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Abstract: The study of Kerr geodesics has a long history, particularly for those occurring within the equatorial
plane, which are generally well-understood. However, when compared with the classification introduced by one of
the authors [Phys. Rev. D 105, 024075 (2022)], it becomes apparent that certain classes of geodesics, such as trapped
orbits, still lack analytical solutions. Thus, in this study, we provide explicit analytical solutions for equatorial time-
like geodesics in Kerr spacetime, including solutions of trapped orbits, which capture the characteristics of special
geodesics, such as the positions and conserved quantities of circular, bound, and deflecting orbits. Specifically, we
determine the precise location at which retrograde orbits undergo a transition from counter-rotating to prograde mo-
tion due to the strong gravitational effects near a rotating black hole. Interestingly, the trajectory remains prograde
for orbits with negative energy despite the negative angular momentum. Furthermore, we investigate the intriguing
phenomenon of deflecting orbits exhibiting an increased number of revolutions around the black hole as the turning
point approaches the turning point of the trapped orbit. Additionally, we find that only prograde marginal deflecting
geodesics are capable of traversing through the ergoregion. In summary, our findings present explicit solutions for
equatorial timelike geodesics and offer insights into the dynamics of particle motion in the vicinity of a rotating

black hole.

Keywords: geodesic motion, analytical solutions, equatorial plane, Kerr spacetime

DOI: 10.1088/1674-1137/ad260a

I. INTRODUCTION

In recent years, the detection of gravitational waves
from binary black hole mergers [1] and the upcoming
gravitational wave detection missions such as the LISA
[2], Taiji [3], and Tianqin [4] projects have underscored
the urgency and significance of modeling the two-body
problem in general relativity. Specifically, the motion of
a small body in extreme mass ratio inspirals can be
treated as a perturbation of timelike geodesic motion,
which can be effectively modeled using the self-force ap-
proach [5]. Accretion disks around rotating black holes
are intimately connected to the innermost stable circular
orbit (ISCO) or unstable circular geodesics [6]. The in-
vestigation of plunging and deflecting timelike geodesics
offers valuable insights into the Penrose process [7] and
the two-body scattering problem [8]. Furthermore, the re-
cent interest in analyzing black hole images [9—13] is
closely tied to null and timelike Kerr geodesics.

The study of Kerr geodesics began since the Kerr

solution was discovered in 1963 [14]. In 1968, Carter
found an extra conserved quantity called the Carter con-
stant [15] during the geodesic motion in Kerr spacetime,
which was further discussed in [16]. Wilkins [17] studied
the bound geodesics in Kerr spacetime. In [18], Bardeen
studied the timelike and null geodesics, which were fur-
ther analyzed in [19—21]. Chandrasekhar [22] reviewed
the achievements on Kerr geodesics in the early stage.
Twenty years ago, Mino introduced Mino time, decoup-
ling the radial and polar motion [23]. The bound
geodesics were revisited, and the explicit form of the
geodesics in terms of fundamental orbital frequencies was
given in [24]. Later, these geodesics were further ana-
lyzed using separatrix and elliptic functions [25-27]. It
was proven that only trapped orbits are allowed for negat-
ive energy geodesic motion in the ergoregion [28]. In re-
cent years, the geodesic motion in the near-horizon re-
gion of high-spin black holes has been analyzed [29-32].
Gralla and Lupsasca provided analytical solutions for null
geodesics in Kerr spacetime [33]. The full classification

Received 20 November 2023; Accepted 5 February 2024; Published online 6 February 2024

*Y. L. is financially supported by the Natural Science Foundation of Shandong Province (ZR2023QA133) and Yantai University (WL22B218). B.S. is Supported
by the National Natural Science Foundation of China (12375046) and Beijing University of Agriculture (QJKC-2023032).

T E-mail: yanliu@mail.bnu.edu.cn (Corresponding author)
 E-mail: bingsun@bua.edu.cn (Corresponding author)

©2024 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese

Academy of Sciences and IOP Publishing Ltd

045107-1


http://orcid.org/0000-0003-4728-1519
http://orcid.org/0000-0001-8647-2196

Yan Liu, Bing Sun

Chin. Phys. C 48, 045107 (2024)

of timelike radial geodesic motion was performed in [34].
A new method for calculating inspirals from the inner-
most stable circular orbit (ISCO) was introduced in [35].
Analytical solutions for geodesics related to circular and
innermost stable spherical orbits in the phase space have
been obtained [36, 37]. Nevertheless, compared with the
classification of the equatorial geodesics in [34], some
classes of orbits, such as trapped orbits associated with
parameters governing bound and deflecting motion, still
lack explicit analytical solutions.

