
 

A versatile framework for analyzing galaxy image data by incorporating
Human-in-the-loop in a large vision model*
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Abstract: The exponential growth of astronomical datasets provides an unprecedented opportunity for humans to
gain insight into the Universe. However, effectively analyzing this vast amount of data poses a significant challenge.
In  response,  astronomers  are  turning  to  deep  learning  techniques,  but  these  methods  are  limited  by  their  specific
training sets, leading to considerable duplicate workloads. To overcome this issue, we built a framework for the gen-
eral analysis of galaxy images based on a large vision model (LVM) plus downstream tasks (DST), including galaxy
morphological  classification,  image  restoration,  object  detection,  parameter  extraction,  and  more.  Considering  the
low signal-to-noise ratios  of  galaxy images and the imbalanced distribution of  galaxy categories,  we designed our
LVM to incorporate a Human-in-the-loop (HITL) module, which leverages human knowledge to enhance the reliab-
ility  and interpretability  of  processing galaxy images interactively.  The proposed framework exhibits  notable  few-
shot learning capabilities and versatile adaptability for all the abovementioned tasks on galaxy images in the DESI
Legacy Imaging Surveys. In particular, for the object detection task, which was trained using 1000 data points, our
DST in the LVM achieved an accuracy of 96.7%, while ResNet50 plus Mask R-CNN reached an accuracy of 93.1%.
For morphological classification, to obtain an area under the curve (AUC) of ~0.9, LVM plus DST and HITL only
requested 1/50 of the training sets  that  ResNet18 requested.  In addition,  multimodal data can be integrated,  which
creates possibilities for conducting joint analyses with datasets spanning diverse domains in the era of multi-messen-
ger astronomy.
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I.  INTRODUCTION

A vast expansion of available data is an invaluable re-
source across various scientific disciplines, notably phys-
ics  and  astronomy,  because  it  offers  many  opportunities
and challenges  for  human  beings  to  understand  the  uni-
verse.  Artificial  intelligence  (AI)  techniques  have
emerged  as  a  leading  approach  for  comprehending  the
complexities  intrinsic  to  big  data  challenges  in  physics,
such  as  interpreting  data  collected  from  large-scale  sky
surveys,  gravitational  wave  detectors,  and  colliders.
These datasets  are  more  than an  order  of  magnitude  lar-
ger  in  size  than  previous  datasets,  but  require  a  shorter
processing  time  to  promptly  respond  to  transient  events
[1]. They have also supported significant successes, such
as  the  prediction  of  multivariate  time  series  data  drawn
from  particle  accelerators  [2],  the  execution  of  many-
body  variational  calculations  in  nuclear  physics  [3],  and
many other  accomplishments  in  experimental  and  theor-
etical physics (see Ref. [4] and references therein).

The big data challenge in astronomy and astrophysics
is  especially  important  [5]  because  large-scale sky  sur-
veys  such  as  LSST1),  Euclid2),  CSST3),  and  SKA4) con-
tinue  to  gather  data,  leading  astronomy and astrophysics
into an exciting new era. However, the vast and intricate
nature of  astronomical  datasets  poses  a  significant  chal-
lenge to astronomers who want to extract meaningful sci-
entific  information.  Deep  learning  techniques  have  been
used  to  address  this  difficulty  (see  [6]  and  references
therein). For  example,  astronomers  have  leveraged  spe-
cific data in supervised learning to teach computers how
to solve  problems,  which  has  been  successful  in  detect-
ing celestial objects [7], classifying their morphology [8,
9] and identifying their  spectra [10, 11]. In addition, un-
supervised  learning  algorithms  can  explore  unlabeled
data and have demonstrated  their  effectiveness  in  classi-
fying galaxy types [12−15] and in characterizing (or im-
proving) the performance of telescopes [16−19]. Further-
more,  reinforcement  learning  algorithms have  succeeded
in various  applications,  such  as  efficiently  managing  in-
struments via developing simulators and enabling interac-
tions with observations [20, 21].

However,  for  the  machine  learning-based applica-
tions discussed  above,  certain  issues  still  need  to  be  ad-
dressed, including interpretability, data labeling, and uni-
versality.  Persistent  issues  that  hinder  their  advancement
and  utility  require  preparing  separate  training  sets  and
constructing  distinct  models  for  different  tasks.  Despite
this,  various  tasks  may  share  a  common  foundation  of
prior  information  about  celestial  objects.  For  example,
tasks such  as  detecting  strong  gravitational  lensing  sys-

tems,  identifying  different  types  of  nebulae  or  galaxies,
and  segmenting  galaxies  share  the  same  need  for  multi-
color structural  features.  Therefore,  creating  a  founda-
tional model  that  provides  general  information  and  at-
taches  subprocesses  for  multiple  purposes  is  sensible.
Moreover, effectively  training  a  machine  learning  al-
gorithm typically  requires  thousands  of  data  units,  fur-
ther  exacerbating  matters,  as  obtaining  specific  data  and
labels  (e.g.,  the  positions  of  rare  astronomical  targets  or
segmentation  labels  for  galaxies)  is  complex.  Therefore,
an interactive technique is ideal for building training sets
from scratch and maintaining their development.

