0 and —i0 counterparts, repres-
enting the limits on the upper and lower edges along the
real axis above the threshold. If v,,,, fin(w), and g,(w) are
complex, the function matrices will no longer be real ana-
lytic, but the determinant of matrix M, denoted as detM,
remains real analytic. Thus, the analytically continued
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determinant exhibits the Schwartz reflection symmetry,
detM(z) = detM*(z%).

In general, detM is nonzero for general real £ values
above the lowest threshold; otherwise, if detM = 0 for all
real E values, the v,, matrix would be degenerate and
some continuum state would be decoupled from the other
continuum states. decouples would occur in the con-
tinuum-continuum interaction, which is not our assump-
tion at present. As a result, M has an inverse, and Y can
be obtained using Y =M""-F. Thus, by inserting A;,(E)
or a;,(E) and B,, into Eq. (26), we obtain coefficients
¥, and the continuum eigenstates are solved to be

D
Wr(E)) = |E,m)+ Y a5, (E)

j=1
|]>+Z/ f]"( ) Iw;n))
+ Z Vnn’B,j;/m(E) w%lw’rﬁ (35)

nn' =1 an

for E > a,,. Upon comparison with Eq. (12), this solution
is different only in the last term, stemming from the pres-
ence of separable potential. Importantly, we can confirm
that the solution retains the previous normalization condi-
tion, (YZ(E)Wi(E))=06(E—E')0,,. This normalization
condition guarantees the orthogonality of the wave func-
tions, ensuring their compatibility and consistency within
the framework of the problem.
The S-matrix can be obtained as

S n(E,E") = 6,yn0(E — E") = 2mid(E — E')

obzﬁwmﬂM>z

j=1

c

A(E)
-t [

The expressions obtained in these two equations devi-
ate from Eqgs. (27) and (28) by the absence of the first
terms on the right-hand side. Analogous to the definition
in Eq. (30), we can introduce matrices VA, VAE V5 yB
and M as the analytic continuation of the matrices in Eq.
(30) and

D+C

(S FD, ;) () (36)

1j=1

or

S(E,E")=18(E-E')-2mi&(E-E)F - MY F  (37)

in a simplified matrix form. For a more thorough deriva-
tion of the normalization and meticulous calculation of
the S-matrix, please refer to Appendix A, where we
provide a detailed presentation of the calculations, offer-
ing a comprehensive and in-depth derivation of the nor-
malization condition and the S-matrix.

Subsequently, our attention turns toward the deriva-
tion of discrete eigenstates. The eigenvalues for the dis-
crete states does not coincide with the spectrum of the
continuum states. Thus, using condition E ¢ [a;,0) for
i=1,...,C, we can solve Eq. (23) and obtain

@B =3 AE), (38)

Y(E,w) = (Za,(E)f,n(wHZVWB (E)gu(w)).

Jj=1

(39)

By multiplying Eq. (39) with f; (w) and v},,g,(w) separ-
ately and subsequently summing over »n and integrating
w.r.t. variable w, we arrive at the following expressions:

C

f’"("”ff"(”)%z (5. <E>Z / f’"(mg"(w : (40)

n'=1

(@)
Z ot [ S8 ), @)

XT:( A Ap
E-M,"""E-M,

:(Q’],...,Q’D,...Bl,...,Bc).

9Bl"”’BC>

Thus, Egs. (40) and (41) can be expressed as
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M-X=0.

To obtain nonzero solutions for vector X, we must satis-
fy the condition that the determinant of M is equal to
zero, i.e., detM(E) =0. By analytically continuing this
equations to different Riemann sheets and solving it on
each sheet, we can determine the generalized discrete ei-
genvalues.

When the generalized eigenvalues are determined,
vector X can be solved for each eigenvalue. Substituting
the solutions for «; and B, into Eq. (39), we obtain the
discrete solution from Eq. (21) for each generalized en-
ergy eigenvalue:

WO(E) = ZD:G(-”(E)('J'HXC: / )
i = J ! E,' - W ’

n=1 Y dn

C
3 ) [ 02D om, @)

nn' =1

where superscript (i) denotes the i-th discrete solution.
The solution for X is only determined up to a normaliza-
tion. On the first Riemann sheet, the zeros of detM can
only be located on the real axis below a; due to the herm-
icity of the Hamiltonian. These zeros correspond to the
discrete eigenvalues E,. The associated states can have a
finite norm, and we can impose the normalization condi-
tion on the coefficients to ensure

D c o
1
1= Z|(Y,(Eb)|2+2/ dwm
i=1 n=1 Y4

D C 5
x| Y @ ED fu@)+ D v B (E)ga()
Jj=1 n’=1
= X(E,)- M'(Ey) X'(Ey). (43)

Within the framework described earlier, each term in the
summation can be interpreted as the probability of find-
ing the corresponding bare state within the bound state.
However, complex energy solutions could also be present
on different unphysical sheets. As the determinant of M
is a real analytic function, these complex eigenvalue solu-
tions appear as complex conjugate pairs.

As already mentioned, 2¢ distinct Riemann sheets ex-
ist. However, for our specific purposes, we focus solely
on solutions E that reside on the lower half Riemann
sheet closest to the physical sheet. These solutions have a
significant impact on the physical S-matrix elements. Be-
cause Er lies on a nearby unphysical sheet, the evalu-
ation of the matrix value of M at this point requires de-
forming the integral contours to the corresponding sheet
around Ej defined in matrices V and M in Eq. (30), as il-

lustrated in Fig. 1 [5]. Additionally, in the state solution
Eq. (42), the integral contours are also deformed simil-
arly. The normalization requirement of these states may
resemble Eq. (43), but with E, replaced by Ei, and the
integral contour adjusted accordingly following the de-
formation depicted in Fig. 1. However, note that no prob-
abilistic explanations are available for each terms in the
sum, as they may not be real. Additionally, there can also
be real solutions below the lowest threshold a; on un-
physical sheets, which correspond to virtual states. Simil-
ar to the resonant states, the corresponding integral con-
tours should be deformed in Eqgs. (42) and (30) for these
states.

If coupling constant matrix v,, is degenerate, certain
continuum states may decouple from the contact interac-
tion. This enables us to select a suitable set of continuum
basis states in which the decoupled states do not appear in
the contact interaction terms. A more general hamiltoni-
an can be expressed as

D C o0
H= ZM,-|i><i|+Z / dww|w;n)w;n|
i=1 n=1 ' n

r C 00
+ Z Z vmn(/ dwgrnnﬂ(w)'w;m/))

mn=1m’,n'=1 Am

x / wdwg:;,,,(w)w;n’l)

n

D C 00
N0 [ dwsieen)

j=1 n=1 ap

+ (/aw dwﬁn(w)lw;n))(ﬂ} , (44)

n

where 7 is the rank of the continuum-continuum coupling
constant matrix, and v,,, m,n=1,---,r is a non-degerate
matrix. Notice that in general, although we are discuss-
ing the degererate case where r < C, this general interac-
tion even applies when r > C, which may correspond to
the case we will discuss in the next section. Because v is a
Hermitian matrix, it can always be diagonalized and be
selected as v,,, = 4,,6,,, for myn=1,---,r. When g,,»
Smne» 1t Teduces to the original case (20). The solution to
the engenvalue problem for this Hamiltonian is straight-
forward as before. The difference of the results from the
nondegerate case is roughly to change the definition of B,
in Eq. (24) using B,=Y¢, [guy (n=1,---,r) and re-
place factor v,.g, t0 > ., ving, in each equation. For a
different continuum solution B,, we would require anoth-
er index m to denote the corresponding continuum solu-
tion, ie., B,,, (n=1,--,rym=1,---,C). Note that the
range of the first subindex of g, and B,, is from 1 to r
and the second one from 1 to C. Thus, the summation
over the first subindex of g, and B,,, must be from 1 to 7.
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A special case is when r=1, and we can set v;; = 1
and gy, = v,£.(E) = (g),, where v, is a constant and g,(E)
is a coupling function. Thus, we can rename B, to