In this study, we revisit the equatorial timelike
geodesic motion in Kerr spacetime. Specifically, we fo-
cus on the generic orbits related to the "special”" orbits,
such as circular, bound, and deflecting orbits, i.e., the
geodesic classes in the region ¢ <{¢<{¢* of the phase
space in Figure 8 of [34]. The motion on the equatorial
plane is mainly dominated by the radial motion, which is
constrained by the radial potential. For the radial poten-
tial on the equatorial plane, there is always a root located
at r=0. Setting the mass of the black hole and the
particle M = = 1, the radial potential can be reduced to a
cubic polynomial of 7,

R =(E>-DrP +2r + (a*(E> - 1) = O)r+2(£ —aE)?,
(1)

where £ and ¢ are the conserved energy and angular mo-
mentum, and a denotes the spin of the black hole. For the
orbits that plunge into the black hole, the angular mo-
mentum must satisfy [34]

<t = , 2

where ¢, is the angular momentum of the root structure
with one root touching the horizon.

Analyzing the roots of the radial potential and its de-
rivatives, one can obtain the classification of the radial
motion in the parameter space, as shown in Figure 8 of
[34]. For the convenience of the discussion, we introduce
the notation of the root structures in Table 1 following
[34].

The remainder of this paper is organized as follows.
In Section II, we discuss the geodesics related to the cir-
cular orbits. In Section I1I, we present the geodesics asso-
ciated with the bound and deflecting orbits. The marginal
orbits are discussed in Section IV. Finally, we provide a
summary of our results in Section V. In Appendix A, we
give the definition of elliptic integrals used in this paper.
We prove that the solution of trapped orbits associated
with bound and deflecting orbits can return to the stable
and unstable cases in Appendix B. During the prepara-
tion of this paper, Adam, Eva, and Patryk solved the non-
equatorial Kerr geodesic motion in terms of Weierstrass

Table 1. Notations for the root structures on the equatorial
plane.
Notation Denotes Notation Denotes
| outer horizon . simple roots (turning points)
+ allowed region oo double roots (circular orbits)
- disallowed region LX) triple roots (ISCO)
) radial infinity . roots touching the horizon

elliptic functions [38]. We compare the deflecting orbits
with the non-equatorial results in [38] as a consistency
check in Appendix C.

II. ORBITS RELATED TO CIRCULAR ORBITS

In this section, we suppose the circular orbit locates at
r.. The angular momentum and the energy of the circular
orbits are obtained by solving for R(r,) =0 and R'(r.) =0,

—2aE F \r.2+(E? - Dr)A(r,)

ga,b(Es r*) = r _2 s (3)
(r.=2)\r.—a

ED ) =+ , 4

+ (r,) +r3/4 \/m ( )

Ef)(r*) _ (r,—=2)\fr. +a 5)

+ )
i/ (r.=3)\r+2a

The branches of the solution are

(L(ED), ED), (L ED), ED), (G(ED), ED), (L(ED), ED);
(6)

Based on the analysis in [34], the allowed circular mo-
tion are (¢,(E\"),EY) and (¢,(E?), E?), which can be re-
duced to

2 x 2
O = + r;¥F2a+r.+a ’ o
EVO(,) = (r.=2)r.ta &

r£/4\/(r*—3)\/ﬁi2a’

where branch (1) with the upper sign denotes the pro-
grade circular obits, and branch (2) with the lower sign
denotes the retrograde orbits.

