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Abstract: In  the  maximally-helicity-violating  (MHV)  configuration,  tree-level  single-trace  Einstein-Yang-Mills
(EYM) amplitudes with one or two gravitons have been shown to satisfy a formula in which each graviton splits in-
to a pair of collinear gluons. In this study, we extend this formula to more general cases. We present a general for-
mula that expresses tree-level single-trace MHV amplitudes in terms of pure gluon amplitudes. In this formula, each
graviton turns into a pair of collinear gluons.
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I.  INTRODUCTION

In four dimensional spacetime, tree-level single-trace
maximally-helicity-violating  (MHV)  amplitudes  within
the Einstein-Yang-Mills (EYM) theory have been shown
to  satisfy  the  Selivanov-Bern-De Freitas-Wong (SBDW)
formula  [1−3],  which  expresses  the  amplitude  through  a
generating function. The Cachazo-He-Yuan (CHY) [4−6]
formula provides a general approach to EYM amplitudes
that is independent of the spacetime dimensions and heli-
city configuration. In four dimensions, the CHY formula
has  been  shown  to  provide  a  spanning  forest  formula
(first proposed for gravity, following the lines of [7], [8],
and  [9])  for  single-trace  MHV  amplitudes  [10],  which
was further  proven  to  be  equivalent  to  the  SBDW  for-
mula  [10]  and  generalized  to  double-trace MHV  amp-
litudes  [11]  through  a  recursion  expansion  formula
[12−16].

From another perspective, as pointed out in earlier lit-
erature  [17−21],  each  graviton  in  an  EYM  amplitude
could be considered as a pair of collinear gluons carrying
the  same  momentum and  helicity.  In  particular,  inspired
by  the  SBDW  formula,  it  was  pointed  out  in  [18]  that
single-trace  MHV amplitudes  with  one  or  two  gravitons
can be explicitly expressed in terms of MHV amplitudes
in  which  each  graviton  splits  into  a  pair  of  collinear
gluons  [18].  This  explicit  formula  for  single-trace  MHV
amplitudes has not yet been extended to cases with an ar-
bitrary number of gravitons. On this note, we take a small
step forward in this direction by providing a general for-
mula  for  single-trace  MHV  amplitudes  in  which  each

graviton  splits  into  a  pair  of  collinear  gluons. When  the
number of gravitons is one or two, this formula reduces to
the  known  results  [18].  We  expect  that  this  approach
provides new  insights  into  the  study  of  helicity  amp-
litudes within the EYM theory.

This  note  is  organized  as  follows.  In  Section  II,  we
present a helpful review of the spinor-helicity formalism
and  SBDW formula.  We  study  the  amplitude  with  three
gravitons  in  Section  III  and  outline  the  general  proof  in
Section  IV.  Further  discussion  and  conclusions  are
presented in Section V. 

II.  BACKGROUND

In  this  section,  we  briefly  review  the  spinor-helicity
formalism in four dimensions [22] as well as the SBDW
[1−3]  and  spanning  forest  [10]  formulae  for  single-trace
EYM amplitudes. 

A.    Spinor-helicity formalism in four dimensions
kµi

λa
i λ̃

ȧ
i

The momentum of each on-shell massless particle i
is expressed by two copies of Weyl spinors, namely .
We define the spinor products as 

⟨i, j⟩ ≡ ϵabλ
a
i λ

b
j ,

[
i, j
]
≡ ϵȧḃλ̃

ȧ
i λ̃

ḃ
j ,

ϵab ϵȧḃ

kµa kµb

where  and  are  totally  antisymmetric  tensors.  The
spinor  products  seem  to  be  antisymmetric  objects  under
the  exchange  of  both  spinors.  With  this  expression,  the
Lorentz contraction of two momenta  and  reads 
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ka · kb =
1
2
⟨a,b⟩ [b,a] .

Additional  helpful  properties  within  the  spinor-helicity
formalism are as follows:
 

● Momentum conservation for an n-point amplitude: 

n∑
i, j,k
i=1

[
j, i
]
⟨i,k⟩ = 0.

● Schouten identity: 

⟨a,b⟩ ⟨c,d⟩ = ⟨a,c⟩ ⟨b,d⟩+ ⟨b,c⟩ ⟨d,a⟩ ,

[a,b] [c,d] = [a,c] [b,d]+ [b,c] [d,a] .