B:(E)=Bt, =Y. v, [ dwg,(E):,(E). The M matrix in
Eq. (30) can be represented as
n -
MI]:( f"’T >, fOl"I,J:L-s,D-}-l, (45)
—_T g

Sin(w) fi(w)

1ij(E) =6,,(E - M;) - Z /

— E-w+i0’
fori=1,---,D;j=1,---,D, (46)
vigiw)v; g (w)
E , 47
o(E) = Z/a —w=i0 ) *7)

/ f[m (W) 8w (0.))’ fori=1,---,D; (48)

E-w=i0

fjm(w)vmgm( ) ] — :
Z/ E-w+i0 ’ forj=lbs @)

m=1

For the continuum eigenstate solutions, «;, and B, are
solved as

Ajm =("' £+ U “1)iBm (50)

P+ (g (B

T v S (51)

where we have defined vector (f,); = fin, i=1,---,D.
Subsequently, the S-matrix can be obtained as

S (B, E') =6, 8(E = E') = 25i6(E = E') (£, - 7)™ - £(E)
(52)

(fm )" T () + (@E)w) (- (") -
gH(E) = THT - ()t

: + (g*(E))n) ) )

(53)

With the S-matrix, the observable scattering cross section
can be obtained to compare with the experiments.

In the perspective of the effective field theory, dis-
crete state j, becomes decoupled when its mass M, sig-
nificantly exceeds the system's characteristic energy
scale. This fundamental principle was exemplified in
Weinberg's seminal work [29], where two equivalent for-
mulations were constructed: the full theory contains the

discrete state explicitly in the free Hamiltonian, whereas
the reduced theory eliminates the discrete state by intro-
ducing a specific potential renormalization. Weinberg
demonstrated their equivalence when M;, — co, provided
the potentials satisfy the matching conditions that encode
the decoupling dynamics. In our present scenario, we can
also construct a low energy effective Hamiltonian without
this discrete state and include an effective contact interac-
tion of the continuum states after we integrate out the in-
termediate discrete state in the s channel. The correspond-
ing interaction term can be expressed using separable
contact effective interaction terms as

f,(,m( ) Jion(@)
-§j Mo nf A=
mn= I/ G Mjo

(54

This interaction is similar to the previous special case
with r=1 by replacing vii = v, =-1, g — gjyn =
fjiM, and matrix elements v;,, =0 and gumw = G - It
%{e;tlvely adds one extra rank to the original v,,, matrix.
To solve this eigenvalue problem, using Eq. (30) and the
discussion after Eq. (44), we will have a row and column
inVEZfrom Eq. (54), with

B _ _ fjol(w)fjul(w)/
Vjom_ -1 /u, (E—w+i0) 5

(E-w=i0)

v Z / Ving1(w) f ()] \/Mj(]. (55)

V48 will have corresponding matrix elements

VAB —

tjo

/ Jinl@) fin(@)/ \/ M}, (56)

E-w=+i0 ’

and similar for V**. F will have element F;,,=~f; /
\/Mj,. Alternatively, we can start from the original
Hamiltonian with the discrete state and take the large M,
limit. From Eq. (30), taking M, to be much larger than E
in V4 . we factorize M, and take E/M;, — 0, i.e., mak-

- Mj, ( -1
f‘ n(a))ff n(w)
]07’0) Similarly, after M, is factorized out from
E-w=+i0

V4. and /M, from Vi, V4. ViE VB these matrix
elements are of the same form as the corresponding mat-
rix elements in VA2, V24 V2 in Egs. (56) and (55) as if
we are directly solving the decoupled Hamiltonian as
constructed above Eq. (54). We then find that the S-

matrices obtained using the two approaches are the same.

Jojo?

. A
ing replacement V7 n=1Ja,
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IV. APPROXIMATING A GENERAL POTENTIAL
USING SEPARABLE POTENTIALS

In scenarios in which the interaction potential can be
reasonably approximated as separable potentials, wherein
the potential can be expressed as the product of two com-
ponents associated with the ingoing and outgoing states,
the problem can be effectively addressed and hold prac-
tical significance. Now, the problem is how to approxim-
ate a potential using the separable potentials. Before ad-
dressing this problem, let us review how a general con-
tact interaction arises in the elastic and nonelastic scatter-
ing.

As discussed in the previous section, the Hamiltonian
of'a most general model with multiple discrete and con-
tinuum states and their interactions can be expressed as

D C )
H:ZM,—Ii)(i|+Z / dw wlw; nXw;n|
i=1 n=1 v dn

7

C o0

+Z/ dw’/ dwV,, (0, w)|w;mYw;n|
m;:l C’" "

>

j=1 n=1 Y4

dw (f;‘,,(w)lj><w;nl + fin(w)lw; n><jl) :
In the context of nonrelativistic scattering, i.e., when the
in-state and out-state are composed of the same two-
particle content, in the angular momentum representation,
these continuum states can be expressed as |w,n)=
Viplp,JM;IS ), where J,M,[,S are the quantum numbers
for total angular mentum, magnetic angular momentum,
relative orbital angular momentum, and total spin, re-

spectively, and are collectedly denoted using #, and a,
denotes the threshold. Here, p represents thze radial mo-

. p
mentum, u is the reduced mass, and w = 5, +an repres-

ents the total energy. The normalization of the con-
tinuum states is selected such that the inner product
between two continuum states is given by (w’,n'|w,n) =
Synd(w—w’). Momentum space potential V,,(w’,w) can
be derived from coordinate space potential V(r). For
simplicity, we consider only the rotational invariant po-
tential. Potential function V,,,(w’,w) results from the mat-
rix  elements  V,,(0',w) = (', 7'|V|w,n) = W p’ \Jup
(p’IMU'S’|V|pJMIS). The simplest example is when the
in-states and out-states are composed of the same spin-
less particles, i.e., elastic scattering. If we know coordin-
ate-space potential V(r), then momentum-space potential
V(k',k) can be expressed in terms of coordinate-space po-
tential V(r) as follows:

61’15m’m

KU, m'|VIk,l,m) =
( m'|Vlk,1,m) K

/ d% 5KV k), (57)

where j(z) represents the Riccati-Bessel function.

When the in-states and out-states can have different
particle compositions, we can generalize potential
V(w',w) accordingly. In addition to the angular mo-
mentum quantum numbers, labels # and n’ can also de-
note the different particle compositions |w,n). If the po-
tential in coordinate space, V(r’,r), in the center-of-mass
system, is invariant under rotation, it can be expressed as
a function of r?,r’?, and r-r’. Here, r and r’ represent the
positions of the in-state and out-state relative coordinates,
respectively. For a spinless particle system, the matrix
elements for in-states and out-states can be expressed as
follows:

Vn(w',w) = (0w’ Im|V|n, wlm)

= /drdr’(n’,w'lmlr')V(r',r)(rIn,wlm)

2 u n n -
= Z(BEy” / drdr’ 5 (pr) (o' 7YV 7).
Topp

Vir' ;)8 Sy = 11 / dQdQ'Y;,, ()Y, @)V, r).