To  overcome  the  abovementioned  shortcomings  of
existing applications of deep learning to astronomical vis-
ion  tasks,  especially  galaxy  image  processing  tasks,  we
have developed a comprehensive framework containing a
foundational  model,  multiple  machine  learning  models
for  downstream  tasks,  and  a  human-in-the-loop  (HITL)
interface.  The foundational  model  is  based on the  Swin-
Transformer model [22], and the galaxy images from the
ssl-legacysurvey  project  [23],  which  contains  76  million
galaxy images  extracted  from  the  Dark  Energy  Spectro-
scopic  Instrument  (DESI)  Legacy  Survey  [24] Data  Re-
lease 9, are selected as pre-training data. Covering 14000
square degrees of extragalactic sky in three optical bands
(g, r, z), these  data  constitute  a  relatively  complete  de-
scription  of  galaxies  in  the  nearby  universe.  Different
neural networks are then attached to the trained model for
downstream tasks, including classification, image restora-
tion,  and outlier  detection.  The model  requires  far  fewer
training samples  than  the  current  supervised  learning  al-
gorithms and is suitable for various purposes.  To further
enhance  the  performance  of  the  model,  a  HITL  module
based on the FLASK web framework [25] is connected to
our  framework.  This  module  takes  advantage  of  human
knowledge to  further  decrease  the  workload  of  data  la-
beling and to improve the reliability, universality, and in-
terpretability of  the  framework  for  different  image  pro-
cessing tasks. 

II.  A FOUNDATIONAL VISION MODEL FOR
ASTRONOMY

According  to  deep  learning  theory  [26],  there  has
been a  proliferation  of  neural  networks  featuring  pro-
gressively  deeper  architectures,  from millions  to  billions
of parameters, that encode prior knowledge about specif-
ic domains  of  problems.  Two  examples  of  these  net-
works  are  large  language  models  (LLM)  [27−30]  and
large  vision  models  (LVM)  [31, 32].  These  so-called
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large  models  can  be  used  as  the  backbone  for  various
tasks,  offering  proficient  few-shot  learners  capable  of
handling  various  data  processing  challenges.  In  this
study, an LVM is developed as the foundational model on
the basis of the Swin-Transformer architecture. The LVM
was trained  in  an  unsupervised  manner  using  76  million
stamp  images  with -bands  [23, 33]  from  the  DESI
Legacy  Imaging  Surveys.  More  details  on  the  LVM  are
presented in the remaining parts of this section. 

A.    Design of the large vision model
Figure  1 illustrates  the  architecture  of  our  LVM,

which is  based on the  SUNET framework [34] and pos-
sesses  a  parameter  count  of  approximately  100  million.
For demonstration, Fig. 1 only displays four layers of the
Swin-Transformer Block (STB). The core structure of the
LVM follows  an  encoder-decoder  paradigm,  with  Swin-
Transformers serving as the fundamental building blocks.
The  use  of  Swin-Transformers  is  pivotal  in  amplifying
the interpretability of abstract  image features,  which is  a
crucial  factor for grasping the fundamental elements and
inherent  characteristics  contained  in  the  data.  The  Swin-
Transformer  effectively  processes  local  information
through its  window  attention,  gradually  expands  the  re-
ceptive  field,  and  integrates  global  information  through
shifted window attention.  Additionally,  compared  to  tra-

ditional Transformers or ViTs, the Swin-Transformer sig-
nificantly reduces computational complexity and memory
requirements without compromising the model's perform-
ance. In essence, LVM attempts to reconstruct the origin-
al images utilizing the sparse features extracted by the en-
coder and decoder [35]. This process involves learning a
mapping function that translates three channels of two-di-
mensional image data into semantic features in the latent
space.