● Eikonal identity resulting from Schouten identity: 

k−1∑
i= j

⟨i, i+1⟩
⟨i,q⟩ ⟨q, i+1⟩ =

⟨ j,k⟩
⟨ j,q⟩ ⟨q,k⟩ . (1)

A(1,2, · · · ,n)Finally,  the n-gluon MHV amplitude  at  tree
level satisfies the famous Parke-Taylor formula [23]1): 

A(1,2, · · · ,n) ∼ ⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨n1⟩ ,

where i and j denote  two  negative-helicity  gluons,  and
other gluons are supposed to be positive-helicity ones. 

B.    SBDW and spanning forest formulae

g−,g− h−,g−

g−,g−

h−,g−

Within the  EYM theory,  there  are  two  possible  con-
figurations  for  tree-level  single-trace  MHV  amplitudes,
namely  ( )  and  ( ), which  correspond  to  amp-
litudes  with  two negative-helicity gluons  and  one  negat-
ive-helicity gluon plus one negative-helicity graviton, re-
spectively. In the following, we focus on the ( ) con-
figuration; ( ) can be studied similarly.

g−g− A(1,2, · · · , i, · · · , j, · · · ,N |H)
The SBDW formula  [1−3]  expresses  the  single  trace

( )-MHV  amplitude within
the EYM theory as follows: 

A(1,2, · · · , i, · · · , j, · · · ,N |H)

∼ ⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩S (i, j,H, {1,2, · · · ,N}), (2)

1,2, · · · ,N
H = {n1,n2, · · · ,nM}

where  are gluons arranged in a fixed ordering,
and  are  gravitons  that  are  independent

S (i, j,H, {1,2, · · · ,N})
of  color  orderings.  The negative-helicity gluons are  sup-
posed  to  be i and j.  The  factor  is
generated by an exponential generating function, specific-
ally 

S (H; {1, ...,N}) =
(∏

m∈H

d
dam

)
exp
ï∑

n1∈H
an1

∑
l∈G

ψln1

× exp
ï ∑

n2∈H,n2,n1

an2ψn1n2 exp(...)
òò∣∣∣∣

am=0

,

(3)

where 

ψab ≡
[ab]⟨aξ⟩⟨aη⟩
⟨ab⟩⟨bξ⟩⟨bη⟩ , (4)

ξ η

ξ = 1 η = N
g−,g−

where ,  are arbitrarily chosen reference spinors and G
is  the  gluon  set.  In  this  note,  we  set  and to
study the ( ) configuration.

S (H;G)It was shown in [10] that can be expanded us-
ing the spanning forest form. In particular, 

S (H;G) =
∑

F∈FG(G∪H)

(
∏

ab∈E(F)

ψab), (5)

ab
ψab

where  we  have  summed  over  all  possible  forests F,
gluons  and  gravitons  are  considered  as  vertices,  and
gluons  are  considered  as  the  root  set.  Each  edge  is
dressed by , and all such edges are multiplied in a giv-
en forest F.

h−,g−

i, j

H+

(−1)

In  the  case  of  ( ),  Eqs.  (2),  (3),  and  (5)  slightly
change  as  follows  [3, 10, 11]:  (i)  are  replaced  in  Eq.
(2)  by  the  negative  helicity  graviton  and  negative-heli-
city  gluon;  (ii)  the graviton set  H is  replaced in  Eqs.  (3)
and (5) by the positive-helicity graviton set , while the
root set remains the gluon set;  (iii)  an extra is intro-
duced. 

III.  AMPLITUDES WITH THREE GRAVITONS

In  this  section,  we  extend  the  study  of  single-trace
MHV amplitudes with one and two gravitons [18], where
each graviton is represented as a pair of collinear gluons,
to cases with an arbitrary number of gravitons. We illus-
trate this by examining the example with three gravitons
in the current section and then provide a general formula
in the subsequent section.