The Wigner-Ekart theorem has been employed to ac-
count for the spherical symmetry of the potential V(r’,r).
When the in-state and out-state can have spins, the total
angular momentum are conserved, but the orbital angular
momentum can differ. We can include different orbital
angular momentum and total spin quantum numbers [S
and /'S’ into n and »’ to label different in-states and out-
states,

2 ’
V(W' w) =0 ' IM|VIn,wIM) = — (#’M ) 12
Tpp
x/drdr’ Z T (P VM r),

wss’

Vs (' =r D

mm’ mgm

JM JM
X ClmvaCl’m’S’m; >

dQdQ'Y;, (&)Y, (®) Vs (X', 1)

where C;(, is the Clebsch-Gordon coefficient. To make
further progress, we also assume that the potential is
square integrable for both «’ and w, and the same for the
interaction vertex between the discrete and continuum

states f.(w), that is

/ dow' | dw|V,, (o ,w)]* = finite, / dwlfjn(a))l2 = finite.

an an

The Hamiltonian for general potentials V,,,(w’,w) has no
exact solutions. However, it is well known that such a po-
tential can be expanded using a sum of separable poten-
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tials [30]. For continuum states |w,m), we can select a set
of  complete basis  functions Zmp(w),  with
[, dwg;, (@)Zns(@) = 65 and 37 Zns(@)gms (@) = 60 — w).
The basis sets for different continuum states, i.e., for dif-
ferent m and n, need not be the same. Potential V,,,(o’,w)
can then be expanded as

an ((A)/ > w) = Z an,ptsgmp (w)g;(s(a))

po

In the following, we will use Greek letters p and ¢ to la-
bel the basis, and repeated Greek letters are summed over
without the explicit sum symbol, and the sum symbol for
the Latin letters would still remain explicit. The coeffi-
cient matrix composed of v, 5 is Hermitian v, 5 = v;,,, 5,
and should be non-degenerate. In general, there are infin-
ite number of bases, and the sum of J and p is up to infin-
ity. Because expansion coefficients v,,,s are small at a
sufficiently large order, we can make an approximation
and truncate the series to a finite order N, i.e., Vy 5 =0
for p,6 > N. Subsequently, the general Hamiltonian for
multiple continuum states and discrete states can be re-
cast as

D Cc 0
H= ZM,.|i><i|+Z / dw wlw; n)(w;nl
+ Z Viungs / e ()3 ) )

m,n=1

x( / dwgy(w)winl)

n

+ZZ {l])(/ dwﬁn(w)(w;m)

j=1 n=1

+( / | dofw)erm) . (59)

We can take mp and né as the row and column indices
and diagonalize matrix v,,,,s. Thus, the problem reduces
to the similar case in the last part of the last section when
degenerate v,, is discussed. Here, the rank of v,,,s is
greater than C, as indicated in the last section. Alternat-
ively, we can also directly solve the problem as before in
the following. The general eigenstate for this eigenvalue
problem can be expanded using the bare discrete and con-
tinuum states:

D C
W(E) = aE)lid+Y / dwy,(E,w)wn).  (59)
i=1 n=1 Y an

Similar to previous sections, for |¥,,), the corresponding
a; and y,, will have another index m, i.e., a;, and y,,,.

With the same procedures as the previous section, the
approximate properly normalized continuum states can be
solved as

D
WE(E) = |Esm)y+ Y o, (E)

Jj=1

|J>+Z/

n=1 Y4

( Z Vo b’pd’n mp(E)/

nn'=1

.f]n( )

where az(E) and ¥, (E) = [ Ywn(@)Zu(@) can be
solved as in Eq. (B11). Thus, the S-matrix can be ob-
tained,

(VBN (E)) = 6,0(E - E")

—2ni5(E—E’)(an-(M+)-l Fm> (61)
where matrix M* with dimension (D+NC)x(D+NC)
and vector F,, with dimension (D+NC) are defined in
Eq. (B7). The detailed calculation is given in Appendix
B. The discrete eigenvalues can be obtained by solving
Eq. detM(E) = 0. The discrete state corresponding to ei-
genvalue E; can be expressed as

D .
WO(E)) = Za§-">(E,~>(|j>+ / dow
+ Z Vo (Yplybn mp(E )/

fnlw)
E’i_w|w,n)>

gms( )

. (62)

where the integral contour must be deformed for E; on
unphysical sheets as before.

Note that although we have selected g,,s as orthogon-
al function sets, we do not use this orthogonal property in
solving the problem. Thus, as long as we can approxim-
ate the Hamiltonian using the separable interaction as in
Eq. (58) without orthogonal conditions for g,s functions,
the solution applies.

Next, we could go further and expand interaction
function fj,(w) using the same set of basis g,s(w) as in
the corresponding contact interaction involving con-
tinuum state |w,m),

fjm(w) = Z‘f}mdgmd(w)» f}m& = /dwfjm(w)g*md(w)»
§

and also make an approximation by truncating the series
to the N-th order the same as in the contact terms, that is,
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fims =0 for § > N. This may reduce the dimension of mat-
rix M and may also simplify the numerical calculation.
Subsequently, the general Hamiltonian for multiple con-
tinuum and discrete states can be recast as

D C 00

H= ZM,—Ii)(i|+Z/ dwwlw;n)w;n|
i=1 n=1 Y an

Cc I~

+ > Vg / e ()3 ) )

mn=1 a

X </“ dwgr;é(w)(w;m)

n

e -
DY {fﬁdﬁ( / de’Za(w)(w;nI)

j=1 n=1 an

+ s ( / ) dwgn&(a)ﬂﬂ);”))(ﬂ} : (63)

n

This case is similar to those discussed in [10, 26], where
the same form factor posseses the continuum both in the
discrete-continuum and continuum-continuum interac-
tions. Using the eigenstate ansatz

D
(E) =l E)liy+ / dwy, (E, w)lw; n)
i=1

an

D C
=Y @B+ vns(E) / dwgs(@)lwsn), (64)
i=1 n=1 an

we can proceed solving the eigenvalue problem similar to
the previous section, the details of which are given in Ap-
pendix C. The properly normalized continuum state can
be solved and expressed as

D C C
WEE)) = Yk (E)iy+IEmy+ > > 4 (E)Wog o (E)

i=1 n=1 n’'=1

gnd’(a))
d .
X/un a)E—a)iiolw’n>
(65)

where a;, and ¢, can be solved using Eq. (C9). The S-

matrix can be obtained:

(YL(ENY,(EN)
= 8,u6(E—E')— 2mi6(E — E')

c C
X Z Z w;’*mp(E/)V;(?’,n'p(E/)g:é’ (E)

n=1 n'=1

= 6mO(E - E") = 2mis(E — E')F! - (W™ F,) (66)

where NC x NC matrix W* and NC dimensional vector
F,, are defined in Egs. (C8) and (C7), respectively. Simil-
ar to the previous section, the generalized energy eigen-
values for the discrete state can be obtained from
detM(E) =0, and for each eigenvalue E;, y!) can be
solved from M-Y =0, where matrices M and Y are
defined in Egs. (C6) and (C7), respectively. Thus, we

have the discrete eigenstates

WOED) = zcjw“? (E) [XDJ ey
! e ! El' - Mj

n'=1 Jj=1

+Vn(5’,n’p(Ei)/ d(‘)
[

)
Ei —Ww
with YO'(E))- V(E;)- W/(E;)- V(E;)- Y?(E) = 1

(67)

jw; )|

with integral contour deformed for resonances and virtu-
al states as before.

V. APPLICATION IN ANALYZING THE
DISCRETE STATE POSITION UNDER
INTERACTIONS

When contact interactions are involved, we can ex-
plore the effect of introducing small couplings on the
mass of the discrete states in a general manner. Analyz-
ing pole trajectories as couplings vary offers valuable in-
sights into particle properties. This type of analysis
proves useful in elucidating the origin of certain states
observed in the experiments utilizing Friedrichs-like
models or similar formulas derived from the dispersive
models. Notably, Refs. [21, 31-34] demonstrated how
pole trajectories of various states provide valuable clues
regarding the possible nature of these particles.
Moreover, such analyses may provide qualitative guid-
ance in understanding the interaction properties from the
spectrum. To illustrate this, we focus on the exponential
form factor, a frequently employed form factor in the lit-
erature. Using this form factor as an example, we discuss
the properties of the bound states while varying the coup-
lings. For simplicity, we consider a two-channel case in
which the threshold for the two continuum states are de-
noted as a; and a, with a; < a,.

