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Pair of dyon production near magnetized dyonic
Reissner-Nordstrom black holes*
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Abstract: We investigate the phenomenon of pair production of massive scalar particles with magnetic charge near

the horizon of a magnetized dyonic Reissner-Nordstrom black hole. The intrinsic symmetry between the electric and

magnetic quantities in the Einstein-Maxwell equations suggests that the pair can be generated through Hawking radi-

ation and the Schwinger effect, provided that the Dirac quantization condition is satisfied.
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I. INTRODUCTION

The fluctuations in the vacuum near a black hole can
lead to the creation of particle pairs through phenomena
known as Hawking radiation and the Schwinger effect
[1]. Hawking radiation, which has been explained in dif-
ferent ways such as pair production and the tunneling ef-
fect [2], which occurs when particle-antiparticle pairs are
created near the event horizon of a black hole. However,
Hawking radiation diminishes when a black hole be-
comes extremal. Nevertheless, in such cases, pair produc-
tion can still occur in a manner similar to the Schwinger
effect in quantum theory [3]. The Schwinger effect in-
volves the creation of particle-antiparticle pairs from the
vacuum in the presence of a strong field. A similar effect
can be observed near a black hole, which is referred to as
the Schwinger effect for black holes. This effect has been
studied in the context of rotating charged black hole
backgrounds [4—7]. Before investigating the Schwinger
effect near black holes, previous research has explored
this phenomenon in (anti)-de Sitter spacetime [8, 9].

The concept of a magnetic monopole has been a top-
ic of interest in physics for many years. The physicist
Paul Dirac first proposed the existence of magnetic
monopoles in 1931 when he tried to reconcile the sym-
metry between electric and magnetic fields in Maxwell's
equations [10]. Dirac showed that if magnetic monopoles
exist, it would explain why electric charges always ap-
pear in discrete units, such as the charge of an electron.
The idea of speculated matters equipped with magnetic
monopole was pursued by Schwinger, where the sym-
metry between equations of motion for electric and mag-

netic charge is obvious [11].

In a series of studies [12—14], the authors showed that
magnetic monopole pairs can be produced under strong
magnetic field influence. This is inspired by the Schwing-
er effect that led to the production of electrically charged
particle pairs in a strong electric field background [3]. In
fact, this particular effect is used as the basis for explain-
ing the production of charged scalar near various black
hole horizons [4—7]. Some recent studies report the prop-
erties of collapsing magnetic monopoles [15]. One partic-
ular aspect that may be related to the studies pursued in
this paper is the possibility of this object to be very long
lived; that is, we can treat them as a stable state of the
particle.

Recently, such consideration of particle production
has been investigated for the magnetized black hole back-
ground to determine the significance of external magnet-
ic field on the number of produced particles near black
hole horizons [16]. The authors demonstrated the effect
of external magnetic field on the rate of particle produc-
tion. At least two interesting features arise in this study.
First, a pair of neutral scalars is produced under a strong
magnetic field background. Second, the discrete features
in the magnetic quantum number for the absorption cross
section resemble the Zeeman effect for the atomic energy
under the influence of the magnetic field. Recently, stud-
ies on black holes under the influence of a strong magnet-
ic field have also garnered significant interest, especially
due to the report on the observation of magnetic field
structures near the event horizon [17].

Inspired by the studies in [16] for the pair production
near magnetized black holes and the pair of dyonic scalar
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production from a black hole performed in [18], we in-
vestigate the production of scalar dyon in the vicinity of a
magnetized dyonic black hole. To emphasize the magnet-
ic interaction, we limit the test scalars to being dyonic
only, and the black hole contains only the magnetic
charge. Some insights on the production of scalars with
electric and magnetic charge near the non-magnetized
Reissner-Nordstrom can already be inferred from the
work presented in [18].

The remainder of this paper is organized as follows:
The next section reviews the magnetized dyonic Reiss-
ner-Nordstrom black hole. The near horizon solution and
the corresponding separable Klein-Gordon equation are
given in Sec. III. The Bogoliubov coefficients and ab-
sorption cross section corresponding to the pair produc-
tion are discussed in Sec. IV. Finally, we present the con-
clusions. In this study, we consider the natural units
C=h=kB=G4= 1.

II. MAGNETIZED DYONIC REISSNER-
NORDSTROM BLACK HOLE

The dyonic Reissner-Nordstrom (dRN) or magnetic
Reissner-Nordstrom solution is a widely recognized solu-
tion that satisfies the Einstein-Maxwell equations,

R/IV = Tuv' (1)

In these equations, the Ricci tensor R, describes the
curvature of spacetime, while the energy-momentum
tensor 7, is associated with the electromagnetic field.
The dRN solution describes a system in which both elec-
tric and magnetic charges are present. It represents a solu-
tion that satisfies the Einstein-Maxwell equations, link-
ing the electromagnetic field's energy-momentum distri-
bution to the curvature of spacetime. The field strength
tensor is typically expressed as F,, =d,A,—0,A,, where
A, represents the U(1) Maxwell field. For the dyonic Re-
issner-Nordstrom (dRN) spacetime, the metric and vec-
tor solution can be described as follows [19]: In Boyer-
Lindquist coordinate x* = [z,r,x = cosf,¢], the spacetime
metric is given by

ds® =

A, 2<dr2 dx? 2)
—;dt +r Tr+ AX +Axd¢ s (2)

and the vector solution is given by

A dxt = %dt+P(xi 1)dg, 3)

where A, =r2-2mr+Q*+P*, A,=1-x*In the equa-
tions above, m, O, and P are the mass, electric charge,

and magnetic charge parameters, respectively.

A constant term is included in the vector solution to
prevent the occurrence of the string-like singularity in the
vector field. This gauge transformation introduces cer-
tain non-trivial terms in the magnetized solution, result-
ing in distinctive properties relevant to our analysis of
particle pair production later on. Notably, the upper sign
corresponds to the vector field in the upper hemisphere,
while the lower sign pertains to the vector field in the
lower hemisphere. From this point forward, whenever
there are functions or variables with upper or lower signs
involving addition or subtraction, the upper sign corres-
ponds to the upper hemisphere, while the lower sign cor-
responds to the lower hemisphere.