1,2, · · · ,N n1 n2 n3

According  to  Eqs.  (2)  and  (5),  the  MHV  amplitude
with gluons  and three gravitons , ,  and 
is expressed as 
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A(1,2, · · · ,N|n1,n2,n3) ∼ ⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ S 3,

S 3

S 3

where  is  the  abbreviation  of  the  factor  given  by  Eq.
(5) with three gravitons. Specifically,  is expressed as 

S 3 = ψ1ψ2ψ3+ψ1ψ2(ψ13+ψ23)+ψ1ψ3(ψ12+ψ32)

+ψ2ψ3(ψ21+ψ31)+ψ1(ψ12ψ23+ψ13ψ32+ψ12ψ13)

+ψ2(ψ21ψ13+ψ23ψ31+ψ21ψ23)

+ψ3(ψ31ψ12+ψ32ψ21+ψ31ψ32), (6)

ψab a , b,
a,b = 1,2,3

ψi i = 1,2,3
ni

which  are  characterized  by  all  possible  spanning  forests
with  the  structures  shown  in Fig.  1.  Each  (

) in the above expression is defined by Eq. (4)
and is associated with an edge in the graphs presented in-
Fig.  1.  Meanwhile,  ( ),  which  is  associated
with graviton , is defined as 

ψi ≡
∑
l∈G

ψlni .

In  the  following,  we  analyze  the  contribution  of  each
term in Eq. (6).

ψ1ψ12ψ23

a = 1 b = 2 c = 3

First,  consider  the  term  on  the  right  hand
side  of  Eq.  (6).  This  term  is  characterized  as  shown  in
Fig. 1 (a) (with , , ). Given that 

ψ1 =
∑
l∈G

[ln1]⟨l1⟩⟨lN⟩
⟨ln1⟩⟨n11⟩⟨n1N⟩

=
∑
l∈G

[ln1]⟨ln1⟩
−⟨1l⟩
⟨1n1⟩⟨n1l⟩

⟨lN⟩
⟨ln1⟩⟨n1N⟩

=
∑
l∈G

sln1 ×
l−1∑

r1=1

⟨r1,r1+1⟩
⟨r1,n1⟩⟨n1,r1+1⟩

N−1∑
t1=l

⟨t1, t1+1⟩
⟨t1,n1⟩⟨n1, t1+1⟩ ,

(7)

sln1 = [ln1]⟨n1l⟩
ψ1ψ12ψ23

where we have applied the eikonal identity given by Eq.
(1)  and ,  we can express  the  Parke-Taylor
factor accompanied by  as 

⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ12ψ23 = ψ12ψ23ï∑

l∈G
sln1

l−1∑
r1=1

N−1∑
t1=l

⟨i j⟩4 1
⟨12⟩ · · · ⟨r1,n1⟩⟨n1,r1+1⟩ · · · ⟨l−1, l⟩

× 1
⟨l, l+1⟩ · · · ⟨t1, ñ1⟩⟨ñ1, t1+1⟩ · · · ⟨N1⟩

ò
,

(8)

⟨r1,r1+1⟩ ⟨t1, t1+1⟩

⟨r1,n1⟩⟨n1,r1+1⟩ ⟨t1,n1⟩⟨n1, t1+1⟩ n1

where the factors  and  in the denom-
inator  of  the  Parke-Taylor  factor  have  been  replaced  by

 and ,  respectively;  in

ñ1

n1 n1 ñ1

ψ12

ψ23

the  second Parke-Taylor  factor  is  denoted by .  Hence,
graviton  splits  into  gluons  and  with  the  same
momentum and helicity. These gluons are respectively in-
serted between 1, l and l, N.  We can further express 
and  as 

ψ12 = sn1n2

n1−1∑
r2=1

⟨r2,r2+1⟩
⟨r2,n2⟩⟨n2,r2+1⟩

N−1∑
t2=̃n1

⟨t2, t2+1⟩
⟨t2,n2⟩⟨n2, t2+1⟩ ,

(9)

 

ψ23 = sn2n3

n2−1∑
r3=1

⟨r3,r3+1⟩
⟨r3,n3⟩⟨n3,r3+1⟩

N−1∑
t3=̃n2

⟨t3, t3+1⟩
⟨t3,n3⟩⟨n3, t3+1⟩ ,

(10)

n2 n2 ñ2

n1

ñ1 n3 ñ3

n3 n2

ñ2
⟨i j⟩4

⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ12ψ23

When  Eq.  (9)  is  substituted  into  Eq.  (8),  we  obtain  that
graviton  splits  into  gluons  and , which  are  re-
spectively inserted into the left side of  and right side of

.  Similarly,  Eq.  (10)  finally  inserts  gluons  and 
corresponding to  graviton  into  the  left  side  of  and

right side of . The term  is ex-
pressed as 

∑
l∈G

sn1lsn2n1 sn3n2

∑
ρ(l)

PT
(
1,ρ(l),N

)
,

PT (a1, ...,am)
⟨i j⟩4

⟨a1a2⟩⟨a2a3⟩ · · · ⟨ama1⟩ ρ(l)

l ∈ G

where we have introduced  to denote the PT

factor  in short. Permutations  for
a given  are expressed as 

ρ(l) ∈
¶
{2, ..., l−1}⊔⊔{n3,n2,n1}, l, {l+1, ...,N−1}⊔⊔{ñ1, ñ2, ñ3}

©
,

A⊔⊔Bwhere  denotes  all  possible  permutations  of  two
ordered sets A and B resulting from merging A and B so
that  the  relative  ordering of  elements  in  both A and B is
preserved.  These  permutations  can  be  characterized  by
the graph shown in Fig. 2 (a).