The basic consideration is as follows: At the leading
order, where the interactions are absent, the discrete state
is determined by the condition E—u =0, with the bare
mass being the solution. When a small coupling constant
A is turned on, we must consider an equation of the form
E—-u+Ay(E)=0 (1> 0), where y(E) is real and small in
the vicinity of E =u. The next-to-leading-order solution
can be expressed as E =pu—Ay(u)+O0(1%). The sign of
x(u) enables us to determine the tendency of the
solution's behavior. If we know that y(E) is a monotonic
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function, either positive definite or negative definite, we
can determine the direction in which the solution will
shift as A increases continuously. For example, if y(E) is
a positive decreasing function, the solution will move
downward as A becomes increasingly positive. More gen-
erally, when we replace the left-hand side of the leading-
order equation E —u = 0 with another increasing function,
i.e., {(E) =0, the addition of another positive increasing
function will cause the zero point to shift to the left

(Fig. 2).
We must also examine the behavior 2of the dispersion
[e5) 0.)
integral defined as G(E) = |, dw%. When E <a,

the integral behaves as a purely negative decreasing func-
tion. For E > a, the imaginary part is —n|f(E)[?>, which is
purely negative in this region. The real part corresponds
to the principal value integral in G(E). Near the threshold,
the real part is negative and increasing with E, passing
through the zero point £ and reaching a positive maxim-
um, and then decreases back towards zero as E ap-
proaches infinity. See Fig. 3 for an example. Typically,
the integrand includes phase space factor p(E) o
VE —a;, which suppresses the integrand near threshold a,
which causes a higher value of E. See Fig. 3 for a case
with |f(w)]* = Vo —a;e /*. We observe that ReG(E) be-
comes positive only when E approaches A, which charac-
terizes the inverse of the interaction range. If the energy
range of interest is significantly smaller than A, then

[El+X[E]

Fig. 2. Monotonically increasing function ¢(E) that satisfies
{(w)=0. The solution for (E)+x(E)=0 is smaller than u if
x(E) is a monotonically increasing positive function.

Re G4 (E)

Fig. 3. General behavior of the real part of the G(E) = f:’ dw }ffﬂ,s

ested energy region is much smaller than A, then ReG(E) < 0.

ReG(E) remains negative. In the following, we will
primarily focus on this region.

With this preparation, we can explore some interest-
ing and instructive simple cases that are relevant to the
phenomenological analysis of the spectrum.

First, we consider the cases with only continuum
states.

1. In the presence of a single continuum and self in-
teraction vy, if vy, is sufficiently negative (i.e.,
attractive), a bound state will emerge at Ey < a;.

This is the simplest case. The M matrix reduces to a
function

My =vi(1-viiG(E)),

oo g1 (w)I? .
where G| = ful dw—"——-" and q, is the threshold. Be-
E—-w+ie

cause G(E) is negative and continuously decreasing for
E < a; with limg_,_,G1(E) =0, as shown in Fig. (3), for
M, to have a zero point at E, < a;, coupling v;; must sat-
isfy condition vy; < 1/G(ay).

2. With a second continuum state included, we can
examine the coupled-channel effect on the dynamical
bound state of the lower channel discussed in previous
case when v;; <0.

The M matrix becomes

vit(1 =v11G1(E)) = vioP Ga(E)
via(1 =vi1G1(E)) = V122G (E)
va1(1 =v11G1(E)) = varv21 G (E)
V(1 =viGo(E)) = viaG(E)

oo (o2
Gio / ol @P
a E-w+ie

i

(68)

where a; and a, are the thresholds for the two channels
with a; < a,. The determinant can be calculated to be

Re G(E)

function using |f(w)P? = Vo —ae @/*, with A =5, a = 0. If the inter-
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detM = (detv)(l 111G (E) = vpGo(E)
+(detv)G(E)GA(E)),

Note that because v;, appears only in detv in the form of
[vi2?, the phase or sign of vy, is irrelavent to this result in
this context.

We consider four cases progressively. In each case,
we first present the result and then provide the reasoning
behind it.

(a) When vy, #0 and vy, =0, the coupled channel ef-
fect will play a role of attractive interaction, causing the
bound state to shift from E, to a deeper energy level Ey,,
ie., Eoy <Ej.

This can be demonstrated by directly calculating the
determinant of M, yielding

detM = —|vio*(1=v11G1(E) - viaPGI(E)GA(E)) . (69)

At E <a,, the last term —|vi»>’G,(E)G,(E) in the
bracket is negative and decreasing, whereas term
—v11G((E) is also negative and decreasing. Following
similar reasoning as illustrated in Fig. 2, £ must be much
smaller to have a zero point of detM, denoted as E,.
This discussion does not rely on the smallness of the
coupling; therefore, it is also valid for strong interaction.

(b) When a sufficiently small vy, is then turned on,
the result depends on the sign of vy. A negative vy
causes the bound state to shift to a deeper energy level,
whereas a positive v,, results in a shallower bound state.

The contribution from v,, to detM at the zero point
Eq, can be expressed as

- V22|V12|2(V11V22 - |V12|2)G1(E0b)G§(E0b)
~ V22|V12|4G1 (EOh)Gg(EOb) + O(V%2)~

When vy, is negative, indicating a more attractive interac-
tion, this term contributes positively to detM for E < a,,
thereby negatively affecting the terms in the bracket of
Eq. (69). This results in the bound state shifting deeper
from Ey,, moving away from the threshold. Conversely,
when vy, is positive, the bound state becomes shallower,
moving upward from E,. Therefore, when both vy, and a
positive vy, are present, the direction of the bound state's
movement from E, depends on the competition between
the effects of vy, and vy,.

(c) For a large |vy|, when v, >0, we can conclude
that the bound state will be located to the left of E, but to
the right of Ey,.

This can be understood by expressing detM as fol-
lows:

detM = (detv)(1 —vGo(E)) (1 -v1iGi(E)

|Vlz|2
B E)GI(E)GZ(E>) (70)
and by considering the positivity of —v,,G,(E) in the last
term in the bracket for E < a,. As vy, increases, the abso-
lute value of the last term in the bracket deceases. Thus,
when a positive vy, is turned on from 0 to oo, the bound
state moves from E, to Ej.

(d) When a negative vy, is introduced, starting from
zero and becomes increasingly negative, the bound state
will shift deeper from Eg;, to —oco.

This occurs because, for fixed E, term 1 —v,»G»(E) in
the denominator of the last term in the bracket ap-
proaches zero, leading to a divergence of that term. To
cancel the first two finite terms, £ must become increas-
ingly negative such that |G,(E)| decreases sufficiently, en-
abling the last term to remain finite and effectively can-
cel the first two terms in the bracket. Consequently, this
will cause the bound state to shift deeper from Ej, to —co.

3. Similar to the previous case, when only an attract-
ive interaction exists in the second channel, ie., v, <0
with vy =v;; =0, a dynamically generated bound state
(E,) can exist below a, and is assumed to be above ay,
satisfying condition 1/Gj(a;) < vy < 1/Gaxp(az). We can
then examine the effect of turning on the first channel on
the bound state spectrum of the second channel. We con-
sider two cases.

(a) When a small vy, is introduced while keeping
vi1 =0, the bound state will transit to the second sheet.
Whether the mass of the state increases or decreases de-
pends on the sign of ReG;(E,). A negative ReG1(E,;) will
cause the mass of the state tend to decrease, whereas a
positive ReG1(E;) will lead to an increase in the mass.

