Chinese Physics C  Vol. 48, No. 6 (2024) 063105

Electrodynamics with violations of Lorentz and U(1) gauge symmetries and
their Hamiltonian structures”

Xiu-Peng Yang (1% 119)'*"  Bao-Fei Li (Z5F K)'"* Tao Zhu (R¥§)"®

'Institute for Theoretical Physics and Cosmology, Zhejiang University of Technology, Hangzhou 310032, China
United Center for Gravitational Wave Physics (UCGWP), Zhejiang University of Technology, Hangzhou 310032, China

Abstract: This study aims to investigate Lorentz/U(1) gauge symmetry-breaking electrodynamics in the frame-

work of the standard-model extension and analyze the Hamiltonian structure for the theory with a specific dimen-

sion d <4 of Lorentz breaking operators. For this purpose, we consider a general quadratic action of the modified

electrodynamics with Lorentz/gauge-breaking operators and calculate the number of independent components of the

operators at different dimensions in gauge invariance and breaking. With this general action, we then analyze how

Lorentz/gauge symmetry-breaking can change the Hamiltonian structure of the theories by considering

Lorentz/gauge-breaking operators with dimension d <4 as examples. We show that the Lorentz-breaking operators

with gauge invariance do not change the classes of the theory constrains and the number of physical degrees of free-

dom of the standard Maxwell electrodynamics. When U(1) gauge symmetry-breaking operators are present, the the-

ories generally lack a first-class constraint and have one additional physical degree of freedom compared to the

standard Maxwell electrodynamics.
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I. INTRODUCTION

The standard model (SM) successfully describes the
fundamental constituents of matter using quarks, leptons,
gauge bosons, and Higgs bosons. It effectively explains
phenomena involving elementary particles and their inter-
actions. The last predicted elementary particle of the SM,
the Higgs boson, was experimentally confirmed in 2012
[1, 2], offering a satisfying conclusion to the develop-
ment of this great theory. General relativity (GR) links
gravity with the curvature of spacetime and provides a
highly successful description of gravity-related phenom-
ena. Since its inception, it has been recognized as a great
theory and continues to be corroborated through various
experiments. Its basic principles and predictions have
been confirmed through multiple observations and meas-
urements, establishing its foundational position in mod-
ern physics. In 2016, gravitational waves were observed
in experiments [3], which further reinforced the concept

of GR. These two theories are expected to be unified at
the Planck scale and potentially exhibit observable
quantum gravity effects at accessible low-energy scales.
This signal may be related to Lorentz symmetry breaking
and can be described by an effective field theory [4].

To construct a consistent effective field theory that in-
corporates both GR and the SM, Kostelecky and Col-
laday proposed an effective field theory known as the SM
extension (SME) [5, 6], which features general Lorentz
and CPT violations. The measured and derived values of
coefficients for Lorentz and CPT violations in the SME
can be found in the data table organized by Kostelecky
and Russell [7]. In recent years, research on cosmic mi-
crowave background (CMB) radiation and ultra high en-
ergy cosmic rays (UHECR) has provided new opportunit-
ies for studying the pure photon sector of the SME. One
reason for this is that any prediction involving the pure
photon part that deviates from the SM could potentially
indicate Lorentz violation originating from the pure
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photon sector of the SME. A large amount of research has
been conducted in this area [§—23]. Compared to conven-
tional Maxwell electrodynamics, the pure-photon sector
of the SME includes additional Lorentz-breaking terms,
which can be classified as CPT-even and CPT-odd. The
inclusion of these terms leads to the emergence of new
effects, which has spurred extensive research in this field.
Studying the general aspects of the pure photon sector is
a challenging task. Ref. [24] proposed a general electro-
dynamics extension theory with a quadratic action, which
can be used to describe many related phenomena, includ-
ing photon interactions [25], the optical activity of media
[26], the Lorentz-invariance-violating (LIV) term [27,
28], Chern-Simons term [29], nonminimal SME [30], and
other related phenomena involving photons [31]. Theor-
ies with Lorentz-breaking operators of dimension 4 have
received considerable attention, including LIV [32], Car-
roll-Field-Jackiw (CFJ) [33], and Proca electrodynamics
[34], where the first two are U(1) gauge invariant theor-
ies and the third involves U(1) gauge symmetry breaking.
The authors of Refs. [27, 28, 35, 36] conducted Hamilto-
nian analyses of the above three theories and identified
their constraint structures, which motivates us to study
the constraint structure of more general theories with a
specific dimension d < 4.

The Lagrangian density of quadratic electrodynamics,
given in [24], is a quadratic polynomial in the photon
field A,, and its higher-order derivatives 0,,...0,,Aq,
with d>2. The constant coefficients K", which
are contracted with A,, 0y, ...0,,A.,, remain invariant un-
der coordinate transformations, which leads to a viola-
tion of the Lorentz symmetry of the theory. These con-
stant coefficients can be regarded as originating from the
vacuum expectation value of an operator in the underly-
ing theory, or the dominant component of dynamic back-
ground fields, or an averaged effect. Through dimension-
al analysis, it can be found that the constants ;"""
associated with A,, 0., ...0,,A., of dimension d must have
the dimension 4 —d. Some researchers believe that theor-
ies with power series that are renormalizable have the
mass dimension d <4 [24, 37], and it is these theories
with mass dimension d <4 that are mainly explored in
this study. Typically, there are also theories that contain
only the first time derivative of the field A,, which is be-
neficial because this avoids any potential Ostrogradsky
instability [38, 39].