3×3

The  LVM  encoder  is  comprised  of  four  layers,  each
containing  eight  consecutive  Swin-Transformer  layers
(STL),  and  the  decoder  has  an  identical  structure.
Moreover,  convolution  kernels  are  adopted  along
with  the  STB.  By  engaging  in  feature  processing  across
multiple  tiers  and  assimilating  global  information,  the
model attains a deeper understanding of the interconnec-
tedness  and  dependencies  inherent  within  the  images.  In
turn,  this  facilitates  more  effective  inference  processes.
This architectural design, featuring a deep feature pyram-
id,  significantly  fortifies  the  performance  of  the  model
across tasks encompassing various scales. Figure 2 shows
two STLs. These blocks encompass normalization layers,
a  window-based  self-attention  layer  (Window  MSA),  a
shift  window-based  self-attention  layer  (Shift-Window
MSA),  and a  multilayer  perceptron (MLP).  These  layers
enhance  the  perceptive  capabilities  of  the  Swin-Trans-

 

Fig. 1.    (color online) Structure of the large vision model (LVM).

 

Fig. 2.    (color online) Structure of the Swin-Transformer layer (STL) in the LVM.
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former  to  a  greater  degree  than  traditional  convolutional
neural  networks.  These  components  are  integrated  into
the  U-net  structure,  effectively  increasing  the  receptive
field of the neural network, which substantially amplifies
the capacity of the model to represent data samples with-
in the feature space. 

B.    Pre-training of the large vision model

[g,r,z]
152×152×3

The  LVM  undergoes  pre-training  through  a  self-su-
pervised  method  [36, 37] using  images  of  celestial  ob-
jects from the DESI Legacy Imaging Surveys DR9. Each
instance presented to the model is a galaxy image, and an
identical  galaxy  image  is  generated  as  its  output.  These
images  are  comprised  of  three  channels  (the -
bands) and are resized to  pixels.  The LVM
initially  compresses  galaxy  images  into  feature  vectors
via the encoder and subsequently reconstructs galaxy im-
ages  based  on  these  vectors.  By  utilizing  the  Mean
Squared Error (MSE) loss, the difference between the re-
constructed galaxy images and the originals can be meas-
ured, which facilitates effective learning of galaxy image
representations.

128×128×3

When processing  galaxy  images,  the  varying  effect-
ive  sizes  of  different  galaxy  images  poses  a  challenge.
Leaving this problem unsolved could lead to some galax-
ies appearing  relatively  small  in  the  images,  making  ef-
fective analysis  and  recognition  problematic.  To  over-
come this problem, an OpenCV-based algorithm was de-
vised to adaptively crop images [38]. The algorithm cal-
culates the effective area that the galaxies occupy in each
stamp according to the grayscale level.  Then, it  cuts and
resizes  the  original  images  to  create  new  stamp  images
with  a  fixed  size  of .  This  step  ensures  that
each galaxy  occupies  an  appropriate  area  within  the  im-
age without  losing  much  information,  thus  easing  sub-
sequent processing and analysis. In addition, the data was
augmented by applying flips,  rotations,  and croppings to
generate a more diverse set of training samples from the
images  in  order  to  enhance  the  coverage  of  the  training
sets in latent space, which enhanced the generality of the
model and its overall robustness.

The batch size in the pre-training stage was set to 512,
which  balanced  the  efficiency  and  hardware  limits.  For
each  iteration,  the  MSE is  computed  for  all  images  in  a
batch,  and  then  the  model  parameters  are  updated  using
the Adam  optimizer.  Approximately  196  hours  were  re-
quired  for  eight  NVIDIA A100s  with  80  GB of  graphic
memory  to  train  the  LVM.  After  training,  the  encoder
within the LVM acquires the ability to learn the inherent
features  of  the  celestial  objects.  It  is  feasible  to  cut  this
encoder  from  the  LVM  and  connect  it  to  the  following
neural networks for further training. This extended train-
ing  could  involve  various  downstream  tasks  and  the

HITL strategy, which is detailed in the following section. 

III.  TRAINING THE LARGE VISION MODEL
FOR MULTIPLE DOWNSTREAM TASKS

 

A.    Training of multiple downstream tasks
Given that  common  foundational  knowledge  is  suit-

able for  various  downstream  tasks,  the  encoder's  profi-
ciency can be enhanced within the LVM by concurrently
engaging it  in multiple downstream tasks. This approach
aims not only to enhance the versatility of the LVM, but
also  to  optimize  task-specific  performance.  In  line  with
this  philosophy,  three  downstream tasks  were  identified:
galaxy classification, image restoration, and image recon-
struction. For each task, a task-specific neural network is
incorporated alongside the LVM encoder, as illustrated in
Fig.  3.  During  the  multitask  training  stage,  the  model
parameters for  the  entire  multitask  framework  are  up-
dated with these tasks. An active learning strategy is used
to dynamically  adjust  the  proportion  of  training  dedic-
ated to different tasks.