Here, we introduce the special values in [31]

rV=2-a+2Vl-a, )
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r§2)=2+a+2\/1+a, (10)
o 2arcsina . (2arcsina
r,’=2+cos| ——— | — V3sin | =—— ), (11)
3 3
) 2arcsina . { 2arcsina
r,” =2+cos —5 )t V3sin —5 ) (12)

where ¥V are obtained by solving EV® =1, and D
are obtained under the condition that EM® are real, such
that, at #® we have EMV® — oo,

Circular orbits with energy |E|# 1 Ignoring the
ISCO, there are three types of root structures related to
the circular orbits, |+ee+e—) and |+e—ee—) for
|E| <1, and |+ee+) for E > 1. The allowed orbits in the
+ region have the same angular momentum and energy as
the corresponding circular orbits. Note that no permitted
orbits are associated with circular orbits with energy
E < —1. Now consider the radial potential in the follow-
ing form:

R(r)
E*-1

(13)

= (r=m)(r=r.),

comparing with (1) and replacing (E,{) with the angular
momentum and energy of the prograde and retrograde
circular orbits (EMW® D) another root can be ob-
tained in terms of the position of the circular orbits .,

2r. (a¥ \/E)z
—a? xda~r,+(r.—dr,’

ry=ri =

(14)

where the + and — indices denote the prograde and retro-
grade orbits.

With the energy |E|<1, when ry:==r.=r:, the
double root and the single root merge into a triple root,
forming the innermost stable circular orbits (ISCO)
|+eee—) with the angular momentum and energy
(€+,E;+), which has been revisited in [35]. When
ry <r; <r,, the circular orbits are stable with the root
structure |+ e —e e —)_ the orbits in the + region r, <r <r
are trapped orbits 7*; when r; > r., the circular orbits are
unstable with the root structure |+ e e + e —), the orbits in
the first + region r, <r<r, are whirling trapped orbits
W7, and the orbits in the second + region r. <r<r
are whirling bound orbits ‘W$" or homoclinic orbits H".

With the energy E > 1, the other root r; <0, but one
can easily prove that we always have —r; > r, for r. > r,.
The circular orbits are unstable with the root structure
|+ee+), the orbits in the first + region r, <r<r, are
whirling trapped orbits W7, and the orbits in the
second + region r>r, are whirling deflecting orbits

WD,

The r and ¢ components of the 4-velocity of the or-
bits in the + region can be expressed in terms of the para-
meters of related circular orbits,

Ur:ﬂ:i\/(Ez—l)r(r—rl)(r—r*)z’ (15)
dr r2

B dib _2aE+{(r-2)

¢ — =
v dr rA(r) ’

(16)

where A(r) = (r—r_)(r—r,), the sign + denotes the outgo-
ing orbits, and — denotes the ingoing orbits. Particularly,
for the ¢ motion related to the radial motion, we have

dp d¢dr dr

=L —=U’—. 1
dr drdr dr 17
From now on, we only discuss the ingoing orbits. For the
outgoing orbits, one can simply flip the sign by sym-
metry.

A. Unstable circular orbits

1. Whirling trapped and homoclinic orbits with
0<E<]1

We first discuss the ingoing prograde orbits with the
root structure |+ e e +e—). Then, the energy is confined in
the region E;. < ED® <1, and the locations of the un-
stable circular orbits are confined in the region
ri0@ <, <.

The whirling trapped orbits (W7 ™) related to the un-
stable circular orbits, which represent the allowed motion
in the first + region r, <r<r, <r, , asymptotically ap-
proach the unstable circular orbits. For ‘W7 and the or-
bits inside the horizon 0 < r < r,, the ingoing radial velo-
city is given by

gr=dr__(nmn (Ez—l)r(r—rl)’ (18)
dr r?
which can be reorganized as
1
—V1-FE%dr= p dr. (19)

The homoclinic orbits (H*) are related to the un-
stable circular orbits, which represent the allowed motion
in the second + region r. < r < ry, and asymptotically ap-
proach the unstable circular orbits. The radial velocity of
H" is
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=) NE =)
; .

I%

U=

(20)

After integrating (20) in the corresponding region, we
obtain the solution of the proper time of H* in the region

r*<r<r1,
~VI=E2r=r /2 1+ (r +2r)arctan /L~ 1
r r
2 3/2 -7,
P AU SO} Q1)
T — . r.(ri—r)

Note that it is not real in the region r < r, owing to the
tanh™' function. However, by utilizing a property of this
function,

d tanh™!(x) = d tanh™'(1/x), (22)
dx dx

we can adjust the solution and obtain the proper time of
the orbits in the region r <r,,

VI—Er=ry/ 2 —1+(r +2r.)arctan \/ﬁ—l
r r

2r3/? o (-7
+ tanh™' rn=r
ry—rs.