In this study, we extend the U(1) gauge-invariant
Lagrangian density of quadratic electrodynamics de-
scribed in [24] to one that includes U(1) gauge symmetry
breaking terms. We also perform a Hamiltonian analysis
for renormalizable specific dimension cases of d <4. Our
purpose is to clarify how the U(1) gauge breaking terms
affect the constraint structure and physical degrees of
freedom of the theory.

Our results indicate that the Lagrangian density of

general quadratic electrodynamics is a combination of
five terms. The first corresponds to the Lagrangian dens-
ity of standard electrodynamics, the second is U(1) gauge
invariant, the third contains both U(1) gauge invariance
and breaking, and the remaining two are U(1) gauge
breaking. The Hamiltonian analysis of the general gauge-
breaking system with a specific dimension d <4 reveals
that the system with d =4 requires additional conditions
to become a constrained system, whereas systems with
d=2 and d=3 do not. It also shows that the Lorentz-
breaking operators with gauge invariance do not change
the classes of the theory constraints and the number of
physical degrees of freedom of the standard Maxwell
electrodynamics. When the U(1) gauge symmetry-break-
ing operators are presented, the theories in general lack a
first-class constraint and have one additional physical de-
gree of freedom compared to the standard Maxwell elec-
trodynamics.

The structure of this paper is as follows. The basic
theory is discussed in Sec. II, where we give the number
of independent components of the Lorentz-breaking oper-
ators with U(1) gauge violation and extend it to the gen-
eral Lagrangian density containing U(1) gauge-breaking
terms. Sec. III explores the Hamiltonian structure and de-
grees of freedom of theories with a specific dimension
d <4.1In Sec. IV, we apply the obtained results to specif-
ic models and derive the results for LIV, CFJ, and Proca
electrodynamics. Our summary is presented in Sec. V.

For clarity and conciseness, we use two conventions:

1. The Greek indices range from 0 to 3 and the Latin
indices range from 1 to 3. The metric of the background
spacetime 7, = (1,—1,-1,-1);

2. The time argument of the vector field A, is sup-
pressed throughout the study, namely, A,(x) = A,(z,X).

II. ELECTRODYNAMICS WITH VIOLATIONS
OF LORENTZ AND U(1) GAUGE SYMMETRY

In this section, we present a brief introduction of elec-
trodynamics with quadratic action in the pure photon sec-
tor in the framework of the SME with both Lorentz and
U(1) gauge symmetry breaking. This represents an exten-
sion of the Lorentz-violating modified electrodynamics
with U(1) gauge invariance in [24] by including the U(1)
gauge symmetry-breaking operators in the quadratic ac-
tion. In the construction of this theory, we also analyze
the properties of the coefficients for the Lorentz- and
U(1) gauge-violating operators.

For this purpose, following a similar construction to
that performed in [24], we start with the general quadrat-
ic action for Lorentz-violating electrodynamics in the
pure photon sector, which can be written as [24]
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S =/d4x£ )

with

l [ee]
L= FuP"+ D KA By - BayAys (2)
d=2

where F,, =0d,A,-0,A, and K" are constant coef-
ficients with the mass dimension 4 —d. One possible ex-
planation for the coefficients K{;™** originates from
non-zero vacuum expectation values to the Lorentz-
tensor fields. Note that each term associated with the
coefficient K" * violates CPT if d is odd and pre-
serves CPT if d is even.

The symmetry among the indices {a3, @s,...,a,} of
the tensor d,, ...0,, and the use of integration by parts
result in two properties of the coefficients K{;)™**. The
first is the total symmetry in the d-2 indices
{as, a4, ,a4}, and the second is the symmetry of the
two indices {@,@,} when d is even and antisymmetry
when d is odd. Depending on the specific intrinsic sym-
metries of the Lorentz-violating operators, the coeffi-
cients K)™* " can be decomposed into five representa-
tions [24]. When one imposes the conditions of U(1)
gauge invariance on the Lorentz-violating operators,
these five representations are reduced to two representa-
tions: one corresponds to the CPT-even coefficient and
the other corresponds to the CPT-odd coefficient [24].

A. Lorentz-violating electrodynamics with U(1)
gauge invariance

Let us first consider Lorentz-violating electrodynam-
ics with U(1) gauge invariance. U(1) gauge invariance is
a symmetry of the theory under the U(1) gauge trans-
formation [24]

A, > A=A, +0,A, 3)

where A is an arbitrary function. The variation in the ac-
tion (1) under this gauge transformation reads as

58 == / dXIEE A
d=2

1
X 603 te aad (a[a/] A(lz]i + 56[01 aaz]iA) = O’ (4)

where ”+/—" corresponds to an even/odd dimension,
and the brackets [], and []- indicate symmetrization and
antisymmetrization, respectively. Specifically, the terms
in the large brackets of the above expression can be writ-
ten as

alalAazlt + %altnaazlt/\
04 A, +00,Aq, + 04,04\, diseven, (5)
amAaz - arlgAm s

d is odd.

U(1) gauge invariance requires the variation in the ac-
tion in (4) to vanish. When d is even, because the two
first indices @, and @, are symmetric, to make (4) vanish,
both indices @, and @, must be antisymmetric with one of
{as,aq,- -, [24]. With these properties, it is straight-
forward to infer that all the CPT-even operators with
d =2 are gauge-violating and the gauge invariance re-
quires d > 4. Using these properties, we can also count
the number of independent components of the CPT-even
operators, which leads to

Nr =(d+1)d(d-3). (6)

Similarly, when d is odd, the first two indices @, and a»
are antisymmetric, and the vanishing of (4) requires «,
and @, to be antisymmetric with one of {a3, a4, ,a4}.
For this case, only operators with d >3 are allowed and
the number of independent components of the CPT-odd
operators is

1
Nyp = §(d+1)(d—1)(d—2). (7)

In Table 1, we summarize the number of independent
components of the CPT-odd and CPT-even operators.