The image  classification  task  aims  to  classify  galax-
ies  according  to  their  morphologies.  This  was  achieved
by adding two fully connected layers following the LVM
encoder.  Additionally,  a  dataset  containing  images  of
galaxies was  constructed,  with  four  distinct  classes:  el-
liptical, edge-on, spiral, and other (including irregular and
merging  galaxies).  These  galaxy  images  were  obtained
from  the  DESI  Legacy  Imaging  Surveys,  and  the  labels
indicating  their  morphologies  were  obtained  from  the
Galaxy Zoo 2 project 1). The data processing method dis-
cussed in [39] was used to obtain high-quality labels. For
the  multitask  training,  a  training  dataset  containing  500
galaxy images per category (for a total  of 2000 images),
was  used  for  model  training.  Furthermore,  a  test  dataset
consisting of 250 images in each category (for a total  of
1000 images), was utilized to assess the model's perform-
ance.

The  image  restoration  task  aims  to  generate  high-
quality  original  images  from  blurred  ones.  This  was
achieved by incorporating a decoder module with convo-
lutional layers following the LVM. The dataset was com-
prised  of  two  components:  1)  reference  images,  which
were  high-quality  raw  galaxy  images  obtained  from  the
DESI  Legacy  Imaging  Surveys,  and  2)  blurred  images
generated  by  introducing  noise  and  blurred  point  spread
functions (PSFs) using the method outlined in [40]. In the
experiment,  the  Moffat  model  was  employed,  assuming
that  the  full  widths  at  half-maximum  (FWHMs)  of  the
PSFs were distributed in the 2.0−8.0 pixels range. Addi-
tionally, to simulate the blurred data, the noise source was
assumed to be a Gaussian function with a standard devi-
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ation  uniformly  distributed  between  1.0  and  15.0.  These
blurred images simulated the degradation and noise found
in real  observations.  For  the  purpose  of  multitask  train-
ing, a training dataset containing 1000 blurred images and
a test dataset consisting of 100 images were utilized to as-
sess  the  model's  performance.  Both  the  training  and  test
datasets  were  derived  from  simulated  data,  ensuring  a
controlled environment for the training and evaluation of
the model.

The image  reconstruction  task  aims  to  mend  the  ob-
structed sections of  images,  facilitating the segmentation
of  individual  galaxies  from  several  adjacent  galaxies.
This was achieved by integrating a decoder module com-
prised  of  convolutional  layers  following  the  LVM.  The
dataset for this task consisted of two components: 1) ref-
erence  images,  which  were  original  images  without  bad
pixels  or  other  defects  obtained  from  the  DESI  Legacy
Imaging Surveys, and 2) masked images, which were ori-
ginal  images masked by varying patch sizes  from 0% to
70% with a random scale (this  emulated image degrada-
tion processes that may occur during observation and ac-
quisition). For  multitask  training,  a  training  dataset  con-
sisting  of  1000  data  pairs  and  a  test  dataset  containing
100 pairs  were  employed to  assess  the  model's  perform-
ance in image reconstruction.

Multi_uni f orm

Various loss functions are applied during the training
process  for  different  tasks.  Cross-entropy  is  used  as  the
loss function for galaxy classification tasks, and the MSE
is  employed  for  image  restoration  and  reconstruction
tasks.  For  comparative  studies,  we  adopted  two  training
strategies for training downstream task models.  The first
strategy  ( )  maintains  equal  weights  for
each task  during  training,  meaning  that  the  training  pro-

Multi_active
portion  for  each  task  is  consistent.  The  second  strategy
( ) actively updates the training proportion of
each task  according  to  the  characteristics  and  perform-
ance  exhibited  during  the  training  process.  This  strategy
quantifies  the  proportion  of  each  task  allocated  during
training by  evaluating  its  performance  (using,  for  ex-
ample,  the  MSE  or  F1  score)  on  the  test  set.  Tasks  that
demonstrate  better  performance  metrics  are  allocated  a
smaller  proportion  of  training  data,  while  tasks  with
lower performance metrics receive a larger proportion. 

B.    Performance evaluation

Pre_train
Multi_uni f orm Multi_activate

Pre_train

A series of comparative experiments were conducted
to  evaluate  the  performance  of  a  model  not  trained  by
multitasking (  model) against two multitasking-
trained  models  (the  and 
models)  using  the  training  strategies  mentioned  earlier
across image classification, image reconstruction, and im-
age restoration tasks. The  model is given by us-
ing  the  frozen  training  approach  (i.e.,  the  weights  of  the
LVM are  kept  constant  and  only  the  weights  in  the  task
head are updated).