In this case, we have

detM = —|vio (1 =vGa(E) - viaPGI(E)GA(E)) . (71)

Consider solving detM =0 in the powers of v, using it-
eration. Because E, > a;, the G,(E) factor in the last term
contributes an imaginary term of —nilg,(E)?. Combining
this with the other factors yields a negative imaginary
part on the order of |v},)* in the bracket. For detM =0 to
hold, the state corresponding to E, must move into the
complex plane, enabling term —v,,G,(E) to generate a
negative imaginary part of order 12, to cancel the imagin-
ary part of the last term in the bracket. Thus, £ must have
a negative imaginary part, and with the +ie in the defini-
tion of G;(E), the pole moves continuously to the second
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Riemann sheet. This is consistent with the common
knowledge that the resonance poles cannot reside on the
physical sheet. Whether the mass of the pole is increas-
ing or decreasing depends on the the sign of the leading
real part of the last term, which izs determined by examin-
ing ReG (Ep) = P.V. [* dwlgElb(%. If this value is negat-
ive (positive) the mass will decrease (increase). This is
owing to G,(E) being negative and decreasing for E < a,,
leading to a negative (positive) contribution from the real
part of the last term in the bracket. In the example illus-
trated in Fig. 3, when A is much larger than a,, where
ReG/(E) is negative and monotonically increasing near
E,, turning on the vy, will cause the mass of the dynamic-
ally generated state (from E,) in the second channel to
decrease.

(b) When a small |vyy| is also turned on, as long as
[vi1| is sufficiently small, the result will be the same as
previous case.

Similar to the previous case, detM can be expressed

as
detM = (detv)(1 — v“Gl(E))((l —v»GH(E)
|\/12|2
TG O (B0
(E—p)— F1(E) - Fo(E)
M= | v FEE) - v, T E)
Vi FHE) v FFHE)  var(1=v11Gi(E)) = vavai Go(E)
(W) (w) () g(w)
where .=, di)w, 7=, d‘”%>
Fei | RAQIHD)

an E-w+i0"
We examine three different cases.

1. One bare discrete state coupled with two con-
tinuum states with v;; = 0.

When only the interaction between the discrete state
and continuum states exists, i.e., vi; =0, v =0, v =0,
we need only to examine

My = (E-p)—F1(E) - F2(E) = 0. (74)

By default, we will consider <« A and ReF;(u) <0
similar to Fig. 3.

(a) When u < ay, because F1(E) and F,(E) for E < a;
are negative and decreasing, the solution, denoted as E,,,

v FF(E)—vuF3(E)
vii(1 =v11G(E)) — V2P G2(E)

= (detv)(1 = v Gy (E)) (1 = v Ga(E)

B viol? (1 - vi1(ReG/(E) - ilmG (E)))
[1=viiGi(E)P

Gi(E)GA(E))
(72)

Compared with (71), an extra factor 1/(1 —v;G;) ex-
ists in the |v*> term. The difference is of order
O(viIvial?), and therefore, for sufficiently small |vy|, the
result would be the same as in the previous case.

4. A bound state could also be generated from the
pure vy, interaction with no self-interaction, i.e., vy =
vap =0, regardless of the sign of vy,. In this case, v, acts
as an attractive interaction.

If vii=vp=0, detM=—|v,*(1 -V’ G(E)Ga(E)).
Because both G,(F) and G,(E) are negative and decreas-
ing for £ below the first threshold, a solution to detM = 0
can exist when |v;;)* is sufficiently large, specifically
when |vi2> > 1/(G;(a;)G2(a;))). When |vj,|> decreases, the
bound state will go up through the threshold to the second
Riemann sheet, becoming a virtual state or a resonance.
Thus, activating only vy, is equivalent to enhance the at-
tractive interaction when only two continuum states exist.

Next, we add a discrete state of bare mass y with
coupling vertex functions to the two continua, fi(w) and
f>r(w). Now M matrix becomes

—ViaFH(E) = v 35 (E)
Vio(1 =vi1G(E)) = vi2vGo(E) (73)
V(1 =vnGa(E)) — viaP G (E)

[

will be less than u. This indicates that when the discrete
state lies below both continuum states, turning on the in-
teraction between the discrete and continuum states
causes the discrete state to move deeper below the
thresholds.

(b) For a; <u<a,, when sufficiently weak interac-
tions f; and f, are gradually turned on, the discrete state
would move to the second sheet and the mass will de-
crease.

In this case, only #,, contributions near u are signi-
ficant to the shift of the zero point, as observed in the iter-
ation solution. With #,(u) < 0, and assuming Re#;(u) < 0
(as observed in the case of exponential form factor with
u << A), a weak interaction between the discrete state and
the two continua will also lead to a decrease in the mass
of the discrete state. Because ¥;(u) has a negative ima-
ginary part, the energy of the discrete state solution and
—F>(E) will develop negative imaginary parts to cancel it.
Consequently, the discrete state will move continuously
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to the complex plane of the second Riemann sheet.

(c) When p > a,, similar to the previous case, the dis-
crete state will go to the third Riemann sheet and the
mass will decrease.

The discussion is similar to the previous item. When
1< A, we find that Re(F7,(u)) < 0, and these terms act as
attractive interactions, driving the mass of the discrete
state downward. The negative imaginary parts of 7 ,(u)
result in the solution moving down to the third sheet of
the Riemann surface.

This may provide an understanding of why most of
the open-flavor effects tend to cause the mass of the c¢
state to be smaller [35]: A in the corresponding system is
sufficiently large or the interaction range is so small such
that Re(F;(w)) < 0.

2.One bare discrete state coupled with two con-
tinuum states with v;; # 0.

Now, proceeding from previous case, we gradually
turn on vy; # 0 and leave vy, = vy = 0. Subsequently, we
must examine the zero point of the determinant of the
first 2 x 2 submatrix, denoted as M;,

detM, =((E - ) = F1 = F)(vi1 (1 =vi G1(E) = 0V} FEFH)

(75)
o e OWFEF
=v;(1 VllGl(E))<(E wW—=F1-% m .

(76)

(a) We first consider E, < a,. We continue to use E,
to denote the solution to M =(E-u)-F,—-F>=0,
meaning that the discrete state is renormalized from bare
mass u to E, by turning on f; and f,. Another bound
state may be dynamically generated by the continuum-
continuum interaction vy;, denoted by E,, which results
from the solution to 1-v;;G,(E) =0 when f; =0, as dis-
cussed in case 2. We would examine the effect of turning
on vy; on the bound state E, and then the effect of turn-
ing on f;, on the bound state E,.

e The simplest case is when v(; > 0, no bound state is
developed by the pure continuum-continuum interaction.
Turning on v;; will cause the bound state to move up-
ward toward the threshold from E,,.

This occurs because at E = E,, the last term in Eq.
(75) becomes |vy; F£(E,)I* >0 and (vi;(1-v;;Gi(E,))) >0,
whereas ¥,(E,) are negative. Thus, turning on v,; has
the opposite effect of 7, on the discrete state. Therefore,
the state moves upward from the previous solution E, to-
ward the threshold.

e [f v;; <0, the bound state would always move down
from E,.

We first consider a case when |vy;| is sufficiently
small, such that |vi;FF(E)?/(vii(1=viiGi(E,))) <0. This
condition will cause the discrete states corresponding to
E, to move downward. A larger |v;;| may generate a zero
point of (1 —v,,G|(E)) at E, < a1, indicating a bound state
at E, that moves down from the threshold a, when

0. B V%1|Tlg(E#)|2
fi(w) =0. Because at E, < Ey, (1 —viiGy(E,))
F£(E) continues to decrease similar to G;,(E) for E < E,,
the previous result remains valid for large |v;;|. In this
case, when negative vy, is activated and becomes increas-
ingly negative, the bound state generated from u consist-
ently moves down.

<0, if

e For the bound state from E,, switching on small in-
teraction fi(w) will cause the bound state to move up-
ward toward the threshold.

The reasoning is as follows. Because E, moves down
from the threshold as v;; becomes increasingly negative,
we have E, < Ey and (Ey—p)—F1(Eo) —Fa2(Eg) > 0. Sub-

vllﬁgﬁ&
(E-p)=F1-%2
the bound state corresponding to E, to shift upward to-
ward the threshold. Therefore, in this case, turning on f;
appears to activate a repulsive interaction that deceler-
ates the downward movement of the state at £, as v, be-
comes more attractive. However, turning on f, will re-
duce this deceleration effect, because —F; is positive and

V2 7:!27:81'

1171 1
(E-p)—F1-%

(b) Next we examine the case when a; <pu<a,
fi2(w) is sufficiently small, vy, = v5, =0, and ReF;(u) <0,
to observe the effect of turning on small v,,. By iterating
once, we have an approximation to the solution

sequently, the negativity of term causes

will become smaller.