The process of magnetizing the Reissner-Nordstrom-
Taub-NUT solution using the Ernst magnetization tech-
nique was carried out in [20]. Now, we will utilize the
same methodology to obtain the magnetized dyonic Re-
issner-Nordstrom (MdRN) solution. The Ernst potentials
associated with the MdRN solution are as follows:

E=P +2Px(P=iQ)+ (PP + Q) ¥+ A, (4)
and
®=P(x+1)-iQx. )

The seed potentials mentioned earlier yield the fol-
lowing expressions for the magnetized ones

E=N'E, »=A"(D-DE), (6)

where A =1-2b® +b*E. Here, b is understood as a para-
meter describing the strength of external magnetic field in
the spacetime. The seed and magnetized Ernst potentials
obey the same wave-like Ernst equations. A short review
of the connection between Einstein-Maxwell and Ernst
equations is given in Appendix B. By employing the ap-
proach outlined in the paper by [20], we can express the
magnetized metric in the following form, representing the
line element

1 dP  de?
ds? = F {—pzdt2+ezy(Ar + Ax )}+ £/ (dp—w'd’, (7)

where p = AA,, y =In(*A,),

f= ®)

[1]

with
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E=b'P £4p°P’ (bPx—1)+2b°P* (30’ P’x* +3b°Q*X° = b’r’ X’ + b°r* — 6bPx +3)
+4Pb (P3b3x3 + PO’ — PP X + PBPrPx — 302 PPx* =302 Q* %% + b r* x> — b*r?
+3bPx— 1)+ r'b* A + 20 P A (1 + b P*x* + b* Q*x* = 2bPx + 1) + P*b*x*

+2P2 Q% xt + b O X — AP X — 4P X + 6P PP X% + 602 QP x* — 4bPx + 1, 9)

and

, 4
w=--

[0b(1 FbP)(B*P*A, - b*Q*x*
p

+20°mxr=b* x> b ¥2bP+1)].  (10)

Notably, there might be future interest in studying the
scenario with a string-like singularity, as it could poten-
tially have applications in the real world. The inclusion of
a string-like singularity is sometimes considered as legit-
imate component of our physical reality. An example of
this is the ongoing exploration of the physical realization
of NUT spacetime, which contains a Misner string. In the
presence of the string-like singularity, where the constant
term in the gauge potential (3) vanishes, the metric func-
tions are reduced to

E=b' (P -0 - P)’ X +4Pb (P - QP - P) ¥
+20° (3Q°+b° PP +3 P
-t -+ bzerz) x> —4bP (1 +b2r2) x
+(1+677)°,

(11)
and

, _4bQ (D*r? +0° X% = 1+ b P22 + D?Q°x* — 2 b7 x*mr)

w

r

(12)

The vector solution corresponding to the above met-
ric is quite extensive, and its detailed presentation is not
crucial for this discussion. Therefore, it is provided in the
Appendix A for reference. It is important to note that the
magnetization obtained through the Ernst method cannot
be achieved by employing the concept of electric-magnet-
ic duality, namely

1
F, - EHW = €apF ™. (13)

The distinction becomes clear when considering that
the Ernst magnetization process transforms the original
line element into a new form, whereas the electric-mag-
netic duality transformation does not alter the underlying

[
spacetime metric. This highlights the fundamental differ-
ence between the two approaches. Illustrations of mag-
netic fields near the black hole are given in Figs. 1, 2, 3,
and 4. From these figures, one can learn how the magnet-
ic field, described by Eqgs. (77) and (78), changes from
the south to the north pole at a fixed radius r =2m and
electric charge Q =0.1m, in the absence and presence of
magnetic monopole P. In the following figures, B =
B.m* and B’ = B,m’, representing the dimensionless mag-
netic field vector components. Hence, it becomes pos-
sible to discern the respective contributions of the extern-
al magnetic field and magnetic monopole parameters to
the observed magnetic field surrounding the black hole.
In this sense, one can also distinguish aspects of MdRN
spacetime from the magnetized Reissner-Nordstrom
black hole, as discussed in [16].

The expressions determine the outer and inner hori-
zons of the MdRN black hole

re=m=/m*—Q?—P2. (14)

These horizons coincide with those of the non-mag-
netized counterpart. The spacetime possesses both sta-
tionary and axial symmetries, which are characterized by
the corresponding Killing vector

18, = 8, — Qud,, (15)

where Qy =w'(r=r,). The area of black hole can be
computed using the formula

-1 27

AHz//\/g¢¢gxxdxd¢=4ﬂri (16)

x=1¢=0

and the corresponding entropy is Sy = Ap/4. Further-
more, the Hawking temperature of the MdRN black hole
can be expressed as

i P
Ty=—7—7—. 17
" o~ (17)

Notably, the area and Hawking temperature of the
MdRN black hole remain the same as those of the non-
magnetized version. However, the presence of an extern-
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Fig. 1.
absence of magnetic monopole.

(color online) Numerical evaluation of Eq. (77) in the

Fig. 2.
P=05m.

(color online) Numerical evaluation of Eq. (77) with

al magnetic field deforms the shape of the horizon, in-
creasing its prolateness as the external magnetic field
strength increases. It is also worth mentioning that the ex-
ternal magnetic field discussed here exists even in the ab-
sence of a magnetic charge for the black hole. The ex-
treme case is characterized by m? = P+ Q%, and at this
state, the corresponding Hawking temperature becomes
Zero.

However, it has been demonstrated that particle pairs
can still be produced even in the extremal state of the
black hole. This phenomenon can be interpreted as the
Schwinger effect occurring near black holes, analogous to
a similar effect observed in Minkowski space when sub-

Fig. 3.
absence of magnetic monopole.

(color online) Numerical evaluation of Eq. (78) in the

B

X

Fig. 4.
P=0.5m.

(color online) Numerical evaluation of Eq. (78) with

jected to a strong electromagnetic field. The Schwinger
effect for Reissner-Nordstrom black holes was first intro-
duced in [4], and its generalizations have been explored
in various background scenarios [5—7]. In the context of
the Kerr/CFT correspondence [21], a dual description of
this effect can be formulated as well [4].