Pre_train

In  the  image  classification  task,  our  model  was
trained using  a  dataset  of  1000 images,  and  its  perform-
ance  was  evaluated  using  a  separate  set  of  500  images.
The  results  are  presented  in Table  1,  which  displays  the
classification accuracy (Acc), precision (Pre), recall (Re-
call),  and  F1  scores  for  the  three  distinct  training
strategies.  Our analysis  indicated that  the models trained
on multiple tasks outperformed those trained exclusively
on the restoration task (  model) with respect to
the  classification  accuracy  and  various  other  metrics.  In
particular,  the  actively  selected  task  strategy

 

Fig. 3.    (color online) Schematic of the multitask training process.
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Multi_activate

Multi_activate

(  model) demonstrated  a  substantial  im-
provement in accuracy compared to the other two. These
results  suggest  that  the  training  strategy
can augment  the  model's  classification performance,  and
that actively selecting the task further enhances the accur-
acy  by  slightly  reducing  the  precision,  recall,  and  F1
score (see Table 1).

Multi_uni f orm Pre_train

Multi_activate

To gauge  the  effectiveness  of  our  model  in  terms  of
image restoration,  we employed a  variety  of  metrics,  in-
cluding  the  PSNR  (Peak  Signal-to-Noise  Ratio),  MSE,
and  SSIM  (Structural  Similarity  Index).  These  metrics
were utilized to evaluate the agreement between the pro-
cessed  images  and  the  original  unprocessed  images.
Higher PSNR,  higher  SSIM,  and  lower  MSE  values  in-
dicated  better  agreement.  Our  findings,  as  presented  in
Table 2, indicated that, while the models trained with the

 strategy outperformed the  mod-
els,  the  multitasking  plus  active  learning  strategy
( ) was the optimal model.

Multi_uni f orm Multi_activate

Pre_train

For the  image  reconstruction  task,  a  dataset  consist-
ing of 1000 samples was used for training, and a dataset
consisting of 100 samples was used for testing. The per-
formance  was  also  evaluated  using  the  metrics  of  the
PSNR,  MSE,  and  SSIM.  The  multitasking-trained mod-
els (the  and  models) exhib-
ited  superior  performance  in  the  image  reconstruction
task,  surpassing  the  non-multitasking-trained  model  (the

 model) in  the  reconstruction  of  masked  re-
gions,  as shown in Table 3. Furthermore,  a comprehens-
ive evaluation of the outcomes was conducted by analyz-
ing  the  image  reconstruction  performance  under  varying
levels of missing data and patch sizes. The results presen-
ted in Table 4 and Fig. 4 demonstrate the remarkable per-
formance of the model, even when processing highly de-
graded images with a  missing content  rate  of  up to 70%
and  a  patch  size  of  8×8  (for  an  input  data  of  size
128×128).

In summary,  multitasking training performed in  con-
junction  with  active  learning  significantly  enhanced  the
performance of  the  model  across  different  tasks.  Com-
pared to  the  model  that  did  not  undergo  multitask  train-
ing, the utilization of multitask training facilitated a more
effective acquisition  of  feature  representation  and  en-
hanced  the  generalization  ability  of  the  neural  network,
rendering  it  suitable  for  a  variety  of  astronomical  image
processing tasks. 

IV.  DEPLOYMENT OF TWO SAMPLE
APPLICATIONS

Two astronomical vision tasks were chosen to show-
case the capabilities of our LVM model: galaxy morpho-
logy  classification  and  strong  lens  detection  in  a  large
field of view. The LVM was utilized as the backbone and
two separate downstream models  were employed for  the
two tasks. Detailed information on each of these applica-
tions is presented below. 

A.    Classifying galaxy morphology with few-shot
learning based on LVM

The performance of  the  proposed algorithm was fur-
ther evaluated according to its ability to classify the mor-
phologies of  galaxies  in  the  DESI  Legacy  Imaging  Sur-
veys  using  the  few-shot  learning  approach.  The  training
and testing sets included image data from the DESI Leg-
acy  Imaging  Survey  and  labels  from  the  Galaxy  Zoo
project.  The  galaxies  were  categorized  into  five  types

 

Table  1.    Classification results  for  model  trained  with  vari-
ous training strategies.

Classification Task Acc Pre Recall F1

Pre_train model 0.784 0.767 0.794 0.771

Multi_uniform model 0.842 0.844 0.850 0.846

Multi_activate model 0.854 0.823 0.834 0.844

 

Table  2.    Image  restoration  results  for  different  training
strategies.