WFWFW g9

E, =
=R T+ TG0+ S

Expanding to O(v,;), we have

ReE, = pu+ReF (1) + Fo(w) +viy [IP.V.FE )P
-1+ 007), (78)

ImE; =—7(1fi(@F +2viiRe[F (W) fi (g W)]) + O07,),
(79)

where P.V. means the principal value part. Thus, the ef-
fect of turning on v;; on the mass is determined by the vy;
term in Eq. (78). If it is positive (negative), it will play an
attractive (repulsive) role. Whether the width will be
broader depends on the positivity or negativity of the
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second term in the bracket of Eq. (79), respectively. Us-
ing our example form factor, ReF{ (u)Re(f; (u)g(w) <0, a
positive (negative) v; causes a broader (narrower) reson-
ance.

(c) When u > a,, both 7, have imaginary parts and
Egs. (78) and (79) change to

ReE, = u+ReF (1) + ReFr(u) + vi 1 [[P.V.FE ()|
- fiwewl1+007), (80)

ImE, = -7 (lAiP +1 AW
+2v Re[FF () fi(wg" (w)]) + Oy (81)

The analysis and result are similar to the previous case.

3.One bare discrete state coupled with two con-
tinuum states with v, # 0.

Let us now discuss the effect of nonzero v, and set
vi1 = va, = 0. Then, the M matrix becomes

(E-)—FUE)-F2oE) —vaFF(E) —viF{(E)
M= —vy, FEHE) ~ViaPGaE)  viz
_VizﬁgI(E) Vo —vi2PG1(E)
and

detM = sl ( = ((E 1) = F1(E) = F2(E))
(1-vi2’ G (E)GA(E))
+ vl (FHEFFHE)G(E) + FEEYFH(E)GAH(E))

+V T )T (E) + v FEEFS(E)).
(82)

This time v, appears not only in |[vj,|*> but also in linear
terms.

When vy, =0, the bare state at £ =y is renormalized
to E, <ay, which satisfies (E,—u)—51(E,)—F>(E,) =0.
When coupling vy, is turned on, the position of this
bound state will shift. The result depends on the sign of
the last line in Eq. (82) near the bound state. If this term
is negative, the effect of turning on v, will be to pull the
bound state downward. Conversely, if it is positive, a
small |vi,| will initially cause the bound state from E, to
move upward. However, as |vj;| becomes sufficiently
large, the state will eventually move downward.

The reasoning is as follows. For E < ay, the |[v}5]* term
in the second line of Eq. (82) is always negative and de-
creases with E. The linear terms of v\ in the third line
takes the form 2Re[v,, 75 (E)FE(E)].

We first consider a special case when the two terms in

the last line are too small compared with the second line
and can be ignored, for example, |F;|<|F{| and
175 < |Gal.

e When |v;]’is sufficiently small, factor
1 —vi2PG1(E)GL(E) > 0 for E <E,, and the effect of the
purely negative second line is to push the discrete state
downward from E, as |vi»| increases from zero.

e When |v]* becomes sufficiently large, such that
the solution to 1-|v;,[>’G(E)G,(E)=0 generates E,,
which comes down from the threshold a;, we can expect
E, <E, because E, is already below the threshold ;.
Given that G(E)G,(E) >0 and increases with respect to
E Dbelow the threshold a;, we still have
1 =2l G{(E)Go(E) >0 for E <E,. Thus, the discrete
state generated from the bare state always moves away
from the threshold.

e We can also examine the effect of the second line
on the bound state generated from E,. Because we have
(Ep—p) —F1(Ep) —F2(Ep) > 0, the effect of the negative
second line is to decelerate the bound state from moving
down or to pull it toward the threshold a;.

Thus, the second line of Eq. (82) plays the role of an
effective attractive interaction, dragging the bound state
generated from the bare discrete state downward, where-
as it functions as an effective repulsive interaction for the
bound state resulting from the continuum-continuum in-
teraction.

If the last two terms on the last line cannot be ig-
nored, they will add complexity to the discussion. If the
sum of these two term is negative, it will play a similar
role to the second line, whereas if it is positive, it will
have the opposite effect and compete with the second
line. Because it is of order v,, it may contribute more
significantly than the second term for very small vy,. If
this is the case, when v, is activated, the third line will
initially dominate the second line. If both interaction ver-
tices f; and g; are real positive exponential functions, as
in the exponential form factor example, the sign of the
last line will correspond to Rev;,. A small positive Rev,
will cause the bare discrete state to move upward toward
the threshold. However, as Rev;, increases, the terms in
the second line will dominate, dragging the discrete state
down from E, and decelerating the one from E, from
descending. Additionally, the third line may become suf-
ficiently large such that the bound state from E, collides
with the bound state generated from E, as |vi,| increases,
and then they may separate again into two bound states,
one moving downward and the other upward.

In more complicated cases, the results may be intric-
ate and may not present a simple picture. The previous
cases serve as examples for analyzing the effects of the
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different interaction in various scenarios and qualitat-
ively understanding the behavior of the pole positions.

VI. CONCLUSION

This paper presents several improvements to the
Friedrichs model, aiming to provide a more comprehens-
ive description of coupled channel scattering in real-
world scenarios. First, we investigate scenarios involving
multiple discrete and continuum states, focusing on the
general interaction between these discrete and continuum
states. Second, we consider the inclusion of continuum-
continuum interactions, employing a more general separ-
able interaction that is independent of the interaction
between the discrete and continuum states. Notably, this
extended model remains exactly solvable. Third, we ad-
dress scenarios in which the square integrable interaction
between the continuum states takes a non-separable form,
rendering it non-solvable. However, we propose an ap-
proach to approximate this potential by expanding it in
terms of a selected basis set, effectively expressing it as a
truncated series of separable potentials. Consequently, at
a finite order, this potential becomes solvable. To simpli-
fy the analysis, we also suggest utilizing the same basis
set for expanding both the discrete-continuum interaction
and continuum-continuum potential. A few simple ex-
amples are discussed to analyse the behaviors of the
masses of the discrete states when different interactions
are turned on, which may be useful in qualitatively under-
standing the spectrum in the coupled channel system. A
few interesting results may also be useful for the systems
where the couplings between states can be tuned such as

D

the cold atom systems.

This discussion establishes a theoretical foundation
for the application of the Friedrichs model in various con-
texts, including hadron physics and other areas involving
coupled channel scattering and intermediate resonances.
To utilize the model effectively, we must first model the
interaction between the discrete-continuum and con-
tinuum-continuum components. Subsequently, the con-
tinuum-continuum potential can be approximated using a
series of separable potentials, enabling resonance
searches or S-matrix calculations. An advantageous as-
pect of this model is the automatic preservation of unitar-
ity in the S-matrix while avoiding the presence of spuri-
ous poles on the first Riemann sheet. In contrast, the con-
ventional K-matrix parameterization lacks control over
spurious poles on the physical sheet.

However, a remaining challenge lies in determining
the continuum-continuum interactions in a reasonable
manner. Further research is required to develop suitable
approaches for obtaining these interaction terms in a
manner that satisfies the physical expectations and
provides reliable results in various real world applica-
tions.

APPENDIX A: DETAILED DERIVATION OF THE
NORMALIZATION AND S-MATRIX IN
SECTION IIT

The normalization of the continuum state using the

coefficients in Egs. (25) and (26) can be calculated as fol-
lows:

P : : : ! S ALEGE) L
<\P;1(E)|\P,;(E )> = Zajm(E)ain(E )+6mn6(E_E )+ E—E I10 (Z ! ! +Zvnn’Bn’m(E)gn(E ))

i=1

D ’
bt (50 A E)
E'—E=+i0 E - M,

Jj=

E-M,

j=1 w=1

C
+ Z Vnn’Bn’m(E/)gn(E))
n’=1

+ZC:/ dw ! !
ey, E-wTFIOE -w=i0

am

1 1
E’-E+i0 (Efam'o E’—wii(i)

i’: Ap(E) frm ()
E-M,

=1 =1

(XD:A;M(EW @

Jj=

C
+ Z Vi'n Bn"n(El)gm’ (0.))> .