III. NEAR HORIZON KLEIN-GORDON
EQUATION
To obtain the near horizon geometry of the near ex-

tremal MdRN black hole, we employ the following co-
ordinate transformation:
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d
r—>r0+8p,t—>z,¢—><p+wl (18)
£ £

together with the mass and charges relation

2D2
m— ry+ £ (19)
o
where ry = VO?+ P? and
4bQ(1 #bP
w=-PUTE) (o2 opbs PR 41) . (0)
o
The resulting metric due to this transformation is
2 2 2 2142 2142
2 _ (p*-D?)dr rodp radp
=T {_ R @-D) A,
2
AW )
T (et apdo)” 1)
where
['(x) = 4612 (1% Pb)* x> —4Pb(1 ¥ Pb)
X (1+2P*b* + Q°b* F2Pb) x
+(1+2P20 + QB> 72Pb)’ (22)
and
4bQ (1% Pb) (1+2P*b* + Q*b* ¥2Pb
= o= )( obF ) 23)

2
o

The near-horizon metric presented above exhibits a
warped AdS; geometry, which differs from the AdS, x S?
geometry associated with the near-horizon region of the
Reissner-Nordstrom black hole. The emergence of this
warped AdS; geometry can be attributed to the "drag-
ging" effect induced by the presence of an external mag-
netic field surrounding the black hole. Notably, the pres-
ence of the warped AdS; factor is not exclusive to the
near-horizon region of the MdRN black hole. It also
arises in the near-horizon geometry of the Kerr-Newman
black hole [5], exhibiting a similar warped AdS; struc-
ture.

The associated gauge field to the near-horizon metric
above in solving the Einstein-Maxwell equation reads

1
Adxt = T (Fr@rdr+ F2(xdg), 24)

where

Fi(x)= —Q(1- 0% %2Pb) [b“P“ T4b°P}
F2PDPQ2DP PP X + 202 Q%X - PPV - P Q* - 3)
+4Pb(2b* P2 x* + 2b* Q*x* — P*b*—

b*Q* — P + 2P0 + b* O
— 4P — 4P QP2 + 2P + 202 Q% + 1] ,
(25)

and

Fy(x) = P*b® + Pb* (4bPx —3) + bP*(4b* P> x*
+4b°Q*X* + 2P°D + 20> Q® —9bPx + 3)
+ PAPD x + 4PQ*b* x — 6b* P* x> — 6b* O x*
—3P2b* 302 Q* +6bPx— 1)+ b P*
+20°PXQ* + b3 Q* - 3P xb? - 3Pxb* Q*
+2bP?x* +2bQ%x* + bP* + bQ* — Px.
(26)

When considering the presence of a string-like singular-
ity, the modified metric functions in the near-horizon
metric presented above can be expressed as follows:

[(x) = [(x) = 4b°r3x* —4bP(1 + B*rd)x + (1 + b*12)?,
27

and

4b0(1 +br2)

K— k= 5
o

(28)

Correspondingly, the functions in the near-horizon
vector field are adjusted to

Fi(x) > Fi(x) =0 (b3 -1) (1 +5r3)* —4b*r3) ,  (29)
and

Fy(x) > Fy(x) = 2brix* - P (1 +3b2ré) x+bri (1 +b2r§) .
(30)

The Schwinger effect involving a pair of scalars car-
rying electric and magnetic monopoles has been extens-
ively studied in [18]. In this discussion, we will specific-
ally examine the interaction between the magnetic field
of the magnetized dyonic black hole and a scalar particle
possessing magnetic charge g. Sometimes, the scalar
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particle possessing magnetic charge is referred to as a
"scalar dyon." The corresponding Klein-Gordon equation
governing this interaction is given by

(V,—igB,) (V¥ —igB")® — 12D = 0. 31)

Note that B, is the dual vector field, which also plays
an important role in the Ernst magnetization, as reviewed
in appendix B. Since the black hole is purely magnetic,
i.e. Q =0, we can consider the ansatz

[0) (T,,O, X, ‘,0) — e—iw‘rﬂ'an(p)X(x) . (32)

Using this ansatz, the radial and angular parts of the
Klein-Gordon can be read as

P*(gpcy + Pw)’

D,

8, (D,0,R(p)) + { - PPdiu* — /1} R(p)=0,

(33)

and

2.4
0, (A0.X (x))— {% — 4P b fy - /1} R(p)=0, (34)

X

respectively. In the given equations, the functions ¢, dy,
ex, and f; are given by

c.=1F2Pb , co=1-Pb?, (35)
d. =1F2Pb+2P?b* , dy=1+P*D?, (36)

e. =[1+2Pb(1+x)(1F Pb)] , eg=1-2Pbx+P*?,
(37)

and

fe=[1+2Pb(1£2x)(1FPb)] , fy=1-Pbx+P**.
(38)

The subscript "k" denoting the specific case under
consideration. Specifically, k = + corresponds to the up-
per hemisphere, k = — pertains to the lower hemisphere,
in the spacetime with no string-like singularity. The k=0
indicates the case involving the existence of a string-like
singularity.

The radial Eq. (33) can be interpreted as describing a
probe of a magnetic monopole, where the radial wave

function is represented by R(p) and it possesses an effect-
ive mass

2 g 4

+ 9
&£ P

(39

2 _
Hefe i =

moving in an AdS, geometry with the radius L, = Pd,. It
is well-established that instability arises when the square
of the effective mass violates the Breitenlohner-Freed-
man bound

1

2
Hefrx 2 _TL,% . (40)

This violation is then interpreted as enabling the pair
production near the horizon, taking the form of either
Hawking radiation or the Schwinger effect.

To discuss the violation of the BF bound further, we
introduce the quantity

1
G)::usz,k"'rL%' (41)

A negative value of @ indicates a violation of the BF
bound, which leads to the pair production of scalar dyons.
This scenario is possible when the charge-to-mass ratio of
the dyonic scalar exceeds unity, as permitted by the Dir-
ac quantization condition for the magnetic charge [10, 11]

gq = 2n s (42)

where ¢ is the electric charge and » is a positive even
number. This phenomenon is reminiscent of the unstable
tachyon mode in electrically charged scalars, which al-
lows for the Schwinger effect near extremal Reissner-
Nordstrom black holes [4]. In such cases, the mass of the
created particle must be smaller than its charge. Numeric-
al illustrations can be found in Figs. 5 and 6. These plots
demonstrate that within the plausible range of astrophys-
ical strong external magnetic fields [22], violations of the
Breitenlohner-Freedman bound can occur.