Restoration Task MSE PSNR SSIM

Blurred images 0.00094 31.11 0.48

Pre_train model 0.00084 31.31 0.51

Multi_uniform model 0.00083 31.35 0.54

Multi_activate model 0.00049 33.34 0.56

 

Table  3.    Image  reconstruction  results  for  models  trained
with different strategies.

Reconstruction Task MSE PSNR SSIM

Masked images 0.0248 15.64 0.36

Pre_train model 0.0089 22.36 0.49

Multi_uniform model 0.0040 26.07 0.61

Multi_activate model 0.0038 26.84 0.64

 

Table  4.    Statistical analysis  of  image  reconstruction  per-
formance.  Comparison  between  PSNR,  SSIM,  and  MSE  for
various patch sizes and masking proportions (using frozen and
fine-tuned LVM model parameters).

Patch size MSE PSNR SSIM

4×4 (Masked images) 0.03187 15.92 0.27

Multi_activate model 0.0067 26.54 0.58

8×8 (Masked images) 0.023 17.55 0.36

Multi_activate model 0.0049 24.81 0.55

16×16 (Masked images) 0.03149 17.47 0.42

Multi_activate model 0.0112 23.61 0.48
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[41].  After  the  LVM  encoder,  a  fully  connected  neural
network is employed for the task of galaxy morphologic-
al  classification and then trained with  the  above training
sets. A  comparative  analysis  was  performed  by  evaluat-
ing  the  results  of  our  model  and  those  of  AlexNet  [42],
VGG16  [43],  and  ResNet50  [44], which  are  deep  learn-
ing architectures that have been proven effective in vari-
ous  image  recognition  tasks.  As Fig.  5 illustrates,  the
LVM  +  Downstream  Tasks  model  maintained  a  higher

accuracy, especially in scenarios with minimal data (only
10 images per class). Moreover, as the amount of data in-
creased,  the  model's  performance  gradually  improved,
further  confirming its  scalability  to  large datasets.  These
experimental results not only demonstrated the effective-
ness of the LVM + Downstream Tasks model for galaxy
morphology classification tasks, but also revealed its sta-
bility and generalization ability when handling datasets of
different sizes.
 

 

Fig. 4.    (color online) Images reconstructed by the model with varying patch block sizes and masking proportions.

 

Fig. 5.    (color online) Classification accuracy of four different models (our model, AlexNet, VGG16, and ResNet50) for the galaxy
classification task as a function of the dataset size.
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B.    Identifying strong lensing systems with the LVM +
Mask R-CNN

To  replicate  this  trend  in  source  detection,  a  strong
lens  dataset  containing  1000  training  images  and  1000
testing images  was  constructed.  These  images  were  ex-
tracted  from  the  DESI  website1) using  the  catalog  of
strong  lensing  system  candidates  available  in  the
NeuraLens Database2). For the downstream task of  find-
ing  strong  lensing  systems  within  a  large  field  of  view,
Mask  R-CNN  [45] was  chosen  as  our  model.  Addition-
ally,  ResNet50  was  employed  as  the  backbone  of  Mask
R-CNN for comparison. The results, which are presented
in Fig.  6,  demonstrated  that  our  LVM  +  Mask  R-CNN
model achieved an impressive average precision (AP) of
96.7% with 1000 training images. In contrast, the ResNet
+  Mask  R-CNN  model  achieved  a  slightly  lower  AP
value of 93.1%. This comparison underscores the effect-
iveness of our LVM approach in enhancing the perform-
ance of Mask R-CNN for strong lens detection. 

V.  LARGE VISION MODEL WITH THE
HUMAN-IN-THE-LOOP MODULE

To interactively  integrate  human  knowledge,  we  de-
veloped  a  HITL  module  [46]  based  on  the  Flask  Web
Framework3) and  integrated  it  into  the  LVM. Taking the
binary  classification  task  as  an  example,  an  MLP  [47]
model with a hidden layer size of 2048 is used to predict
the  types  of  galaxies  and  to  introduce  the  HITL module
with an adaptive algorithm in order  to  find potential  ob-
jects and boost the model's purity, completeness, and sev-
eral other metrics. These objects are labeled and included
in  the  training  sets  in  the  MLP training  procedure.  With
this module,  astronomers  can  create  training  sets  iterat-

ively  from  scratch  for  their  specific  purposes  and  direct
the model's optimization path as necessary.