Zv;f,,/B;m(mg;,(w))

n'=1

E-M,

(AT)

Note that we have omitted the + superscripts in coefficients a;,, A;,, and B,, because they all have the same super-
script of +. Using the definitions in Eq. (30), Eqgs. (32) and (33), the last two lines can be reduced as
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1 D D C
EL0 [ D" as(E) (6,7 (E - EN-VE(E)+ VE(EN) b (E)+ > > ain(E) (=D VAR B + VEH(E)) B\ (E)
o Jj=1 j=1 n'=1 m
D C C C
3N BE (-VEFE) Y i VIENEEN Y BE(E) (VR E) i + Vi ViR (E)) B ()]
J=1n=1 m'=1 n' . m'=1

D 1 D
==Y @i (E)a(E)+ T ELi0 {Z(- Frm(ENas (E) + a5 (E) f1,(E"))
j=1 =1

C
+ Y (O Gu(EWyr B (E') + Bifm<E>v;,,,,g;/(E')am,nﬂ :

n’.m’'=1

Thus, they cancel with the terms in Eq. (A1) except for the §(E — E’) term. The S-matrix can also be obtained by

D D
(FLENPS(EN) =D Y oy (B, (E') +6,0(E — E')

i=1 i=1

D 4- c
1 AL (E)f(E)
— - 2niS(E-E’ Dm0 = < Bt (E E)
+(E—E’—i0 rio( ))<; E-M, +;Vm, n(E)8H(E")
D c
1 ALL(E) fin(E) >
+ m + nll’B+/ E (E
E/_E+10</_Zl E/_Mj HZ::IV nm( )g( )
c D . c
1 1 AT(E)f: (W)
+ d < M-l‘ * B (E)e*, >
mz—l/a CE—wti0E —w+i0 ; E-M, ;"mn wm(E)& (W)
b c
AY (E')f-/m,(a)) )
Jn J + ’
—_ 4 e B (B @ . A2
j’z:; E/_Mj, nz,z:lv n n( )g ((4)) ( )
We h d ! ! 1 ( ! 1 ) = 21i6(E- ) 1 1
= - —2mid(E - w =
© Ve W E—wri0E —w+i0 E—E+i0 E—q-i0 E-w+i0 E-w+i0 E-E+i0

(o~ o)
E-w+i0 E —-w+i0
The last two lines can be reduced to

. Because 6(E' - E)( F—wti0 E-oxt iO) =0, i0 in the first factor does not have any effect.

1 D D C
=ET0 { D (B (65 (E = EN=V;(E)+ V5 (EN)a},(EN+ Y > aj(E) (— > VB + V;;,‘,B(E')> B (E)
7 =1 m’

jm
Jj=1 n"=1

D C C C
+> Y By, (—v;,;‘,B*(E) D Vi V;,f;?) @ (EN+ Y B, (E) (-v,;,i*, (E)Wrar + Vi1 v,,:,lf,,,(E')) B;,,n(E')}
j=1n=1 m'=1 n' . m’'=1

D 1 D
= > BB {Z(— Fom ENo(E 4 (BN fon(ED)
=1 7=

C
+ ) (=B @n(EWurw Bl (E) +B,:;(E)v:,,,,g:(E')ém,n)} :

n 1

These terms cancel with the other terms except the terms with §(E — E’). For E = E’ and is real, the final sum inside the
square bracket will be zero:
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D C
(> frnl D (B + a5 BV 3 (EN 4D (B 8 ENurt By (E) + By (ENire 81 (Eoura)| = 0

j=1 n’m’'=1

which can be derived directly from Eqgs. (32) and (33). Thus, the S-matrix can be derived:

A5 (E)f(E")

S, m(E,E)=6(E—E") - 2mi6(E — E')( Z T
j

Jj=1
D

= S(E—E')—ri6(E - E)(Z (G EVFEDN + frm EXC5, (ED) + Y (Vi

=1

+Z o B E)SA(EN)

C
By, (E)Ey(E") + Vo Bl (E)gn(E")) ) .

n’'=1

From the definition of Y and F in Eq. (29) and solving Y from Eq. (31), we can reformulate the previous equation us-

ing the matrices and obtain Eq. (36).

APPENDIX B: SOLVING THE APPROXIMATE

CONTACT POTENTIAL
This section provides the details for solving the eigen-
state problem for the Hamiltonian in Section IV. After
approximating the general contact potential as the sum of
the separable potentials, the approximated Hamiltonian
for multiple continuum and discrete states is shown in Eq.
(58), which is copied here for completeness:

D C )
H=" MliXil+» / dw wlw; nXw;n|
i=1 n=1 v 4
c o
+ > Vs / Ao/ gy (@)le';m) )

mun=1 Am

X ( / ) dwg,jﬁ(w)(u);m)

n

+ZZ [m(/ dwf, (@) wsn])

j=1 n=1

+( / dwﬁn<w)|w;n>)<j|} :

n

(B1)

The general eigenstate for this eigenvalue problem can be
expanded using the bare discrete and bare continuum
states:

W(E)) = Za,<E>|z>+Z / dwy, (E, w)|w;n).

i=1

The proceeding derivation goes in parallel with the pro-
cess in Section III. With this ansatz, the eigenvalue prob-
lem can be reduced to the following equations:

(M;—E)a(E)+AE)=0, j=1,...,D

D
3" @ (E)finl@) + (@ EW(E.w)

=

C
+ Zvnm,p&wmd(E)gnp(w) = O’ n= 1’ sees Ca

and w > a,
m=1
where we have defined
AJE) = Z / dw f;, (W (E, w),
n=1
Wns(E) = / dwy,(E, w)g,s(w). (B2)

There are C continuum eigenstate solutions and [¥(E)),
@;, Y5, and A;(E) require another index m to denote dif-
ferent continuum solutions, i.e., |¥V,.(E)), @in(E), Yums(E),
and A;,(E). Similar to Section III, we require that
|¥,.(E)) tends to |E,m) as the interactions are turned off
and consider the C continuum solutions for E > ac. Then,
the above equations can be reduced to

G(E) = G4 A (- (B3)
. 2 @5, (E) fin(w)
Ui (E-) = 6, 0(E—w) + ) | =25 =
j:
E),
+Zv,m, oo l”"gp( tji ‘jé‘“). (B4)

n’'=1

By applying operation Y, [, dwf;,(w)x and opera-
tions D s Viw pro fan dwg,;(w)x on (B4), we respectively
obtain
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D C C
. 3 Jrn(@)f;(w)y A, (E) f; n(w)gms (w)
B ,Z: (E-Mp20 - 2. ), Fmwsio JE-H nz ol ’""(E)/ “E-wsi0  ®Y

A c B (W)Z}5(w)
Vi sp/ Zms(E)— Zaﬂn(E)Z Vo sp' . E—w=+i0 Z l//" ’"P( ) | Vi o0’ ; nm 5p V' 8'p o dw E—w=+i0 |
(B6)

These two equations correspond to previous Eq. (27) and (28). Notice that the differences here are Greek letters and the
sums. Similar to the vectors and matrices defined in Egs. (29)—(30), we define