(23)

r (r 1—Fr *) ’
For the ¢ motion, by integrating (17) in the correspond-
ing region and setting the integral constants ¢, =0, we

have the solutions of the orbits as follows:

e whirling trapped orbits in the region r, <r <r.,,

_ r(ry—r,) _ r_(ri—r)
=Cltanh?! ——=+Cltanh”' ——
¢ , tan r*(l"l _ r) +(C_tan r(rl — rﬁ)
+ CJlr tanh’l M , (24)
r(ri—ry)
® homoclinic orbits in the region r, <r <ry,
- L(r —r) - r(ri=r)
= —Cltanh™ 70 _clgont 0TH
¢ < r(ri—r.) -n r(ri—r.)
- (ri—r)
~Cltanp™ 070D 25
+an r(ri—ry) ( )

e the orbits in the region r_ <r <r,,

¢ =C!tanh™ rn=r.) +C! tanh™! rn=-r
r(ri—r) r(ri—r.)
+Clanht 0T (26)
ri(ri—=r)
e the orbits in the region 0 < r < r_,
¢ =C!tanh™ rn=r,) +C! tanh™! rrn=r)
r.(r —r) r_(ry—r)
_ (ri—ry)
Cltann™! 071 27
Thitan ro(r—r) ( )
where the constants read as
2r.2(€—aE)-r.t
C! V@2 —aE)-r.0) 28)

T ‘l_Ez Vrl_r*(r*_r—)(r*_r+)’

cl - 2r2(t—aE)-r_0) (29)

VI-E>\r =r_(r.—r_)(ry — r,)’

ol = 226 —aE)—r.0) (30)
T NIE VR =) )

In Fig. 1, we illustrate the geodesics associated with
prograde unstable circular orbits, where 0 < E < 1. The
behavior of different orbit classes in various regions is
shown separately in plots (a) to (d). Plot (a) demon-
strates the behavior of ingoing and outgoing-to-ingoing
homoclinic orbits confined within the region r, <r<ry,
which asymptotically approach the unstable circular or-
bits. This is consistent with previous findings [25]. Plot
(b) depicts a trapped orbit that originates from the un-
stable circular orbits and eventually plunges into the
black hole. Plots (¢) and (d) illustrate the trajectories
from r, to r_ and from r_ to O, respectively. Notably, the
direction of motion changes at the horizons owing to the
presence of A(r) in the denominator of U?, despite the
conserved energy and angular momentum remaining con-
stant. Finally, in plot (e), we present the entire range of
geodesics, choosing a = 0.9 to ensure visibility inside the
horizon.

In Fig. 2, we present the geodesics related to the ret-
rograde unstable circular orbits with energy 0 <E <1.
Plot (b) shows an interesting phenomenon: near the hori-
zon, the strong gravity drags the retrograde trajectory to
become prograde. As a result, the location of the turning
point of the ¢ motion outside the horizon,

2aE
r¢T=2+a7, G1)
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0<E<1 ‘+n+07> (>0

(a) re<r<m b) <7<y

a=0.9 re =2
\ () 0<r<mnr

a=0.5

v
T
N

Te =3 () 0<r<r_ (d) r—<r<ryg
\ - K \ |

oS ¢ TCOS @

rsing

rsing

Fig. 1. (color online) Geodesics associated with unstable prograde circular orbits. The blue, orange, and green lines represent the or-

bit, outer horizon, and inner horizon, respectively. The color scheme remains consistent throughout the subsequent figures.