B. Lorentz-violating electromagnetics with the
violations of U(1) gauge symmetry

Now, we consider the case with the breaking of U(1)
gauge symmetry. When U(1) gauge symmetry is viol-
ated, the variation in the action in (4) does not need to
vanish. For this case, extra conditions are not required on
the coefficients K{)"**“ to ensure the gauge invariance
of the theory. For CPT-even operators without gauge in-
variance, as mentioned before, while the indices

Table 1. Number of independent components of the
Lorentz-violating operators with/without U(l) gauge invari-
ance.
) . Number of independent
d CPT Gauge invariance
components
2 even no 10
yes (d+1)d(d-3)
even, >4 even
no 2d+2)d+d
1
yes Ld+d-1d-2)
odd, >3 odd 2
no $d+2)(d+1)(d-1)
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{@s,a4,---, a4} in the CPT-even coefficients ;" are
symmetric, the first two indices @, and @, are also sym-
metric. Similarly, for CPT-odd operators without gauge
invariance, the indices {as,@s, - -,@,} are symmetric,
whereas the first two indices «; and a, are antisymmet-
ric. We can then count the number of independent com-
ponents of the CPT-even and CPT-odd operators with a
specific dimension d, as summarized in Table 1.

For later convenience, we can decompose the Lag-
rangian density (2) into two parts, the U(1) gauge invari-
ance and gauge-violating parts. This involves rewriting
the Lorentz-breaking coefficients in five different forms
with distinct symmetries. The specific representation of
the decomposition of these five forms can be found in
[24]. Subsequently, the Lagrangian density (2) can be re-
written as

1
= - 7Fm/F(w
= 4
D K" Ay Oy . Oy A

even d=2

Q)ajuvas...q-o
+Y K A, 0,00y ... 0y r A,

d=3

Bpavay..aq-2
+> K AuB,Ba, .. By ) An,

d=3

+ Z KTS8O - Dy A

d=4

(5), ] .. Q-
+ Y KGN A0, - Oy LA
odd d=3 ()

where the five coefficients K" " with i =1,2,3,4,5
are distinguished by their distinct symmetries among the
indices {a,as, s, -+ ,a4). The coefficients 7((((;))”‘“2“3“”"
are all CPT-even with d>2, whereas their indices
{a1, 22,03, -+ ,@,) are all symmetric. We can clearly infer
from (4) that these coefficients violate the U(1) gauge
symmetry of the theory. The coefficients K> "2
are either CPT-even or CPT-odd with d > 3. Except for
the two indices x and v, which are antisymmetric, the re-
maining indices {@;,a,---,a4-,} are all symmetric. Note
that these coefficients are also gauge-violating. Similarly,
7(((5))”‘“"’2”""”2 can also be either CPT-even or CPT-odd
with d > 3. The two indices of this coefficient, 4 and v,
are antisymmetric, and the remaining indices
{a1,@, @42} are all symmetric. We can verify that
these coefficients also break the U(1) gauge symmetry of
the theory. Then, for the indices of the coefficients
K7 | the indices 1 and p and the indices v and &
are both antisymmetric. We also note that these coeffi-
cients are symmetric upon interchanging the two pairs of

indices (u,p) and (v,0). By inspecting the variation in the
action (4) with these coefficients, we find that the CPT-
odd operators with K{;"**“** violate gauge invariance,
whereas the CPT-even ones are gauge invariant. The fi-
nal coefficients 7(((3))” Pa-ads gre CPT-odd with d > 3, and
their three indices {u,v,p} are antisymmetric. These coef-
ficients preserve the U(1) gauge symmetry of the theory.

To simplify the later handling of the Hamiltonian ana-
lysis of the theory, we can rewrite the Lagrangian density
of the theory in a compact form:

1 . 1
L= = JFnF+ A, KA, + S A, KOO,

1 N 1 A
(4), (5)
- ZF,,FJ( HOYTE o + EEK”VPA”WK F,,, 9
where
r(Dajay — (Dajazas...ay
Jehaiar = Z 7(((1) 103 /aaz_”aad’ (10)
d=even
(4 _ (Duvpoay ...aq-.
%K )ﬂpvo':z?((d) 1 14aal ---5a,,_4, (11)
d=4
A €
5) _ Sxuvp (5), =3
K = 6 Z Kay """ 0oy Oy (12)
d=odd
and

(o8]
(]%‘(2,3)}41/0[ = Z [7(;(5))“1#""%-%/—2 + (_])d7<‘((5))ﬂﬂlV”2~~~‘ld—2]
d=3
ST (13)

The index symmetries of the operators in (9) are
shown in Table 2. The indices enclosed in the same
brackets {} of the second and third columns represent the
symmetry and antisymmetry between them, respectively.
{up,vo} in the second column indicates that the corres-
ponding operators are symmetric when the two pairs
(u,p) and (v,0) are exchanged. The fourth column dis-
plays the conditions under which each class of operators
appears.

III. HAMILTONIAN STRUCTURE OF
THE THEORYS
In this section, we perform a Hamiltonian analysis on

the Lorentz-violating electromagnetics with and without
U(1) gauge invariance using the Dirac-Bergmann proced-
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Table 2. Symmetries of the indices of the operator coeffi-
cients in (9).
Coefficient Symmetry Antisymmetry d
R Dz {ar,a7} even, > 2
K3 {u, v} >3
R Gppvo {up.vo) {ph v, o} >4
KO odd, >3

ure [40—44]. For simplicity, we focus on the theory with
Lagrangian densities with a specific dimension d <4 of
Lorentz/gauge-breaking operators.