ψ1ψ12ψ13

a = 1 b = 2 c = 3
ψ1 ψ12

ψ13

The  term  including  is  associated  with  the
graph shown in Fig. 1 (b) (with , , ). When
factors  and  are  expressed  using  Eqs.  (7)  and  (9),
and  is expressed as 

ψ13 = sn1n3

n1−1∑
r3=1

⟨r3,r3+1⟩
⟨r3,n3⟩⟨n3,r3+1⟩

N−1∑
t3=̃n1

⟨t3, t3+1⟩
⟨t3,n3⟩⟨n3, t3+1⟩ ,

n1 n2 n3

{n1, ñ1} {n2, ñ2} {n3, ñ3}
n1 ñ1 n1

n2 ñ2

we  can  split  gravitons , ,  and  into  three  pairs  of
gluons, namely , , and , respectively.
Gluons  and  coming  from  graviton  are  inserted
into the left and right sides of l, while  and  (as well
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n3 ñ3 n1

ñ1

as  and )  are  further  inserted  into  the  left  side  of 
and right side of . Thus, this term becomes 

⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ12ψ13

=
∑
l∈G

sn1lsn2n1 sn3n1

∑
ρ(l)

PT
(
1,ρ(l),N

)
,

ρ(l)where  for a given l is expressed as 

ρ(l) ∈
¶
{2, · · · , l−1}⊔⊔{{n3}⊔⊔{n2},n1}, l,

{l+1, · · · ,N −1}⊔⊔{ñ1, {ñ2}⊔⊔{ñ3}}
©
, (11)

which are characterized in Figs. 2 (a) and (b).
ψ1ψ3ψ12

a = 1 b = 2 c = 3
ψ1 ψ12

ψ3

n1 n3

Next,  we  calculate  the  term  including  (see
Fig. 1 (c) for , , and ). Applying the same
procedure employed in the previous examples,  and 
are expressed in Eqs. (7) and (9), while  is obtained by
replacing by  in Eq. (7). Again, these factors are used
to insert gluon pairs into the Parke-Taylor factor. The res-
ult is 

⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ3ψ12

=
∑

l1 ,l2∈G
sn1l1 sn2n1 sn3l2

∑
ρ(l1 ,l2)

PT
(
1,ρ(l1 ,l2),N

)
,

ρ(l1 ,l2) (l1, l2)where  for given  satisfies
 

ρ(l1 ,l2) ∈
¶
ρ(l1)

L ⊔⊔{n3}, l2,ρ
(l1)
R ⊔⊔{ñ3}

©
,

where ρ(l1) ∈
¶
{2, · · · , l1−1}⊔⊔{n2,n1}, l1,

{l1+1, · · · ,N −1}⊔⊔{ñ1, ñ2}
©
. (12)

ρ(l1)

n1

n2 ρ(l1)
L ρ(l1)

R

l2 ρ(l1)

l2 ρ(l1)

l1 l2

l1 l2 l1 l2

In  Eq.  (12), denotes  the  permutations  established
by inserting the collinear gluons corresponding to  and

 into the original gluon set, while  and  are the
sectors  separated  by  gluon in  permutation . Pos-
sible relative positions of  in  are shown in Figs.  3
(a)−(g). Given that the choices of  and  are independ-
ent of  each  other  and  we  finally  summed  over  all  pos-
sible choices of  and , the roles of  and  in Eq. (12)
can be exchanged as follows:
 

ρ(l1 ,l2) ∈
¶
ρ(l2)

L ⊔⊔{n2,n1}, l1,ρ
(l2)
R ⊔⊔{ñ1, ñ2}

©
,

where ρ(l2) ∈
¶
{2, · · · , l2−1}⊔⊔{n3}, l2,

{l2+1, · · · ,N −1}⊔⊔{ñ3}
©
. (13)

When all  possible spanning forests  for  the amplitude
with three  gravitons  are  considered,  the  full  MHV amp-
litude with  three  gravitons  can  be  expressed  by  the  fol-
lowing formula:
 

A(1,2, · · · ,N |n1,n2,n3) ∼
∑

Spanning forests
{T1 ,T2 ,··· ,Ti}

∑
l1 ,l2 ,··· ,li∈G

K(T1) · · · K(Ti)

PT
(
1,ρ(l1 ,l2 ,··· ,li),N

)
, i ≤ 3.