0<E<1 |+ o0+ 0—) <0
(a) re<r<m (b) T <7T<7TN
N /\ %2 M\\ a=09 r.=6
\\ J W (€  r>0
10 . J 6-
a’:OS -10 -5 0 5 10 15 -6

oS ¢

rsing
o =
o o
rsin ¢
]

-2 -1 o 1 2 -014  -009 -004 001 006 0.1
T COS O

Fig. 2. (color online) Geodesics related to the unstable retrograde circular orbits with the root structure |+ee+e—).

depends on the position of the circular orbits r, and the obtain explicit expressions for these orbits as well.
spindof the black hole a, which can be obtained by solv-
ing i 0. 2. Whirling trapped and deflecting orbits with E > 1
.
Notably, (31) is applicable to circular orbits and oth-
er retrograde trapped orbits, including those associated root structure |+ e o +). The orbits in the first + region are

with bound or deflecting orbits or purely trapped orbits  the whirling trapped orbits, and those in the second + re-
with the root structure |+e—). By inputting the corres- gion are whirling deflecting orbits.

ponding energy and angular momentum values, one can For the ‘W7 related to the unstable circular orbits in

When E > 1, the circular orbits are unstable with the
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the region r, <r<r, and the orbits inside the horizon
0 < r <r,, the ingoing radial velocity is given by

U = dr _ (r.=1) \/(Ezz— l)r(r—rl).

dr r

(32)

In the region r > r,, the radial velocity for the WD" is
given by

Urzﬂ __(r=r) V(EZ_I)r(r_rl). (33)
dr r?

After the integration in the corresponding region, we ob-

tain the proper time of the orbits in the region r < r.

32
r r(ro—r
——* __ tanh™! 7( D

Te— 1 r.(r—ry)

—(r; +2r,)sinh™ H—Ln —\rir=r), (34)

—-V1-E?7r=

and in the region r > r,

3/2 _
VITEir= 2 gt =)
Noera r(ro—r1)

— (ry +2r,)sinh™ \/_zrl— Vrr=r). (39

The ¢ motion can be obtained by integrating (17) in
the corresponding region as follows:

e whirling trapped orbits in the region r, <r <r.,,

¢ =C?tanh™ rr.=n) +C*tanh™ rr=n)
rir—r) r(r_—n)
+Canh T (36)
r(ry —ry)
e whirling deflecting orbits in the region r > r.,
p=—Cltanh™ "IN gt Em)
r(re=ri) r(r_—r)
_Clanh =) (37)
r(ry —r)

e orbits in the region r_ < r <r,,

— Ctanh! r(re—r) C? tanh™! r_(r—r)
L I
2 -1 r(ry —ry)
+ C: tanh =1 (38)
® orbits in the region O < r <r_,
¢ =C>tanh™ rr=r) C*tanh™ rr_-n)
r.(r—r) r_(r—ry)
+Clanht [T, (39)
* r(r—rp)
where the constants are given by
oo 2L —aE) - r.0) “0)
L VI-E R ) (-
o 2\F(2(b—aE)—r_0) 1)

T VI-BE R - —1)

o 226 —aE)-r.0)

R e S 4

In Fig. 3 and Fig. 4, we illustrate the geodesics associ-
ated with the prograde and retrograde unstable circular
orbits with energy E > 1. Plots (a) to (d) display the dis-
tinct classes of orbits, where a = 0.5 and r. = 3. Addition-
ally, plot (¢) showcases all classes of orbits within the
root structure |+ee+), with a =0.9 and r. =4. Notably,
plots (a) demonstrate the whirling deflecting orbits ori-
ginating from far infinity and asymptotically approach-
ing the unstable circular orbits. The turning points of the
trapped retrograde orbits, located at r = r,r, are also evid-
ent.

B. Stable circular orbits

We now discuss the ingoing trapped orbits with the
root structure |+e —ee—). These orbits are characterized
by having energy values confined in the region
E;: <E <1 and stable circular orbits located at r, > ry-.
Notably, when ri+ = ry, the single root touches the hori-
zon, and the stable circular orbit is located at

4 8r. 402r +1
== g faar 8 0N

" oa a* a?

At this point, the angular momentum and energy are giv-
en by

=tV =¢,, (44)
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E>1
(a) T>1 (b)
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Fig. 3. (color online) Geodesics related to the unstable prograde circular orbits with £ > 1.
E>1 |+ oo +) {1 <0
(a) 7>, (b) ry<r<rs
/<> ’ a=09  r.o=4
1 (e) r >0

&
rsing

a=0.5

4,
re =3 10 -
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-15 2
-3-2-10 1 2 -2 -1 0 1 2
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| /— \
() r—<r<ry (d O0<r<r_ 20 A (1)
S S Y
' y AN 010 ™
os ‘/"/ V \\\ 0.05} -2k 4
| / £
-0.5] 4
) -0
10 / -4 4
R

) -1 o 1 2 -014 009 -004 001 O
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rsing
rsing

|
o
|
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o
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Fig. 4. (color online) Geodesics related to the unstable retrograde circular orbits with E > 1.