A. d=4

We start the Hamiltonian analysis with d = 4. For this
case, the Lagrangian density of the theory reduces to

1 1
-£(4) = - ZF/;VF#V - E U”Vp"BHAvapAU
1 1
VoA = g W Ep B (1)
where
UHPe — 27{((43))#\//)0', (1 5)
YHPT ((f))p/iwr + 7(((2));4;)\/0’ (1 6)
WHovT — «Kéj))uvm. (17)

The terms in Ly with coefficients U**” and V¥
break the U(l) gauge symmetry. The four indices
{u,v,p,0} in U**7 are totally symmetric, whereas V**”
are antisymmetric in {x,v} and symmetric in {p,o}. The
terms with coefficients W#”” are gauge invariant, and the
corresponding indices of the coefficients W*” have the
same symmetric properties as the Riemann tensor, i.e.,
the first pair {up} and last pair {vo} of W*"" are both an-
tisymmetric but symmetric upon interchanging the two
pairs. By varying the action (1) with the above Lagrangi-
an with respect to the field A,, we obtain the equation of
motion of the electromagnetics, i.e.,

d, (F’” + UM 0,A0 + V™7 0,A,

1
+ 3 VPTHE, + WP Fpg> -0. (18)

Now, to perform the Hamiltonian analysis, it is conveni-
ent to define the conjugate momentum

= Mf‘” = —F¥%_y%ry,A, - V%9 A
0A, s o
1
-3 VAOR, —~ WP, (19)

which sets the fundamental Poisson brackets (PB) as

{A (), ()} = 6,6(x ). (20)

From the conjugate momentum, the canonical Hamiltoni-
an of the system can be expressed as

‘7‘{(4) = Apﬂ# - L(4). (21)

In the Hamiltonian analysis, a significant portion of
the work involves computing the Poisson bracket
between the Hamiltonian and functions in the phase
space. In this context, it is important to express the
Hamiltonian as a function of the conjugate momenta and
coordinates. To do so, let us write the time and spatial
components of the conjugate momentum for (19),

1
7’ =-U"9,A,- 3 veoOF, ., (22)

ﬂ'k — DkiF0i+Nk, (23)
where the matrices D*; and N* are defined as

D= =64 = Vil = V¥ — 2w - U, (24)

1 . y
NE= — <§lek0 + WOkl/>Fij _ (UOkOO + Vkooo)avo

_ 2(U0k0i + VkOOi)aiAO _ (Uokfj + VkOl])alA/
(25)

From the expression of D;, it is easy to obtain Df; = D/*.
Further analysis is required to determine the constraint
structure of the system. For this purpose, we assume that
D%, is a non-degenerate matrix, just like in gauge invari-
ance [27, 28], such that

F% = (DY (7" = N¥). (26)

After some manipulations, we can finally express the
canonical Hamiltonian density as a function of the field
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Hiay = 00+ 5 (D7) = N [ = N7 (Vo= Vi) (D™ = N1 = 20+ VI3, |

1

1
+ 2U0°k1(9kA06,A0 - 5 UOOOO(%AO@OAO,

where we keep the term 0yA, explicit because when
studying the constrained system with d =4 in the follow-
ing, we must impose some constraints on the Lorentz-
breaking coefficients. A option here is exactly U%° =0 ,
which can be considered as throwing away the term with
respect to dpAo.

Following the Dirac-Bergmann algorithm, our next
step is to write the total Hamiltonian density of the sys-
tem, which is composed of the canonical Hamiltonian
density and primary constraints. However, for the system
in d = 4, the existence of primary constraints requires cer-
tain additional conditions.

1. Conditions for the existence of the constraints

Let us consider the system described by (14) and find
which of its conditions contain constraints. According to
the Dirac-Bergmann procedure, the presence of con-
straints in the system with Lagrangian density Ly, can be
determined by checking whether the Hessian matrix

’L
94,04,
with Lagrangian density L4 a constrained system, it is
& L
dA,0A,

is degenerate. Therefore, to make the system

sufficient to provide the condition that the matrix

is degenerate. The Hessian matrix takes the form

62‘5(4) - _ (npv _ )70;16 V) _ ZWOHOV _ UOyOV
0A,0A, 0

— YHOO _ 00 (28)

When the Hessian matrix is non-degenerate, the system
does not possess any constraint that is not of interest. It is
easy to observe that, for the gauge invariant case, because

UrrT =0 = Vi, (29)

the Hessian matrix is identically degenerate. This indic-
ates that the theory with U(1) gauge symmetry always
has constraints. However, when U(1) gauge symmetry is
broken, whether the theory possesses constraints depends
on the specific forms of the gauge-breaking coefficients
U*P7 and V7,

For our purposes, we intend to consider the case when
the Hessian matrix is degenerate, either with gauge in-
variance or gauge breaking. Considering the complexity

1. 1. . y i 1. .
+ iF,- j(EF’f +5 WHE+2V%3,Ag+ VIRSAL) + (E UM9.A;+2U0M9,A0)0 A,

27

of the Lagrangian density in the d = 4 case, for simplicity,
let us only focus on the following simple case to make the
Hessian matrix degenerate:

yooo — . yo00i — _yio0o, (30)

As shown in the above equation, this constraint condition
only restricts the gauge-breaking coefficients and the first
row and column of the Hessian matrix that are 0, which
allows the subsequent conclusions to be fully applicable
to gauge-invariant systems. For clarity of discussion, sim-
ilar to the gauge iglvariant case [27, 28], we assume that

the 3 X3 matrix is non-degenerate.