In practical astrophysical situations, an exceptionally
strong external magnetic field may arise near a black
hole, such as the one generated by currents in an accre-
tion disk, resulting in an unbounded strength of the mag-
netic field [23]. Therefore, if we assume the existence of
such a field near a black hole, the violation of the BF
bound is improbable for configurations without a string-
like singularity. This is because as b approaches infinity,
® approaches u?>. However, when the singularity is
present, @ approaches u? — g2 as b tends to infinity, indic-
ating the potential for a violation of the BF bound in en-
vironments with extremely strong external magnetic
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0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
bm

Fig. 5. (color online) Illustration for the violation of the BF
bound for scalar dyons in the region of MdRN black hole in
the absence of string-like singularity. Here, © = 2 + L*/4.
These plots are produced by taking u =107, g=10"3, and
[=0. Black curves are for the case P/m =100, whereas the
blue ones represent P/m = 200. Solid curves for the case & =+
and the dashed ones for & = —.

0.05

-8.x107"1

-7
-85x 10 — P/m =100
----- P/m = 200

— —P/m =300

-9.x1071

-95x107]

Fig. 6. TIllustration for the violation of the BF bound for scal-
ar dyons in the region of the MdRN black hole with string-like
singularity. Here, ® =uZ;, +L;?/4. These plots are produced
by taking =107, g =107, and /=0.

fields.

IV. SCALAR ABSORPTION
The flux of a charged probe scalar field, governed by
the Klein-Gordon Eq. (31), can be written as

W=i [ dxdp/Iglg” (PV,@" - D'V, 0),  (43)

where V,=V,-igB,-In the specific case of the previ-

ously discussed near-horizon system, the flux can be ex-
pressed as

W =igV, (R,R*-R'0,R), (44)

—

where Z=2r [dxX*X. Two different types of boundary
conditions have been considered to analyze the absorp-
tion process related to scalar production. However, it has
been demonstrated that these boundary conditions are
equivalent [4]. Therefore, we will concentrate on one of
them - the outer boundary condition. In this condition, we
assume that the incoming flux vanishes at the outer
boundary in the asymptotic region.

This leads to a requirement imposed by flux conser-
vation, which is expressed as follows:

|(Wincident| = |(Wreﬂected| + I(eransmilted > (45)
which leads to the Bogoliubov relation
laf? =1+ . (46)

Above, a and p are the incorporated Bogoliubov coef-
ficients. These coefficients can be expressed in terms of
fluxes as follows [4]:

Winci en
lof? = s (47)
reflecte
and
(Wran%mi ©
B = s (48)
reflecte

It is recognized that |e|* represents the vacuum per-
sistence amplitude, while |3]* corresponds to the mean
number of produced pairs. Consequently, the absorption
cross section can be expressed as

Wtransmilted W|2
s = ———— = —— . 49
i (Wincidem |(l|2 ( )

To determine the Bogoliubov coefficients associated
with particle production near the horizon of the MdRN
black hole, it is necessary to solve the radial Eq. (33). The
solution to this equation can be expressed as

1 1
Ri(p) = CIF(E +i(pr +my), 5 —ipe +ing, 1

. 1 p)
+1(nk+v),2 D

055101-7
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i(n—v) i(nge+v)

1
X(+D) 2 (p—D) 2 +C2F(5+ipk

1 1
—iv,i—i(pk+v),1—i(nk+v);§—%)

i(ng+v)
e Al

x(p+ D) (p-D)" " (50)

where

\2) 2
n={pea-ed)- (1)} 51

n, = gPcy, (52)
wP?
=) 53
=" (53)

and F(a,b,c;d) is a hypergeometric function. In the near-
horizon region, the radial solution above can be approx-
imated as

i(n—v) i(ng+v)

Rux(@)~Ci(p+D)" = (p=D) =
i(ng-v) i(ng+v)
+Cy(p+D)" = (p-D) 7
i(n—v) on i(n+v) n i)
=0 (G (-0 + O -D) ),

(54)

where the identity F(a,b,c;0) =1 has been used. Obvi-

ously, the coefficients C(;,’j{,‘) and Cﬁ‘,’(‘) are C; and C,, re-

spectively. At the boundary p > D, we can express the
approximate radial solution as

Rpi(p) ~ CyRp =t + Ciipint (55)

where the corresponding constants are

2D) PO (] 4 (g +v)) C
2r (% +i(nk—pk)) r (% +i(v—pk))
2D)T O POT (1 —i(ny +v)) C,
+ 1 . 1 . b
2r (5 —1i(ny +pk)) r (5 —1(v+pk))

CyY =T (=2ipy)

(56)

1.
C>(2D) 27 PO (1 —i (i + )T (2ipy) sinh (27 py) sinh (7 (ny. + v))

and
(2D)TH PO (1 41 (my +v)) C,
2r (% +1(ny +pk)) r (% +i(v+pk))
D) POT (1 —i(ny +v)) C,
+ - - .
2 (3 —i(m—p))T (3 —1(v—p1))

Cyi’ =T Q2ipy)

(57)

Furthermore, by utilizing formula (44), we can calcu-
late the following fluxes as

Wi = —2DE|C, (n +5) (58)

Wi =2DE|C,\ P (m +5) (59)
. .12

Wi =—2E|C57| (60)

and

2

Wi =2z|chy (61)

Obtaining the explicit Bogoliubov coefficients re-
quires applying the boundary condition to the fluxes men-
tioned above. In this case, we adopt the outer boundary
condition by setting (Wg'}() =0, which corresponds to zero
incoming flux at the outer boundary. With this condition,
we find the following expressions for the Bogoliubov
coefficients

1.
Cl — _C2(2D)§—1(v+nk)

L1 —i(m+s))T (3 +i(m—po)) T (5 +i(v—pp))
ra +i(nk+v))l"(% —1i(my +pk)) F(% —i(v+pk)) '

(62)
Moreover, we can have
_ ey (oun) — eqq (i)
Wincident - (Wl-(])l]i > (Wreﬁected - (W[-l]nk
— e ou)
(eransmitted - (W;z s (63)

By applying the relation given in Egs. (62) to equa-
tion (57), we can obtain the following expression

(out) _
CB,k ==

Now, by making use of the results in (47) and (48),
the vacuum persistence amplitude and the mean number