(45) flipping the sign of £ aqd ¢ simultaneously.
Based on the analysis above, we can draw the follow-

ing conclusions regarding the existence of trapped orbits:
When r, > r{, the angular momentum is greater than ¢,

indicating that, although the stable circular orbits exist, e For prograde orbits, the trapped orbits exist within

the trapped orbits are disallowed. However, the trapped
orbits exist for the orbital motion with negative energy
even though the related circular orbits are disallowed. In
this scenario, we can employ the parameters of the circu-
lar orbits to investigate the motion with negative energy,
taking advantage of the symmetry in R(r) achieved by

the range r'" <r, <rs.

e For retrograde orbits, the trapped orbits exist when
r.>r?,

e For orbits with negative energy, the trapped orbits
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exist when 7, > r}.

These findings offer valuable insights into the critical
role of r. in determining the presence of trapped orbits
alongside the associated stable circular orbits. These in-
sights are particularly useful when plotting the trajector-
ies of these trapped orbits. To ensure the existence of
trapped orbits, it is crucial to carefully select appropriate
values for r.. Thus, one can accurately depict the traject-
ories and study the characteristics of these intriguing or-
bits.

For the trapped orbits related to the stable circular or-
bits, which represent the allowed motion in the + region
r, <r<r <r, of the root structure, as well as the orbits
inside the horizon, the radial velocity is given by

(=0 NE*=Dr(r—r)
5 .

I%

U=

(46)

By integrating the above expression, we obtain the prop-
er time as

- Vl—Ez‘r:r\/r—l—l+(r1+r*)arctan \/r—]—l
r r

27312 r.(ri—r)
- __arct B 47
vr*_rlarcan r(ry—r1) “7

For the azimuthal motion, we have the following expres-
sions:

[to—e-)

(a)
a=0.5 /

Te =D -

78in ¢

>0

0<E<I1

<
*
ot
rsin ¢
o

-15  -10 -05 00 05 1.0 15
7 Cos ¢

Fig. 5.

e trapped orbits in the region r, <r <y,

¢ = —C?arctan = +C' tanh™’ rn=r
r(r.—r) r(r=r.)
+Claanht D) (48)
r(ri—r,)
e the motion in the region r_ <r<r,,
¢ = —C?arctan M+Cltanh" rn=r
r(r.—r) r(r—r-)
1 —1 r(ri—ry)
+C, tanh —_— (49)
re(ri—r)
e the motion in the region 0 <r <r_,
¢ = —C?arctan rln=n +C' tanh™’ nn-r)
r(r.—r) r-(ri—r)
+Claanht L) (50)
ri(ri—=r)

In Fig. 5, we present the geodesics in the region
0 < r <r, associated with stable circular orbits. Plots (a)
and (b) display the geodesics related to prograde stable
circular orbits with different black hole spins. It indicates
that as the black hole rotates faster, the turning point r;

0<r<mr
(<0
0<E<1
) a=0.9
re =15
{<0
o -1<E<O
- a=0.5
i . = 100

-15 -10 -05 0.0 05 1.0 15

7 COoS ¢

(color online) Geodesics related to the stable circular orbits with the root structure |+e—ee—).
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approaches closer to the horizon. Plot (c) illustrates the
geodesics related to retrograde stable circular orbits. Not-
ably, for retrograde stable circular orbits, r. can go to in-
finity without affecting the existence of trapped orbits. Fi-
nally, plot (d)showcases the geodesic motion with negat-
ive energy. Here, we observe that there are no turning
points for the ¢ motion, both inside and outside the black
hole. Furthermore, the trajectory remains prograde des-
pite the negative angular momentum. One can check that
our results match those in [36] very well by replacing the
notations in Egs. (53)—(54), Egs. (56)—(57), and Egs.
(61)—(63) from [36] with ours.