“)
Thus, for the d =4 case, hereafter, we analyze the
system with

1 1
= 1 FunF" = U™ 8,A0,A,

1 Voo 1 Vo
= S VI F 0 Ay = T W Fyp P,

Ly =

€2))

with conditions U% =0 and U = —y7000,

2. Canonical analysis

After obtaining the constrained system with a Lag-
rangian density of (31), we analyze the constraint struc-
ture of the system. Under the condition of (30), the con-
jugate momentum in (23) can be written as

70 = —(U™7 + VIOA; - 20" 9,A,, (32)
7" = DN FO 4 NF, (33)
where
N*= - (% VIO L WO F =20 + V9,4,
— (U™ + ViG,A ;. (34)
L

The rank of matrix m is 3, giving rise to a unique

primary constraint

063105-6



Electrodynamics with violations of Lorentz and U(1) gauge symmetries and...

Chin. Phys. C 48, 063105 (2024)

¢\ =10+ (U + VIGA; + 209,40 ~ 0. (35)

The symbol "~" is known as the weak equality symbol,
which implies that the equation only holds at the con-
straint surfaces but not throughout phase space. With the
expressions of (30), the canonical Hamiltonian density
(27) also becomes

1
Huy = 70 A + 5(D*‘)_,,(n’ —NY
X (7= N7+ (Vo= Vig")(D ™ (' = N)

1 1 .. 1. . . ;
*Fij(*F” + E lelekl + 2V110k(9kA0 + V”“@Ak>

+
2 2
1 .. .
+ (5 U’]klc'),«Aj + ZUOJklajA0> c')kAl + 2U00k16kA0c')lA0,
(36)
and the total Hamiltonian density can be written as
Her = Huy + 1", (37)
which gives the total Hamiltonian in the form
Huyr = / Heayr x)d’x, (38)

where u® is an arbitrary Lagrangian multiplier. Note that
0,Ap(x) = {A¢(X), Hyyr} =u¥(x) because the Poisson
bracket between A¢(x) and Hy(y) is zero, and that
between Ay(x) and other terms in ¢(14)(y), except for n(y),
is also zero. This gives meaning to the coefficient u'(x):
the time derivative of Ay(x).

Following the standard Dirac-Bergmann procedure,
we then analyze the requirement for the preservation of
the primary constraint. Such a requirement is also known
as the consistency condition of the primary constraint,
which requires that the time derivative of this constraint
also vanishes. The consistency condition of the primary
constraint, i.e.,

$"(x) = ()" (%), Hayr} ~ 0, (39)
gives rise to a secondary constraint of the system,

) = O + M"(B,um' — 0,,N')
+(SUYM 1+ Vi%)5,6.A,
+ VﬁOkakF,‘j + 2U0jk18j[9kA, x 0, (40)

where

1
M"; = 3 [(D_l)ij +(D™";
+2(V = Vi )(D ™D
X (3 UOjOm + ZVjOOm + ijOO)’ (41)

which indicates that the structure of Gauss's law is influ-
enced by the gauge-breaking term.

Similar to the primary constraint, the secondary con-
straint ¢, ~ 0, being a constraint itself, also has a corres-
ponding consistency condition, which is

@5 (x) = (5" (%), Hayr} = 0. (42)

This condition then leads to

O 0,0,(n ~ N') + 059,00, Ao + 03" 0,0,0,A

+O19,8,F, + T80 u® ~ 0, (43)
where
) ) A ;
Oéllk = (6],,, + Mjm) (5 vmtkl + Uzmlk) , (44)

: 1 . .
Otlkj = E |:(5lm + Mlm)(mGIO + 2W()lkm + U()Ikm + Vl()km)
+Mi (Vlkm() +2w0mkl + UOmk[ + VmOkl)
+ Z(V/i()k + UOikl)] {(Dfl )Jl + (Dil)lj
+2(VO o1, = Viyo"O)(D ™, (D7HR [] ,

(46)
O;jk = (6il + Mil)(V[jOk + 2U0jk[) + Mil(UOIjk + V[Ojk) + 2U0ijk,
(47)
and
T4 = 6U 4 (3UK 4 VRO 4 2 K00 ppi (48)

For the gauge invariant case, 7 =0, and we can
check that the condition (43) is satisfied identically.
When the U(1) gauge symmetry of the theory is violated,
T are generally nonzero; therefore, (43) represents a re-
striction on the Lagrange multiplier «®”. One special case
is T =0 for some specific combination of the gauge
breaking coefficients, for which a new constraint arises:
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) = O (8:0kn” - 0,0N') + 050,00, Ao
+ Oéilké)jaiﬁ,Ak + Offijaka,F,-j ~ 0. (49)

With this constraint, by repeating the above proced-
ure, its consistency condition may produce more con-
straints under certain conditions. It is worth mentioning
that according to Table 1, the number of independent
coefficients is finite, and the emergence of new con-
straints will give a set of limiting equations on the coefti-
cients. Just as in the presence of ¢S’ ~0, T% =0 gives 9
equations between the coefficients; therefore, the number
of independent coefficients is reduced. Detailed analysis
shows that each time a new constraint is present, the
number of limiting equations for the coefficients rapidly
increases compared to the previous constraint, eventually
stopping the generation of possible constraints at a cer-
tain step. This results in a closed Poisson bracket and a
limited number of constraints. According to the analysis
in [45, 46], such constraint may also lead to an unphysic-
al half degree of freedom. However, this requires a very
special choice of gauge-breaking coefficients. For simpli-
city, we do not explore these specific cases in detail in
this study.