T(3-i(m—p))T (5 —1(v=pi)) cosh(m (e — pr)) cosh(w (v —py))

(64)

of produced pairs for the MdRN black hole can be ex-

pressed as
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Wincident ng,l/l:)
Wietlected W(;,",z
_ cosh(m (ny + pi))cosh (m (v + pi))
~ cosh ( (m — py)) cosh ( (v — py))

2
ax|” =

; (65)

(out)
wtransmitted _ (WB,k
(Wreﬂecled (Wg’lz
sinh (27rp,) sinh (7 (1, +v))

= , 66
cosh (7 (i — pi)) cosh (7w (v — pi) (66)

B =

respectively, and the associated absorption cross section
takes the form

(Wtransmmed _ sinh (27Tpk) sinh (7T (nk + V))
Wincidens OSh (7 (. + pi)) cosh (7w (v +)) °

(67)

O-Qbs,k =

The expressions (65)—(67) above include contribu-
tions from both Hawking radiation and the Schwinger ef-
fect. However, pair production only occurs through the
Schwinger effect in the extremal state. This state is ob-
tained by taking D — 0, which leads to v — co. Con-
sequently, the vacuum persistence amplitude and mean
number of produced particles can be written as follows:

|2 _ cosh (7w (g + pr))

cosh (7 (i — pi))
|ﬁk|2 _ sinh 27 py)

cosh (7 (i — pi))

|ary exp(2npy) ,

exp (7 (m + pi)) (68)

which corresponds to the absorption cross section

sinh (27p;) exp(mr(n— pi)) - (69)

Tabsk = Cosh (7 (e + pr)

Here, one can observe a relation between the mean
number of produced particles and the absorption cross
section, namely

Oabsk = — |,3k|2 (P = —po) - (70)

To verify the occurrence of particle production
through the Schwinger effect, we present a numerical
evaluation of ousx in Fig. 7. The plots in this figure
demonstrate non-zero cross sections, indicating the pres-
ence of produced particles. This, in turn, corresponds to a
non-zero mean number of produced particles. In all cases
of interest, we find that a threshold for the external mag-
netic field allows the absorption cross section to exist.
Within the range of possible astrophysical external mag-
netic field strengths [22], we observe that the cross sec-
tion increases as the magnetic field strength grows.

1.07 L
0.9 ]
0.81
0.71
0.61

abs | ——————————
0.4 : -

0.3+
0.2
0.1+

0 0.02 0.04 0.06 0.08 0.10
bm
Fig. 7. Illustration of the absorption cross section for the
scalar dyons near MdRN black hole. We consider u=1073,
g=1073,1=0, and P/m=100.

V. CONCLUSION

In this study, we investigated the phenomenon of pair
production of magnetic monopoles as a Schwinger effect
near a magnetized dyonic Reissner-Nordstrom black hole.
We specifically focused on the magnetic interaction
between the scalar dyon and the black hole. Our findings
reveal that the Schwinger effect can indeed occur if the
Dirac quantization condition is satisfied, allowing the
charge-to-mass ratio of the dyon scalar to exceed unity. If
no evidence of the Schwinger effect in the form of mag-
netic monopole pairs is observed, one may speculate that
nature does not permit the existence of massive particles
with large magnetic charges despite the suggestion by the
Dirac quantization rule.

Our analysis of the Schwinger effect near the magnet-
ized dyonic Reissner-Nordstrom black hole does not ex-
tend to the possible dual CFT description elaborated in
[4, 5]. However, we believe that such an extension is
straightforward by following the prescription outlined in
[4, 5], as it heavily relies on the established dictionary of
the Kerr/CFT correspondence [21, 24]. The compatibility
between the Kerr/CFT correspondence and the pair pro-
duction analysis near the (near)-extremal black hole hori-
zon is evident, as it is related to the AdS,xS? or warped
AdS; geometries that are present in the near horizon of
the considered black hole. It is well-known that this
AdS»xS? or warped AdS; structure forms the foundation
for constructing the Kerr/CFT correspondence.

Including or avoiding string-like singularity in the
analysis has led to notable distinctions in the properties
associated with the Schwinger effect. This observation
motivates the investigation of the role of the Misner
string in NUT spacetime and its potential influence on
pair production. Recently, the magnetized version of the
Reissner-Nordstrom-Taub-NUT spacetime has been re-
ported [20], opening up the possibility to explore the cor-
responding pair production in this spacetime. We con-
sider this to be a problem in future research.
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APPENDIX A: MAGNETIZED
VECTOR SOLUTION

In the absence of string-like singularity, the magnet-
ized vector solution accomnanving the spacetime metric

(7) in solving the Einstein-Maxwell equations can be ex-
pressed as

_ Q(aoia1+a2ia3+a4)
h I"(boib1+b2ib3+b4)
Coxcir+crxc3+cy
do, Al
doid|+d2id3+d4 ¢ ( )

Adx*

where

ap = bOPOx® + 30 P x0 Q% — 2b° xXomrP* — BO P*x8r 4+ 30 P2 x0 O — 4b° xOmr P* Q% — 2% x° P* O?

+4b°x0mr P* — b P? xOr* 4+ b0 x° Q6 - 21)6)c6mrQ4 —p° Q4x6r2 +4b°x°mr? Q2 —bOrtx® Q2 —2b°x°mr?

+D0r0x8 + 300 P x*r? + 6b° P2 x* Q%1 — 4b° x*mr® P* = 2b° P2 x*r* + 3b° Q% x*r? — 4b°x*mr® Q?
—208x* Q?r* + 4B x*mr® — bOrox*t + 3D P2 Xt + 300 X2 Q% — 2b8 XPmr® — bOrOx? — 9b* PAx?
—18b* P2 x* Q% + 12b* X* mr P* + 2b° P x* P2 — 9b* O* x* + 12b6* x* mr Q% + 2b6* P x* Q% + b°r® — 4b* x*mi*
— bt = 14D P PPR — 1461 P QP X% + 4b* P + 6b* X + 16D° P2 X + 160° Px* 0?