To evaluate its feasibility, the HITL was used to dis-
tinguish between spiral and elliptical galaxies. It achieved
an  area  under  the  precision-recall  curve  (AUPR)  of
0.8895  by  starting  with  10  initial  prompts  (five  positive
and five negative) and following one interaction step with
10  recommended  examples.  Its  performance  surpassed
that obtained by training the LVM with 30 examples (15
positive  and  15  negative,  AUPR  =  0.8683)  and  training
ResNet18 with  100 examples  (50 positive  and 50 negat-
ive, AUPR = 0.8561), and comparable to that achieved by
training the LVM with 1000 random examples (AUPR =
0.8921). Figure 7 presents the results of testing the HITL
on specific target identification tasks with few-shot learn-
ing,  such  as  finding  galaxies  with  bars,  strong  lensing
systems,  and  galaxy  mergers.  The  results  further  proved
the  capacity  of  this  module  and  demonstrated  its  broad
application  potential  for  various  tasks.  More  details  are
discussed below. 

A.    Design of the human-in-the-loop module
Figure 8 shows the overall  design of the HITL mod-

ule  and  its  relationship  to  the  foundational  LVM  model
and  downstream  network.  The  HITL  module  contains  a
frontend and  a  backend.  Because  the  frontend  was  con-
structed using HTML and CSS, training the AI model to
label the images can be performed by clicking on the im-
ages (left  panel in Fig. 9).  These actions are then passed
to  the  backend,  which  was  constructed  using  the  Flask
framework  and  which  communicates  between  the  HITL
module and LVM. In addition,  a  user interface based on
the  Jupyter  Notebook  constructed  for  this  purpose  is
available for those who do not run web applications (right
panel in Fig. 9).

 

Fig. 6.    (color online) Target detection results with different backbones. The left panel shows the target detection results achieved by
Mask R-CNN using the LVM as the backbone, and the right panel displays the target detection results obtained by Mask R-CNN using
ResNet50 as the backbone. The LVM significantly enhanced the detection capabilities of the neural network.
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The  downstream  network  is  an  MLP  with  a  hidden
layer of size 2048 running on fixed features extracted by
our  LVM.  This  setup  resulted  in  a  significantly  lower
computational  cost  compared  to  training  a  model  for  a
specific  task  from scratch,  and  also  proved  adequate  for

0 ≤ α ≤ 1

P/N

optimizing the capabilities of our LVM. To maximize the
benefits of  this  interaction  to  the  model  for  various  pur-
poses, we set a parameter as , which represents a
threshold  of  the  ratio  between  positives  and  negatives
labeled  during  the  latest  interaction  loop  ( ).  When

 

Fig. 7.    (color online) Input prompts (left columns) and objects recommended (right columns) by the HITL after several rounds of in-
teraction. For simple tasks such as identifying face-on spirals, one round was enough, and for more complex tasks such as identifying
mergers, no more than 10 rounds were used.

 

Fig. 8.    (color online) Overall design of the human-in-the-loop (HITL) module.
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P/N ≤ α
P/N > α

α = 0.9
α = 0.1

α = 0.5

,  the  HITL  module  selects  objects  with  higher
scores  for  user  labeling;  when , the  HITL  mod-
ule  selects  objects  with  lower  scores  for  user  labeling.
Changing α can guide  the  downstream  model  to  con-
verge in the required directions. For example,  and

 generate  models  with  high  precision  and  recall
rates,  respectively,  while  produces  a  model  with
high area under the curve (AUC) and AUPR values. 

B.    Comparison to conventional models of
supervised learning

To  evaluate  the  effectiveness  of  our  HITL  module,
the  classification  results  for  8522  galaxy  images  from
Galaxy  Zoo  DECaLS  [41]  using  different  approaches
(which were not included in the training sets used to train
our LVM) were compared with the LVM + HITL and tra-

ditional  supervised  learning  approaches.  These  galaxies
were classified as face-on spirals (4546 images) or other
galaxies  (3976  images,  including  ellipticals  and  edge-on
galaxies)  [48].  We  tested  the  performance  of  supervised
ResNet181), our LVM, and our LVM + HITL with train-
ing datasets of different sizes.

LV M_
f ew_examples

LV M_ f ew_examples
+HIT LHIT L

LV M_ f ew_
examples

small_

Specifically, we first gave five positives and five neg-
atives to  the  downstream  classification  network  follow-
ing  the  LVM,  and  the  outcomes  were  named 

 in Fig.  10.  Then,  we  labeled  an  extra  10
examples recommended  by  the  HITL  module  and  ob-
served  a  boost  in  performance  ("

" in Fig. 10). In addition, 15 positive and 15
negative  examples  fed  to  our  LVM  ("

 no HITL" in Fig. 10), 50 positive and 50 negat-
ive  examples  fed  to  our  LVM  and  ResNet18  (

 

Fig. 9.    (color online) Interface for our HITL classification web demo (left panel) and Jupyter notebook demo (right panel). In the web
demo, users can classify images by clicking, and can also view and export classification results. In the Jupyter notebook demo, users
can perform the same actions by viewing images and executing appropriate commands.