Before we go further, we would like to summarize the
main results obtained so far for the d =4 case. For both
the gauge invariant and gauge breaking cases with the de-
generate condition (30), the theory can have one primary
constraint ¢'” and one secondary constraint ¢’ .

3. Counting the degrees of freedom

After obtaining all the primary and secondary con-
straints of the system, we identify the first- and second-
class constraints of the system by analyzing the Poisson
bracket of the constraints. In general, first-class con-
straints are associated with the gauge symmetry of the
theory. They are gauge generators, which generate gauge
transformations that do not alter the physical state.
Second-class constraints cannot generate gauge trans-
formations because the transformation generated by the
second-class does not preserve all the constraints, which
violates the consistency condition, but are important in
the definition of the Dirac bracket, which plays a key role
in the transition from classical to quantum theory [43].
Specifically, first-class constraints are those whose Pois-
son bracket with every constraint vanishes weakly; oth-
ers are second-class constraints.

The Poisson bracket of the primary constraint ¢\" and
secondary constraint ¢} gives

(657,870} = (C)7d10;6(x—y)
+ (Cz)"«" 9.0 jO(x—=y). (50)

where 0’ denotes the partial derivative with respect to y,
and

(C1) = =(U + (U 4+ V)M, (51)

(Co)7 = 2M (U7 + VM) 4 50 (52)

It is clear that for the gauge invariant case,
CY =0=CY; therefore, ¢\" and ¢} are both first-class
constraints. For the case without the gauge symmetry, the
gauge breaking coefficients U**” and V**7 are gener-
ally nonzero; thus, the theory does not possess any first-
class constraints. In this case, ¢!’ and ¢\’ are both
second-class constraints. This result is expected because
first-class constraints can only exist when the theory has
gauge symmetry, and thus a theory without gauge sym-
metry should not have first-class constraints.

With all first- and second-class constraints, we can
count the number of physical degrees of freedom (Npor)
using the following formula [47]:

1
Npor = 3 (Nyar —2NOF - NOS), (53)

where "N,," represents the total number of canonical

variables, "NOF" is the number of constraints of the first
class, and "NOS" represents the number of second-class
constraints. Thus, for the gauge invariant case, the num-
ber of degrees of freedom is

1
Npor = 5(8 -2x2)=2, (54)

which is the same as that in the standard Maxwell electro-
dynamics, whereas in the case of gauge violation,

1
Noor = 5(8-2)=3. (55)

Therefore, the violation of U(1) gauge symmetry in-
duces one additional physical degree of freedom com-
pared to the standard Maxwell electrodynamics and the
theory with gauge invariance. This additional physical
degree of freedom results in a third state of polarization,
corresponding to a new particle known as the longitudin-
al photon [48]. This represents a new type of electromag-
netic radiation that may alter the radiation spectra of
many sources with nonzero temperature [48]. However,
its phenomenological effects in both experiments and as-
trophysical observations are expected to be too small to
be detected for now [48—50].

B. d=3
In this subsection, we analyze the constraint structure
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of the theory with Lorentz/gauge-breaking operators with
dimension d =3. The Lagrangian density of the con-
sidered theory can be written in the form of

1 1
Lay=—=Fu,F"+ ES”V"APF‘,,J

4
1
+ EEKHVP(kAF)KAyFVp- (56)
where
1 (5)uvp
(kAF)K = g efqlvp(}(@) > (57)
SHP — ((32))/)#‘/ _ ((33))#/?\/. (58)

Note that the terms with (ksr), are gauge-invariant and
the terms with S#* are gauge-breaking. Varying in the
action with respect to A,, we obtain field equation

1
&M (ar) o+ 55" F,,

+0,(F* —S™A,) = 0. (59)

The corresponding conjugate momentum of this theory
reads as

9
w2 PEO __pon (@ k5 A, (60)
04,

To analyze the constraint structure of the theory, it is
convenient to write down the time and spatial compon-
ents of the above conjugate momentum (60) as

7’ =0, (61)

7= —F% 4 (e kpp j+ SHA,. (62)

We can conclude that in the specific dimension d =3,
gauge-breaking and gauge-invariant Lorentz-breaking
electrodynamics have the same form for the conjugate
momentum 7 of the photon field Ay. From these proper-
ties, the only primary constraint of the system is

& =70~ 0. (63)

Then, the canonical and total Hamiltonian densities are
given by

(}{(3) = 7TkAk - .L(j;), (64)

and
(He)r = Hea) +u®¢?. (65)

Here, similar to the case of d =4, the coefficient u® is
the time derivative of Ay.

Once again, the consistency condition of the primary
constraint gives a secondary constraint

; 1 0 ;
05 = 9" = ' + - Fu( ™ (hap) + )
+8 (€M™ (kar); + S A, —n* S *
~ 0. (66)

Similarly, this suggests that the form of Gauss's law must
be modified when considering the presence of the gauge-
breaking term. The consistency condition of ¢ imposes
a restriction on u®:

$5) = 8,208 — (5% 4. 5,40) g
+8% (26" (kap);+ 8% =S’
+8,0 26" (kar) + Sk~ 8,7
X [ (kar); +S""1A,
1 ) . ;
+5 (=280 + 5700 F
B E(fok” (kar)o +S7)S O F;;
+28,2(8% 4 5%, A,
+8,%° [ZEIOik (kap) +S°c =S kOi] 104,
+ [S (7 (kap)o +S*)
+ (SkOi + Skio)[fl'fOk(kAF)l + Skoj]] aiAj ~0.
(67)

For the gauge invariant case, all the gauge breaking coef-
ficients S* = 0; thus, the above consistency condition is
satisfied identically. In this case, the theory only has two
constraints, the primary constraint ¢’ and secondary
constraint ¢5”.