—160° X’ mrP - 5b*r* + 16b° Pxr* — 9b* P*x* — 9b* Q% x* + 6b*x*mr — b*r* x> — 5b*r* + 1

=2Pb (9b4P4)c4 +18b*P*x* Q% — 12b* x*mrP? = 2b*r*x* P> + 9b* Q*x* — 12b* x*mr Q*

a) =
=26* P QP +4b* X mr + bt + 146" P PP + 1461 Q7 %% — 4b* Pmi” — 6b* i’
—24b° PP x> = 246 Px* Q% + 240° X mrP + 5b*r* — 246 Pxr? + 186° P2 x* + 180> Q% x*
—120*X>mr + 20’ x* + 10b°r* — 3)

a, = — P?b* (9b4P4x4 +18b* P2 x* Q% — 12b* X* mrP* = 2b* P x* P2 + 9b* O* x* — 12b* x* mr 0*
—2b* Xt Q2 +4b* X 'mr + b xt + 1404 P2 X2 + 14b*F szz —4b* Pmr — 6b* 2
—48b° P3x® — 48b° Px* Q7 + 48b> X>mr P + 5b* r* — 480> Pxr? + 540> P> x> + 54b* 0 x°
—36b*x>mr + 6b*r* x* + 30b°r* — 15)

as = —4P3b? (4b3P3x3 +40°Px* Q* — 4D X mrP + 4b° Pxr* — 96 P2 x?

-9 Q*x* + 6b* X’ mr — b*r*x* — 5b*r* + 5)
a, = -P'b* (9bzP2)c2 +9b2 Q% x* — 6b* X’ mr + b*r* x* + 5b*r* — 15)
bo = b*P*x* + 26 PP x* QF = 204 PPt P2+ b Mt = 260 P QF + B X + 200 PP PP X + 2064 PP QP - 2Bt A

— 4D P3P — AP PP Q7 + 4P P3P + bt — 4B Pxr? + 6b* P2 X% + 6b° Q? x* = 20 %% + 2b*r* —4bPx + 1

by =4Pb (V’P’x’ + b’Px’Q* = b’ Px’r* + b’ Pxr® = 30° P°X* = 30> Q° x> + b*r*x* = b*r* + 3bPx — 1)
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by = 2P°b* (3b°P*X* +3b° Q*x° — b’ x* + b*r* — 6bPx +3)
by =4P*b* (bPx—1)

b4=P4b4

co= —b P =203 P2 X QP + 203 P X P - B QM + 203 P QP - Pt - 20 PP PR - 2P P QP X + 2% P
+3P3 P2+ 3PP Q? - 3P D — b rt + 3Pxb* 1 — 3bP*x* - 3bQ*x* + br*x* — br? + Px

cp=-P (4173P3x3 +4D°Px} Q% —4D* PxX*r? + 4D Pxr? — 9b* P*x* — 9b* Q* x* + 3b*r* x* = 3b*1? + 6bPx — 1)
¢y =—-P%b (61)2P2x2 +6b20°x* = 2b*r*x* + 2b*r* —9bPx + 3)
c; = —P*b? (4bPx-3)

Cq = —P4b3

do = b*Pixt + 20 PP XA QP = 264 PP PP + b Ot = 200 PP Q% + b Xt + 204 PP PP X + 261 P QP — 204X

—4b*PPx* — 4D’ Px* Q% + AP PX*r? + b*r* — 4b° Pxr? + 6b° P> x* + 6b> Q* x> — 2b*r* x> + 2b*r* —4bPx + 1
d, =4Pb (193P3x3 +b°Px’ Q2 —b’Pr + b Pxr? = 3b*P* X% - 3b2Q2x2 +b2r? x> = b*r* + 3bPx — 1)
d, =2P*p* (3[72P2x2 +3020* X% — b % + b*r* —6bPx + 3)
dy =4P3b* (bPx—1)

d4=P4b4

The accompanying vector solution in the presence of

string-like singularity is and
Qay Co
-_——— -_— 1
A dx* b dr+ a4 de. (A2) B = ~ e FPu”. (A4)

The electric and magnetic field measured by an ob-

server with four-velocity u* are given by Accordingly, the associated radial component of elec-

tric and magnetic fields measured by a static observer

E, =—Fu", (A3) 4 =11,0,0,0] are

055101-11



Haryanto M. Siahaan Chin. Phys. C 48, 055101 (2024)

E, =

_92
r2X?
+0* 7 +17) g (P*x*+20Q%x P2 =277 P X% = 4x*mr + 31 x* + Q*x* + 4% mr’ =217 0°x* = 3r%) b’

{(P2x2 -+ QX - r2) (sz2 -+ O+ r2)4 b —4Px (sz2 -y’

- (sz2 -+ 0+ r2) (1 1P —17r5x% + r9x* +30°%x5 + 3P%x5 + 5,45 = 2325 P %

+49720%x* =341 Q% x* = 23 0% x5 + 4977 P4 x* — 492 0% x® — 4912 P4 X0 — 16X mr° + 32x* mr®

—16x°mr + 57 Q*x* = 34P*r* x* + 5TP*r* x* + 9x5 P4 Q% + 9x5 P2 Q% + 982 O* x* P*

—-98r2Q*x5 P* — 80x*mr* Q% — 80x*mr® P* + 80x°mr* Q% + 80x6mr3P2) b® +8Px (6}"6 —9r%%?

+60°x° +6P0x® +3r5x° + 8x°P?r* + 182 Q% x* — 26/ Q% x* + 8r* Q?x® + 182 P4 x* — 257 0*x°
=257 P xS — 122 mr° + 24x*mr® — 12x%mr° + 18r4Q2x2 —26P X + 18P X + 18)(6P4Q2 +18x5P? Q4
+36r20*x* P* — 502 Q?x° P? = 20x*mr® Q% — 20x*mr’ P? + 20x°mr> Q? + 20x°mys” P2) b’

+ (107’6)62 —10r° + 10/%x* — 62Q6x6 —126P%x% — 10/°x% — 26x° P?r* — 222 Q“x4 +28r sz4

—26r*Q%x® — 1502 P*x* + 9812 Q*x® + 290/ P* x° + 32x%mr° — 64x*mr® + 32x°mr — 2r* Q*x* + 92 P?r* x*
—66P%r*x* = 314x°P* Q7 - 250x° P2 Q* — 172r* Q*x* P* + 388> Q*x° P? + 32x*mr’ Q% + 160x* mr> P*
=32x°mr’ Q7 = 160x°mr’ P?) b° + 8 Px (10x*mr’ + 21 P*x* = 2r*x* - 257°x* P* - 25r°x* Q*