(14)

i ≤ 3 T1,T2, · · · ,Ti

l1, l2, · · · , li ∈ G l j lk

K(T j) j = 1,2, · · · , i

In  the  above  expression,  we  sum  over  all  possible
spanning forests where the original gluon set G plays the
role  of  the  root  set.  For  a  given  spanning  forest  with i
( )  trees, ,  planted  at  gluons

 (  and  with  distinct  labels  may  be
identical), each  ( ) is expressed as
 

 

Fig. 1.    All possible topologies of spanning forests for the three-graviton example; a, b, and c refer to different gravitons.

 

1, · · · ,
n3, · · · ,n2, · · · ,n1, · · · , l, · · · , ñ1, · · · , ñ2, · · · , ñ3, · · · ,N

1, · · · ,n2, · · · ,n3, · · · ,n1, · · · ,
l, · · · , ñ1, · · · , ñ3, · · · , ñ2, · · · ,N

Fig.  2.    (a).  Permutations  with  relative  orderings 
. (b)  Permuta-

tions  with  relative  orderings 
.
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K(T j) =
∏

ab∈E(T j)

sab,

ab ∈ E(T j) T jwhere  is an edge of tree  with vertices a and
b.  More explicitly,  there  are  four  possible  topologies  for
the three-graviton amplitude, as shown in Figs. 1 (a), (b),
(c), and (d), which respectively provide the factors 

scbsbasal, sbascasal, sbasal1 scl2 , sal1 sbl2 scl3 ,

where a, b, and c represent distinct gravitons. Two graphs
that  differ  only  by  exchanging  the  branches  attached  to
the same vertex are considered the same graph, as exem-
plified in Fig. 1(b). The permutations associated with the
topologies shown in Figs. 1(a) and (b) can be recursively
defined using Eqs.  (11)  and (12)  by replacing subscripts
1,  2,  and 3 of  gravitons  in  Eq.  (12)  with a, b, and c, re-
spectively. The permutations shown in Fig. 1 (c) satisfy 

ρ(l1 ,l2) ∈
¶
ρ(l1)⊔⊔{nc}, l2,ρ

(l1)∪{ñc}
©
,

where ρ(l1) ∈
¶
{2, · · · , l1−1}∪ {nb,na}, l1,

{l1+1, · · · ,N −1}⊔⊔{ña, ñb}
©
.

The permutations associated with the topologies in Fig. 1
(d) are expressed as 

ρ(l1 ,l2 ,l3) ∈
¶
ρ(l1 ,l2)⊔⊔{nc}, l3,ρ

(l1 ,l2)⊔⊔{ñc}
©
,

where ρ(l1 ,l2) ∈
¶
ρ(l1)

L ⊔⊔{nb}, l2,ρ
(l1)
R ⊔⊔{ñb}

©
and ρ(l1) ∈

¶
{2, · · · , l1−1}⊔⊔{na}, l1,

{l1+1, · · · ,N −1}⊔⊔{ña}
©
.

We have presented examples with three gravitons.  Next,
we address the general formula. 

IV.  GENERAL FORMULA

Inspired  by  the  example  in  the  previous  section,  we
propose  the  following  general  formula,  where  gravitons
split into pairs of collinear gluons: 

A(1, · · · ,N |H) ∼
∑

l1 ,··· ,li∈G

∑
Spanning Forests
{T1 ,··· ,Ti}

K(T1) · · ·

K(Ti)PT
(
1,ρ(l1 ,··· ,li),N

)
. (15)

l1, ..., li ∈ G
Here, we sum over all possible spanning forests in which
trees are planted at gluons . This summation is
in turn expressed by two summations:
 

l1, l2, · · · , li i = 1,2, · · · ,M
●  (i)  Summation  over  all  possible  choices  of  roots

 ( ).
 

l1, l2, · · · li

T1,T2, · · · ,Ti

l1, l2, · · · , li

● (ii) For a given choice of roots , , summa-
tion  over  all  possible  configurations  of  forests,  which
consist  of  nontrivial  trees  planted at  gluons

.
 