When gauge symmetry is violated, the gauge break-
ing coefficients S*” are generally nonzero. For this case,
the above consistency condition leads to a specific form
of u®,

1
- S mOOS m00

x [S 00 [2610ik (kar), + §0 Skoq

u® ~

X [Ejn()k(kAF)j +Sk0n]A” _ (S,‘Ok +Sik0)akﬂ_i
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+Sk00 (Zejkoi(kAF)j +Si0k _Sk()i)ﬂ_i

+ = (=2870" + STV F;

DN | =

S )y + S P F,
+285,2(8" +5")d, A

+8,2Q€e% (kap) + Sk = S ")S A
+ {S koo(foﬁk (kar)o+S ki

(S + S OED (kap) + 57| 0iA ] (68)

This indicates that the theory for this case does not
have any additional constraints. Similar to the gauge in-
variant case, there are only two constraints, one primary
constraint ¢ and one secondary constraint ¢.’. Here, we
would like to mention that under certain conditions on the
gauge breaking coefficients, such that S,%°S =0, the
theory may produce additional constraints. However, this
requires a very special choice of gauge-breaking coeffi-
cients. For simplicity, we do not explore this specific case
in detail in this study and focus on the case with
§ %0510 % (0 when gauge symmetry is violated.

Then, let us consider the Poisson bracket of the
primary constraint ¢\ and secondary constraint ¢,
which is

(070 (%).65(¥)} = =8, 05 N5(x ~y). (69)

It is clear that for the gauge invariant case, because
S#P = (), the above Poisson bracket vanishes and the con-
straints ¢ and ¢5” are both first-class. Thus, the num-
ber of the physical degrees of freedom is

1
Npor = 5(8 -2x2)=2, (70)

which is the same as that in the standard Maxwell electro-
dynamics.

For the case with gauge violation, because generally
§,05%0 20, ¢4 are both second-class constraints.
Thus, the number of the physical degrees of freedom is

1

Npor = 5(8—2) =3. (71)

Similar to the case with d = 4, the violation of U(1) gauge
symmetry induces one extra physical degree of freedom
compared to the standard Maxwell electrodynamics and
the case with gauge invariance.

C. d=2

After completing the constraint structure analysis of a
specific dimension d =3 and d =4, we analyze the struc-
ture of d = 2, the Lagrangian density of which is

1 1
Loy=- 2 F F* + 5 U"ALA,, (72)
with
U= 2K, (73)

which are gauge-breaking terms. Varying the action with
respect to A,,, we obtain

U™A, +0,F* =0. (74

The conjugate momenta now read as

n
oA,

—F™, (75)

One difference from d =3 and d =4 is that at this point,
the conjugate momenta 7 are not affected by the gauge-
breaking coefficients, U*”; hence, they are the same as in
Maxwell electrodynamics because the time derivative of
the photon field A, only appears in the Maxwell term,
i.e., the first term in (72). Therefore, the only primary
constraint is

@ =70 % 0. (76)

The canonical Hamiltonian density differs by only one
term of U* from that in Maxwell electrodynamics:

1 1 .1
Hey = 1'Ao ~ Eﬂkﬂk + ZFikFlk - EUWA;:AW (77)

This gives the total Hamiltonian density
(}‘{(2)]" = (}‘{(2) + M(2)¢(12). (78)

The influence of the gauge-breaking terms are reflec-
ted in the secondary constraint because it originates from
the Poisson bracket between the primary constraint and
the total Hamiltonian, which is now gauge-breaking. It
reads as

& = ot + U%A, 0. (79)

The consistency condition of ¢, is
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3P = UM G,A, + U Ao — U +u®U® ~ 0, (80)
which provides the constraint on ® when U% # 0:
U® ~ (UO)[U%(m, — 8, A) — UHBA, ). (81)

Noting the absence of n° in H;, we obtain Ao(X) =
{Ao(X), Hpyr} = u®(x). As a consequence, the meaning of
u® is the time derivative of Ay. Combining (81), the time
component A, of the photon field can be determined by
the first-order differential equation.

Finally, the Poisson bracket of ¢ and ¢ is

(0P (x),62(y)) = ~UP5(x—y). (82)

When the gauge breaking coefficients U*” are nonzero,

@ ¢ are both second class constraints. Similar to the
cases of d =4 and d =3, we do not explore the case with
U% =0 in this study, which may induce more constraints.

Then, the number of physical degrees of freedom is
1
Npor = 5(8 -2)=3. (83)

Again, compared to the standard Maxwell electrodynam-
ics, because d =2 operators always break the U(1) gauge
symmetry, it induces one additional physical degree of
freedom.

IV. MAP TO SEVERAL SPECIFIC MODELS

The Lorentz-violating electrodynamics presented in
this paper provide a unifying framework for describing
possible violations of Lorentz and U(1) gauge symmet-
ries in the electromagnetic interaction. In this section, we
present several specific modified electrodynamics by ex-
pressing their actions in the form of (1) and summarize
their Hamiltonian structures from our general analysis.
We consider three specific theories, LIV, CFJ, and Proca
electrodynamics. The first two theories only break the
Lorentz symmetry of the theory, whereas the third only
breaks U(1) gauge symmetry.