+210* X +420°X* P* + 4 P X* + 3% X + 4r° Q*x* — 10x°mr? — r4) b+ (52r2x4 Q> —4r° Q*x*

—620*x* + 522 x* P + 10/*x* — 1880%x* P? — 126 P*x* — 20/* ¥ — 16x*mr> + 16x°mr> + 10r*

+60r P*x*) b* + 8xP (6Q°x* + r*x* —6r° + 6P°x*) b’ + (117° = 5r°x —=3P*x* =30%x*) b* —4xPb + 1}, (AS5)
20b 2.2 2.2 22 2\4 9 2.2 2.2 22 2\2 4 4
—r—Xz{x(Px +QO°x" —rx +r) Ab —2P(Px +0O°x —rx +r) (3Px

—6P*x*mr + 6Q°x* P? + 2" P*x* — 6x*mrQ* + 6x*mr’ + 30*x* = 3r'x* + 27 Q0?47

—2x*mr’ — r4) b +4x (szz + O -+ r2) (3P4x2 —4r°P?x* + 6x° Q* P*

PP =4 QP+ P+ 3320 - - r2Q2) (szz + O*X = 2X%mr+r* %+ r2) b’

+4Prx’ (2x4P2r3 =35 -6+ 97 + 5K X m+ 2K P m - Tt m + 2)c4Q2r3

+ 187 P*x* + 18 Q*x* — 6r° X*mP? — 6r° x*mQ* — 14r° x*mP* — 14’ x’mQ*

+rP x4+ rO*t + 2rQP XA P+ X P P m 4 22X PPm QO + x4mQ4) b®—2x (Sr6

+3P A + 8 0P — 52 O xt = 5P + 30 0P 20 i + 4% mid + 40P X — 219X = 3r0x*

— 102 0*x* P2 + 12x*mr Q% + 12x*mr? P? = 374 0 — 6mr® = 3P*r* + 20P* 2 Q% x* — 20x°mr’ Q% + 21x* P°

+21x* Q% + 63P*x* Q% + 10P*x*r* + 63x* P2 Q* + 10x* Q*r* — 60x*mr Q> P* — 30x*mrQ* — 30x*mrP*

—52x2P2mr3) b’ +4pP (42Q2x4P2 +210%* =324 Q* + 21 P*x* = 27 P2 x*mr — 17 x*mr®

+4rP P2+ 75 mr =3P X P =27 mrQ + 2/ x* —  + 94 X + 442 szz) b*

—4x (21P4x2 —22x*mrP* =217 P*x* — 6xX*mrQ* + 26x2Q* P + r* x> + 2x°mr” + 522 Q*

=27 QP+ PP+ Q7+t —4rm) b’ +4Px* (12Q° = 9mr— > + 12P*) b* — x (15Q% = r* —6mr + 15P*) b+ 2P,
(A6)

1
X3
X +17) ? (5x* PO+ 13P*X* Q7 — 117 P*x* + 2P P + TP x* = 2277 Q°x* P* + 11x* P* Q*

{P (rzx2 P -0Q*+ rz) (sz2 + 0™ -+ r2)4 b+ 2x (sz2 +0%*x°

055101-12



Pair of dyon production near magnetized dyonic Reissner-Nordstrom black holes Chin. Phys. C 48, 055101 (2024)

+ 8PP Q* 4P X2 =3P + Q2 x — 112 0% + 8x* mr? Q% + 3x* Q° — rOx* + 21547

—4r 0P+ 620 P - 8°mrP Q* — 0 + 3r4Q2) b’ -3P (15P4)c4 -22r P2 +300%x* P?

2P P2 + T = 22 X QP + 150% X = 2P 0P — 64 X% — r4) (szz + O -+ r2)2 be

8x (—45P*x* = 12P* /O %% + 2TP*°x* = r°Q°* = 7 Q' x* + 16/ Q*x° + 111° QP x* = 710 0 x®
—T7r2Q0x% —42P5x812 + 40P x5r* — 14r°P2x® — ¥ = 3,8 x* + 3,82 + 2% — 1213 x%mQ? P? — 52 P*r* x* O?
—56r2Q*x°P? +56r* Q* x5 P — 912 Q*x°P* — 8P x* mQ* + 4 x*mQ* — 121 xX*mQ* + 12x*mr* Q* P*
— P —30M 0 +41°2 0% P+ 1972 0% X P2 — 4P X2 Q% + 12X mr O* + 4x*mr Q% + 5P X2

=9 Q*x* = P Q°x* + 600" x°P* + 300°x° P + 500 x° PO + 21 P°x*r* + 50°x° + 15Px%) b’

—2P (283x°P*Q* - 138/ Q°x* = 64x°mr’ Q* + 10577 P*x* + 15P* x> — 177 Q°x* = 1357 @*x°
+155x°P%r* = 3667 Q*x°P* — 170P?r*x* + 251x° P Q% — r® + 155/ 0% x® — 2915 x° + 64 x*mr O*
=23172P*X° +417° Q*x* + 105 P°x° + 14617 Q°x* P = 27r°x° + 130°x° + 57r°x%) b°

+4x (25}’4 O*x* =277 0% x* + 63x* PO = 3r%x* — 1057 P*x* — 1322 Q*x* P? + 9x* 0% + 45 P4 x*
+135P* Q% — 12x*mr? Q7 + 81x* P2 Q* —48P*r* x% + 182 Q%12 + 42P* x* 1% + 12x°mr? Q% + 619 X
+60P*r* Q*x* = 26r* Q*x* +3P*r* - 3r° + r4Q2) b’ -2P (—1261’2x4P2 +730%* + r* +1780Q%x* P?
+29r%x* =30 X2 + 105P* x* + 747 0?x* — 12617 x* Q% + 42r2P2x2) b* +8x (r4x2 +15P%?