 

Fig. 10.    (color online) Comparison between the performances of ResNet18, our LVM, and our LVM + HITL using different training
sets with the same number of images.
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training_set
big_training_set

big_training_set

 in Fig.  10), and  1000  randomly  chosen  ex-
amples  fed  to  our  LVM and  ResNet18  (
in Fig. 10) were evaluated for comparison. As indicated,
the performance of the LVM + HITL approach was bet-
ter than that of the LVM alone and similar to that of the

. 

C.    Discovering targets in the DESI Bright Galaxy
Survey using LVM + HITL

(H,W,C) =
(192, 192, 3)

To test  the  feasibility  of  the  LVM + HITL approach
on real  observations,  we  constructed  serial  tasks  for  ob-
ject detection in 201319 galaxy images selected from the
DESI Bright Galaxy Survey (BGS) [49], which is a selec-
tion of bright galaxies in the DESI Legacy Imaging Sur-
veys  (this  selection  was  excluded  from  the  training  sets
for  the  LVM).  These  galaxies  have  half-light  radii
between 6.4 and 9.6 arcsec. To maintain wide image mar-
gins, the fits files of the galaxies in the g, r,  and z chan-
nels  were  cropped  into  images  of  size 

 with a pixel scale of 0.262 arcsec/pix. This
strategy is beneficial for identifying objects such as grav-
itational lensing arcs and mergers.

First, two characteristic types of galaxies were selec-
ted  for  target-finding  experiments:  face-on spiral  galax-
ies  and  barred  galaxies  (relatively  common  objects).
Starting  with  only  five  positives,  our  LVM  +  HITL
achieved precision rates of  0.91 and 0.75 when identify-
ing  face-on spiral  galaxies  and  barred  galaxies,  respect-
ively,  within  10  rounds  of  interactions.  These  findings
demonstrated  that  our  LVM  +  HITL  method  can  assist
astronomers in  identifying  their  targets  for  specific  sci-
entific  goals  with  a  reference  sample  containing  only  a
few objects.

Moreover,  the  LVM  +  HITL  model  was  utilized  to
identify  strong  gravitational  lensing  systems  and  galaxy
mergers  to  examine  its  feasibility  in  searching  for  rare
and  complex  astronomical  objects. Figure  7 shows  that
our  approach  can  discover  these  targets  successfully.
However, the outcomes included many more false posit-
ives than the tasks that aimed to identify common objects
(e.g.,  the  precision  rate  of  finding  galaxy  mergers  was
only 0.15). In principle, this issue can be improved by ad-
opting  an  appropriate  method  in  the  LVM  for  handling
the  feedback  from  the  HITL  module  beyond  depending
on α alone,  which  will  be  a  primary  focus  of  our  future
investigations. 

VI.  SUMMARY

In  this  study,  we created  a  framework  that  utilized  a
HITL module on top of an LVM for various astronomic-
al vision  tasks.  The  downstream  neural  networks,  com-
bined  with  the  LVM,  allowed  for  versatility  without  the
need  for  expensive  re-training.  Furthermore,  the  HITL
module  incorporated  human  knowledge  to  guide  the  AI

model  toward  specific  objectives,  which  reduced  the
workload  for  composing  training  sets  and  enhanced  the
framework's universality and interpretability. The experi-
ments showed  that  our  framework  outperformed  tradi-
tional  supervised  machine  learning  models  in  classical
vision  tasks  in  astronomy,  such  as  object  detection,
galaxy  morphological  classification,  and  observational
image  reconstruction.  Considering  that  the  reliability  of
AI models  in  handling scientific  data  is  crucial  for  valid
discoveries [6, 50, 51], we evaluated our framework's re-
liability through different experiments using labels in the
Galaxy  Zoo  2  datasets.  However,  for  data  in  the  bands
other than g, r,  and z and those provided by space-borne
telescopes,  Galaxy  Zoo  2  was  insufficient.  Therefore,  to
assess the framework's  reliability in a broader context  in
the  future,  we  are  planning  on  constructing  a  standard
dataset  of  galaxy  images  covering  a  larger  feature  space
from  various  observations.  Using  the  transfer  learning
strategy, we plan on extending the framework to encom-
pass various data modalities, including photometry, spec-
tra,  and  lightcurves.  This  will  lead  to  a  continually
evolving  AI  model  that  can  proficiently  handle  intricate
datasets from a variety of major observing projects (e.g.,
DESI,  LSST, Euclid,  and CSST),  which is  crucial  in the
age of multi-messenger astronomy. 
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