Tk

K(Tk)
sab ρ(l1 ,l2 ,··· ,lk)

For a fixed forest, each tree is associated with a factor
,  where each edge between two vertices a and b is

assigned by a factor . Permutations  in the PT
factors can be defined recursively as 

ρ(l1 ,l2 ,··· ,lk)

=
¶
ρ(l1 ,l2 ,··· ,lk−1)

L ⊔⊔σTk , lk, ρ
(l1 ,l2 ,··· ,lk−1)
R ⊔⊔

(
σ̃Tk
)T
©
. (k ≤ i)

(16)

 

l2 ρ(l1)Fig. 3.    Possible relative positions of  in permutations  in Eq. (12).
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ρ(l1 ,l2 ,··· ,lk−1)
L ρ(l1 ,l2 ,··· ,lk−1)

R

lk ρ(l1 ,l2 ,··· ,lk−1) σTk σ̃Tk

Tk

{ni} {ñi} (σ̃Tk )T

σ̃Tk

where  and  denote  two  ordered  sets
separated by gluon  in permutation ;  ( )
stands  for  the  permutations  established by tree  graph 
whose  nodes  are  ( ),  while  denotes the  re-
verse of .

Next, we outline the proof of the general formula ex-
pressed by Eq. (15):
 

T1,T2, · · · ,Ti

l1, l2, · · · , li ∈ G

● (i) Step-1. Expand the MHV amplitude according to
Eqs. (2) and (5) in terms of spanning forests. In general,
each  forest F consists  of i tree  structures, ,
planted at gluons .
 

F = {T1,T2, · · · ,Ti}
T1

l1 ∈ G

ψa

ψbc

ψa

na na ña

l1

ψbc nc nc ñc

nb

ñb nb nc

bc
sbc K(T1)

●  (ii)  Step-2.  For  a  given  forest 
and  tree ,  there  are  two  types  of  edges:  (a)  the  edge
between a graviton a and the root (a gluon ) and (b)
the  edge  between  two  gravitons b and c.  In  the  former
case, the edge is associated with a factor , which is ex-
pressed using Eq. (7), while an edge of the latter form is
accompanied  by  a  factor ,  which  can  be  rewritten  as
Eq. (9). After this manipulation, factor  splits graviton

 into  collinear  gluons  and  and then inserts  them
into  the  left  and  right  sides  of ,  respectively.  A  factor

 splits  graviton  into  collinear  gluons  and ,
which are inserted into the left side of  and right side of

 ( ,  which  is  closer  to  the  root  than ,  has  already
been treated before). The factor assigned to each edge 
is ,  and  the  product  of  all  these  factors  yields .
The  permutations  established  by  this  step  are  expressed

as 

ρ(l1) =
¶
{2,3, · · · , l1−1}⊔⊔σT1 , l1, {l1+1, ...,N −1}⊔⊔

(
σ̃T1
)T
©
.

T2,T3, · · · ,Ti

● (iii)  Step-3. Insert the collinear gluons correspond-
ing  to  the  gravitons  on  trees  in turn  by  re-
peating Step-2. We finally obtain the general formula, Eq.
(15), with permutations defined by Eq. (16). 

V.  CONCLUSIONS

N +2M

(−1)

In  this  note,  we  present  a  formula  (Eq.  (15))  for
single-trace  EYM  amplitudes  in  MHV  configuration
(with two negative-helicity gluons). Each graviton in this
formula splits into a pair of collinear gluons. Thus, an N-
gluon  and M-graviton amplitude  is  expressed  as  a  com-
bination of  gluon amplitudes with M pairs of col-
linear  gluons.  When the adjustment  described in  Section
II is considered, Eq. (15) is easily extended to MHV amp-
litudes with one negative-helicity gluon and one negative-
helicity graviton by (i) replacing i and j in the numerator
of  the  PT  factor  with  the  negative-helicity  graviton  and
negative-helicity  gluon,  (ii)  using  the  positive-helicity
graviton set instead of the full graviton set on the RHS of
Eq. (15), and (iii) adding an extra  in the expression.
It would  be  worthwhile  to  extend  the  collinear  expres-
sion  presented  in  this  paper  to  double-trace  amplitudes
and amplitudes  with  other  helicity  configurations  in  fu-
ture studies.
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