1P Q% =t =127 PPX’ + 3r PP + 55 Q% + 5r° QP +20X° Q°P*) b’ =3P (150°x* = 7r*x°

+r7 +15P°x*) b* +2x (5P*+30Q* - ) b- P} , (A7)
and
B, = % {Px (P2x2 +0* -+ r2)4 AD - (sz2 + Q' -+ r2)2 (r6 —9P iy

+8r Q%% — PO X — PPt = 3K QP xt = 2x mr + 4xPmr + 8PP X = 218 x% + r5x*

-2 Q*x* P2+ 8x* mr’ Q% + 20x*mr’ P* + 3r* Q% — 2mr° + P*r* + 16 P*r* Q*x* — 16x°mr Q*

+9x* PO +3x* Q% + 21 P*X* Q% + 10P* X*r? + 15x* P2 Q* + 6x* Q*r* — 24x*mr Q> P* — 6x*mrQ*

—18x*'mrP* = 20X P’mr) b® + 12Px (3P*X* = xX* +30°x" + 7)) (P’ X* + QX - r*x°

+r2)2 AD + (368m1f}¢6P2 0" +436mrx®P* Q% + 8mr” +280mr> P* x* + 168mrP°x° + 100mrQ°®x°
+120mr° P> x> —=20P*r*x* — 48 P?r°x” + 108 P*r®x* —4r° Q?x* + 36r* Q* x* + 40r* 0* x® + 36r° Q% x*
—28r°0%x5 +36r2Q%x5 + 56 P x5r% + 80P  x°r* — 5615 P2x® — 81" x®m + 241" x*m — 24r" x*m — 4r°

— 128 + 127857 + 4r8x° — 440 x*mQ* P? + 16 P*r* x* Q% + 1287 Q*x° P* + 1201* Q*x° P* + 148/ Q* x° P*
— 120 x*mQ? — 2407 x*mP* + 68 x*mQ* + 120r° x*mP? — 160r° xS mQ* — 2801 x°mP* + 392x* mr* Q* P*
—4r5P? —40%r° —356r7 Q*x* P* = 29217 Q% x* P* — 88 P*r* x> Q% + 112x* mr Q* + 52x*mr’ Q* — 60P*r* x*
-28r*Q*x* =761 Q°x* —408Q*x°P* — 240Q°x° P> — 304Q*x° P° — 140P°x*1? - 520°x® — 84P*x°) b°
+2Px (15r6 —55P Xt + 8 QP2 = T O = T P Xt — 55K 02 x* + 1514 Q% - 30mr° + 15 P
—30x*mr +60x%mr +40P*r* x* — 30r°x% + 1515 x* — 142 Q*x* P? + 140x* mr> Q? + 140x* mr P?

+ 140P* 2 Q*x* —108x*mr’ Q% + 63x* P + 63x* Q° + 189P* x* Q% + T0P* x*r* + 189x* P> 0" + 702 0*1*
—252x* mrQ?*P* — 126x*mrQ* — 126x*mrP* — 140x2P2mr3) b+ (168x2P2mr3 —6r° + 78 Pt x*
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— 124 Q% = 30r Q% x* — 42,7 P4 x* + 387 02 x* + 12x* mr® = 21 Q% + 12mr° — 6P*r* — 120P* 2 Q% x*
—126x*P® = 24x*mr® — T2P*r* X2 + 121%x% — 6r%x* = 72r Q* x* P* — 68x*mr® Q% — 168x*mr’ P*
+44x mr? Q7 — 18x* Q% —270P*x* Q% — 84P* %1 — 162x* P> Q* — 36x> Q*r? + 324x* mrQ* P?

+72x* mrQ* +252x mrP*) b* + 4Px (14 P°x* + 21 P*x* = 26X’ mrQ” + 26X Q° P> = 7r' x>

+5x2 0% + 14x°mr’ — 42X mrP? + 147 Q* > + 1 Q* = 14r’m + 7r* + 7r2P2) b ++ (12x2Q4
—4r P =4 Q* + 8 m+ 4r*x* = 327 PP x* — 127 Q* X% — 8x°mr® = 24x* Q* P> — 4r*

+12x°mrQ? + 712x*mrP* — 36P4x2) b*+9PxAb—r* — P> =30% +2mr,

where

(A8)

X =1+b* -4’ xPr? + 4D’ > Prr — 4D’ > PQ* + 2b* 2 Q% + 2b* P P* x* = 2b* r*x* O - 2b* r* x* P*

+20*Q*x* P2 — 4bxP - 2b° 2 5% + 60> Q* %% + 6b* P22 + 26712 — AP X PP = 20* A + bt + 0O + P

Note that the limit of vanishing external magnetic
parameter b and magnetic monopole P, one can show that

0

E =-%
r2’

(A10)

which is the Coulombic type of electric field from a stat-
ic point electric charge.

APPENDIX B: ERNST POTENTIALS AND LPW
METRIC FUNCTIONS

The Lewis-Papapetrou-Weyl line element
p2 e2y
ds® = —7dt2 + Td)(d)'(+f(wdt—d¢)2 , (B1)

can describe a stationary and axial symmetric spacetime
metric. Together with a vector solution

A QO dx = A () dr + A4 (x)do, (B2)

whose field-strength tensor is F,, = 0,A, - 9,4, it can be
a solution to the Einstein-Maxwell equation

1
R, =2F,,F® - EgWE,,BF"ﬁ’. (B3)

Note that the electric-magnetic duality guarantees that
the dual field-strength tensor

H,uv = a,qu - ava (B4)

(A9)

I
where the anti-symmetric second rank tensor H,, is built
from its dual, F,,, in the following way

1 a
H,uv = EepwtﬁF ﬁ’ (BS)

where |ey3l = /—g. This dual field-strength tensor also
obeys the Einstein-Maxwell equations,

1
R/Jv = 2H1101H3 - Egvaa,BHaﬁ' (B6)

The Ernst potentials

E=f+DD-iVP, (B7)
and
O = A¢ + IB¢ N (B8)
where
if
and
if?
V¥ = —Vw+2i0*VOD. (B10)
P

The wave-like equations for Ernst potentials based on
Einstein-Maxwell equations are
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(E+E +OO)VIE =2(VE+2D°VD) - VE, (B11)

(E+E +PO") V2D =2(VE+2D'VD) - VO. (B12)

Regarding the Ernst magnetization leading to the

MdRN spacetime under discussion in this study, the final
equation is satisfied by both the seed solution {&,®} and
the magnetized one {&',®’}. Consequently, the magnet-
ized solution, as in the Ernst magnetization framework, is
a valid solution to the Einstein-Maxwell Eq. (83). Not-
ably, the magnetized Ernst potentials {&',d’} encompass
the information required for the metric function (7).
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