FEodurpr = Vi s Bas(E)s - ()= fr(E), m=1,...,Cij=1,....D:6=1,2,....N

Yu(E)j = @j(E)s Yodwp =¥p(E),  j=1,...Dsmn’ =1,....,Cip=1,2,....N (B7)
ZC Zur (W)Z5(@)
* * no’ né ;o Y _
Vlllep o = Vum ppr = Vnm/’(;plvm,/’yp/ dwm, m,n = 1,2,...,C,,O P = 1,2,....N
n=1 an -
~ f w(W) [, (w)
AA _ J jn .oy
Vi =(E=M;)é;; - E do=r—2, Jj/=1.2,....D

n=1 v dn

Jin(@)8ns (W)
AB  _ S jp\E)Ens \& . ot Co—
anp g Vot (;p/ F_wzi0 j=1L....D;n =1,...,C;p=1,2,....N

n=1 dn

C ~%k
VI == Vi s dol 8@ g D =1, G = 1,2, N
m'p’,j g nm’ ,6p o E—w=+i0 > > s > I s & s
N VAAE) VAB(E)
M,=|_ ~ . 1J=1,...,D,D+1,....D+NC. (B8)
VBA(E) VBB(E)

We still have M*" = M. With these matrices, Egs. (B5)  As earlier, M is still independent of m, but F,, depends on

and (B6) can be expressed as m. If an infinite number of bases are used, matrix M and
vectors F,, and Y are infinite dimensional. Now, we have
M-Y,=F, considered that the bases selected sufficiently well and

have made a truncation to a finite order N of the expan-
sion of potential V,,, i.e., v,y s =0 for 6,0 > N. Thus, M

= o AA is a (D+NC)x(D+NC) matrix. In general, matrix M is
ZV (Edam(E) + ZV, wpEVwmp(E) = [, (E), (B9) non-degenerate for E > a,,, and Y,, can be solved:

j=1 n’=1

or

o BB Y. (E)y=M""-F,. (B11)
va,,(E)ajm(E)Q VB (EWimp(E) =V o (E)E o (E).
! " With all the 3, (E) and «%,(E) values at hand, the ap-
(B10) o J
proximate continuum solutions are solved as
P2 (E)) = Za,,n(E)IzHIE m)+z / do s ( E @, (E) fin(w) + E V- (B (@) ) i)

n’=1

nn'=1

i+ @ (1S / dwEfg“f. 1)+ (3 v (E) / 2O o). @B12)
=1 n=1 * an -
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We can check that the normalization is (V% (E)[YE(E")) =
OmO(E — E’). The S-matrix can be obtained:

(VL (BN, (E")) = 6,n6(E — E')

—27i(E — E)(F (M) F) (B13)

For discrete eigenvalues and discrete eigenstates, Eq.
(B4) will not have the delta function, and we have

M-Y=0,

where Y is defined similar to Eq. (B7) without subindex
m. The generalized energy eigenvalues for the discrete
state can be obtained from detM(E) = 0, and eigenvector
Y can be obtained with proper normalization selected as
in the previous section. Thus, the i-th discrete state can be
expressed as

(i) - @) Jin@)
WO(E,) = Za (E)(|]>+/ B )

i=1 An
' 8o (W)
+ Z Vnn’,é’plp,(/ll’)mp(Ei)/ dw E —w |(,(),I’l> )
n’=1 An !

with YO(E)-M'(E))- Y (E) = 1

(B14)

where M'(E) is the derivative of the matrix w.r.t. E;, and
the integral contour must be deformed for E; on unphys-
ical sheets as before.

APPENDIX C: SOLVING THE EIGENVALUE
PROBLEM WITH BOTH APPROXIMATE
VERTEX FUNCTIONS AND CONTACT
INTERACTIONS

This section solves the eigenstates for the Hamiltoni-
an in Eq. (63) where both the contact potential and ver-
tex are expanded using function bases g,;, which we re-
produce here for completeness:

D C 0o

H=> MliXil+» / dw wlw; n)Xw;n|
i=1 . nzloo n

+ > Vg / des' B (@' sm) )

mn=1 am

X </°° dwé%(w)(w;nl)

n

+ZZ {f/msl])(/ dwg;s(@)wsnl)

j=1 n=1

ol [ dwga@lom) i ©n

n

This case is similar to those discussed in [10, 26], where
the same form factor for the continuum before both in the
discrete-continuum and continuum-continuum interac-
tion. Using the eigenstate ansatz

IY(E)) = ZQ(E)IlH/ dwy,(E, w)lw; n)

i=1 an

D
Za<E>|z>+ZW(E> / dwgs(@)w;n), (C2)
i=1

n=1

and proceeding in solving the eigenvalue problem simil-
arly to the previous section, we find that A; in Eq. (B2)
becomes

C
A(E) =" frstins(E).

n=1
For the m-th continuum solution |¥,,(E)), coefficients «;,

V., and ,; take another subindex m and Egs. (B3) and
(B4) become

1

a,,,(E)— A,n(E)— E Fiwpwmp(E),  (C3)
J J! E— M g jn'p P
ZC D)
+ _ _ + L, nd’
wnm(E’ (,t)) - 6nm6(E w) + £ wn'mp(E)me i ”(E)E—wi 10’
(C4H

where V,s,,(E) is defined as the matrix elements of a
NC x NC matrix V

D
f'n y ftﬂ J
(VED oy =Y 5t
J

J=1

Vnn’,(s'p,

which should be be non-degenerate for general £. Mul-
tiplying g;;(w) to above Eq. (C4) and integrating w.r.t o,
we obtain

C
6nmg;a(E) = Zw:'mp(E) |:6nn’6p6

n'=1

né’np(E)/d gn& (w)gné(w) ) (CS)
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We define NC x NC matrix M and NC dimensional vec-
tor F,,, Y,, as

Gns(w)

v G (W)
Mnd,n’p = 6nn’ 6/)6 - Vné’,n’p(E) /a:‘ dwm’ (C6)
(Fm)nﬁ = 6nmgm5(E) s (?m)n’p = l//j’mp(E‘) (C7)

Thus, Eq. (C5) can be expressed as F, =M-Y,,. Note
that M is independent of the m-th solution, but F,, de-
pends on m. To observe the real analyticity of detM, we
define

(Wi)min’p = (Mi : Vﬁl)né,n’p

6’m’ / d(u gnp(w)g:;&(w) (C8)

=V} ,
E-w=i0

non'p

n

and then we have M*=W=.V. Because (W*(E))' =
W(E) and V(E) is Hermitian for real E, detM*'(E) =
det M7 (E). Therefore, the analytically continued detM(E)
with detM*(E) and detM~(E) on the upper and lower
edges of the cut above the threshold satisfies the
Schwartz reflection relation, detM*(E) = detM(E*).

Subsequently, in general, matrix M is non-degener-
ate for E > a,,, and Y,, can be solved:

‘ﬂ:fmp(E) = (?m(E))np = (M_] . F‘m)np = (M_l)np,mégmﬁ(E)-
(C9)

With all the v, (E) values for p <N at hand, all o3,(E)

and ¢ (E,w) can also be obtained. Thus, the continuum
state can be approximated as

D C C
WEE)) = ab(E)ND+E.m)+ > > 4, (E)WVos o E)

i=1 n=1 n’=1

Go(w)
X/adwE_wiiOIw,n).

n

(C10)

We can check that the normalization is (¥ (E)|V:(E")) =
0,m0(E — E’). The S-matrix can be obtained as

LB, (EN)) = 6,0(E — E") = 2mi6(E — E')

C C
XY W E W (BN (E)

n=1 n’'=1
=6,m0(E — E') = 2mi6(E — E')

X(FL'(W+)_1 'Fn)~ (Cll)

Similar to the previous section, the generalized energy ei-
genvalues for the discrete state can be obtained from
detM(E) =0, and for each eigenvalue E;, ) can be
solved from M-Y = 0. Thus, we have the discrete eigen-
states,

C D %
OED = 3wl ()| S i)

=1 =1 Ei-M;
. G (@),

£ VB | dw —lwin)|,
n=1 an !

with  YOU(E)-V(E)-W'(E))-V(E)-YO(E) = 1
(C12)

with integral contour deformed for resonances and virtu-
al states as earlier.
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