A. LIV electrodynamics
We first consider LIV electrodynamics, which is pro-
posed in [27, 28], and the Lagrangian density is given by
[27, 28]

1 1
-ELIV = _ZF;NFIJV - ZWHVPO—F,qupow (84)

which corresponds to the case in our model where the

gauge-breaking coefficients U**” and V**7 are set as
zero for d =4. Using the result from (35) and (40), we
obtain the constraint structure in this case as

(¢p)uv =" ~ 0, (85)
(2)riv = akﬂk ~ 0. (86)

We must verify that the consistency of (¢2).v gives no
new constraints. Noting that 7/ = M7 = 0 using (41) and
(48) because V**7 =U**" =0, we only need to check
whether ¢}’ in (49) is identically zero throughout the
phase space, not just on the constraint surface. In this
case, the only possible non-zero coefficients remaining in
(49) are O%* ; and 04" . According to (33), as a result, ¢}’
now changes to

WOR(D™) i+ (D7)’ = NY)

1 ... ,
+ E(Uhflk" + W90,,F ;. (87)

Because the last two indices of W' are antisymmetric,
and i, j in n"'n* 6,0, are symmetric, (87) is equal to 0. This
proves that (¢,) v does not give new constraints. In addi-
tion, because the theory has gauge symmetry, both the
constraints (¢)Lrv and (¢,) v are first-class; thus, the the-
ory has two degrees of freedom, the same as that in the
standard Maxwell electrodynamics. Our result is consist-
ent with the results in LIV [27, 28].

B. CFJ electrodynamics

For CFJ electrodynamics, the Lagrangian density is
given by [35]

1 1
-ECFJ = _ZF,quHV + EGKHVP(kAF)KA/JFVp’ (88)

with the caveat that the coefficient (k4r), differs by a

1 . .
factor of ) compared to that in [35]. The Lagrangian
density (88) can be obtained in our model by setting
S#* =0 to zero in d = 3. Similarly, according to the res-
ults of (63) and (66), we have two constraints for this the-
ory,

(@D)crs = n’=F"x~ 0, (39)
1 .
(¢2)crs = O + EFikE'/O’k (kar); =0, (90)

where (¢1)crs 1s the primary constraint and (¢2)cr is the
secondary constraint. According to (67), it can be con-
cluded that (¢,)cr; is always zero in the phase space in
this case, which does not generate new constraints. This
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result confirms that in [35]; however, note that the coeffi-
cient k4r here differs by a factor of —1/2 compared to
that in [35]. Note that both (¢,)cry and (¢,)cr are first-
class, and the number of degrees of freedom is the same
as that in the standard Maxwell electrodynamics.

C. Proca electrodynamics
When d =2, if we set U* =m?p*, the Lagrangian
density L will return to the case of Proca electro-
dynamics [36]:

1 1
—ZF(WFQV'F EmzA#A“, (91)

Lproca =
where m is the mass of the photon. Because of this mass
term, Proca electrodynamics break the U(1) gauge sym-
metry of the theory. Replacing the constant coefficients
U* with the product of the metric tensor 7*” and m? is
the reason why Proca electrodynamics does not break
Lorentz symmetry, because the product is also a tensor.
For the same reason as d = 3,4, at this point, the theory
also has two constraints,

(¢1)Proca = 7.(0 ~ 0, (92)

(¢2)Proca = akﬂ-k +m’A’ ~ 0. (93)

Moreover, (¢2)poca giVEs No new constraints. They are
both second-class because {(¢)proca(X); (B2)proca(y)} = M2
(x—y). Thus, this theory propagates three physical de-
grees of freedom, which is different from the two de-
grees of freedom in the standard Maxwell electrodynam-
ics and the cases with gauge invariance. These results are
consistent with those in [36], with the only difference be-
ing that their coefficient m? differs from ours by a factor
of 1/2.

V. SUMMARY AND DISCUSSION

In this study, we perform an extended analysis of
modified electrodynamics with the violations of both
Lorentz symmetry and U(l) gauge symmetry in the
framework of the SME. This represents an extension of
the previous construction of Lorentz-violating electro-
dynamics with gauge invariance [24]. For our purposes,

Table 3.
and the number of physical degrees of freedom for each case

Number of first-class and second-class constraints,

with a specific dimension d =2, d =3, and d =4.

Gauge  Number of first-class Number of first-class Number of
invariance constraints constraints DOF
2 no 0 2 3
yes 2 0 2
3
no 0 2 3
yes 2 0 2
4
no 0 2 3

by following the procedure in [24], we construct the
quadratic Lagrangian density of electrodynamics by al-
lowing the violations of both the Lorentz and U(1) gauge
symmetries. The Lorentz- and gauge-violating effects in
the quadratic Lagrangian are represented by new operat-
ors with a specific dimension d < 4. With the constructed
quadratic Lagrangian, we calculate in detail the number
of independent components of the Lorentz-violating oper-
ators at different dimensions in both the gauge invariance
and gauge violation cases.

We then perform a Hamiltonian analysis of the gener-
al theory by considering Lorentz and gauge-breaking op-
erators with dimension d <4 as examples. Specifically,
we perform the analysis for d =4, d=3, and d=2. It is
shown that the Lorentz-breaking operators with gauge in-
variance do not change the classes of the theory con-
strains and have the same number of physical degrees of
freedom as that in the standard Maxwell electrodynamics.
When the U(1) gauge symmetry-breaking operators are
presented, the theories generally lack a first-class con-
straint and have one additional physical degree of free-
dom compared to the standard Maxwell electrodynamics.
The results of the Hamiltonian structure and the corres-
ponding number of degrees of freedom are presented in
Table 3.

Finally, we map our general analysis to several spe-
cific modified electrodynamics, including LIV, CFJ, and
Proca electrodynamics. While the first two theories rep-
resent two specific examples of Lorentz-violating theor-
ies with gauge invariance, the third is a theory that breaks
U(1) gauge symmetry but still maintains Lorentz sym-
metry. We show that our general results are consistent
with the existing Hamiltonian analysis in the literature for
these specific examples.
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