OI. TRAPPED ORBITS WITH SEPARATED
ROOTS

In the region between ¢* and ¢“, as shown in Figure 8
of [34], the double root separates into two single roots.
These single roots correspond to the turning points of
bound orbits when E < 1, and they represent the turning
points of the trapped and deflecting orbits when E > 1.
The separation of these roots, which is described by the
separatrix in terms of the semilatus rectum and eccentri-
city, has been extensively discussed in previous works
such as [25, 27, 34, 39, 40]. In this section, we delve into
the analysis of trapped orbits associated with these separ-
ated roots and explore the properties of deflecting orbits.

We first consider the root structure |+ e — e + e—) with
bound orbits. The trapped orbits in the first + region
r.<r<r, are allowed when ¢ <¢<min(f*,¢*) and
E;<E<1. When ¢>¢,,the trapped orbits are disal-
lowed even though the bound orbits exist. Now, we ex-
press the radial potential as

R
2 = =)=,

(1)

where the roots of the radial potential r; <r, <r, repres-

ent the turning points of trapped and bound orbits. Here,

ry = % and r, = % denote the pericenter and apo-

center oftz" the bound orbits, respectively, where p is the
semilatus rectum, and e is the eccentricity. By comparing
the coefficients of » with (1), one can obtain the follow-
ing solution:

r —(ra+r1p), (52)

N

OO _ E s \/rar,,(2+(E2 —Dratry) 53)

2

EDO Xi+X+4V2a \/”a”p(”a +1,)A(r)A(ry)
- X5+ X, ’
(54)

where the indices (1) and (2) correspond to the + and —
sign in +, and

X1 = (ra=2)(ry =D+ 1p)(ra(ra +1,)(r, =2)=2r7),  (55)
Xy = a*(ry(4—6r,) = 6r,ry(r, —2) +4r7), (56)
X3 = 1) (ra+2r)(ry, =2 +4r,(r = ro(A(r,) + %)), (57)
Xy =121, (ry(r, = 6)(r, —2) — 8a*). (58)

Note that we have ¢V >0, ¢® < 0. The allowed branches
are as follows: prograde orbits (¢V(E®),E®), retrograde
orbits ((P(EWM),EDM), and orbits with negative energy
(5(2)(—E(2)), _E(2>)_

By replacing r, = % and r, = & in (51), and
comparing the coefficients of » with the radial potential,
one can obtain the quantities and the polynomial that the

semi-latus rectum and eccentricity should satisfy,

B 22— 1)

E== 2p+r(1-e?)’ (59)

(=aE+py|— 11 60

Saes=p 2p+(1-e?)r,’ (60)

0 ={p[4r, —p(rn-D]-a’R2p+n(1 -y
—4a2p2r1[r1+2(p—1)—e2(r1—2)]. (61)

For trapped and deflecting orbits with the root struc-
ture |+ —e+), r, is negative such that it is no longer the
apocenter, which we denote by r,, and r, is no longer the
pericenter but the turning point of the deflecting orbits,

denoted by r,. Note that we still have r, = 11_7 p and

, and e>1 is no longer the eccentricity. The

Vg =

+e
other single root r, andthe energy and angular mo-
mentum of the orbits can be obtained by simply repla-

cing r, and r, with r, and r,, respectively, in (52)—(54).

A. Trapped orbits related to bound orbits
The radial velocity of the trapped orbit associated
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with a bound orbit is given by

WV E = Dr(r=r)(r=r)(r=r.)

r2

U=

(62)

which can be rewritten as

= Edr = : dr. (63)

[EIEIE

F_an? n_ s o _ 2 . C. . . .
Let . =Sy, P Y1, and Pl ¥» . Then, reverting the substitution after the integration, we obtain the expres-

a

sion for the proper time,

_\/I—EzT: \/rp(ra_rl)8<arcsin< r(rl_ra)) rl(rp_ra)> (64)
tq Ty rl(r_ra) rp(rl_ra)
ritT, . r(ri—ry) \ | 1(rp—ra)
" ,/rp(ra—rl)?-(arcsm( rl(r_ra)> rp(rl_ a)) (65)
Nt ro . r(ri—rg) \ | r(rp—ra)
ﬁ(ra_rl)ﬂ(rl_ra,arcsm( r](r—ra)> rp(rl—ra)) (66)

r(ri—=r)r,—r)
ri(r,—r)

(67)

where F (x|c) is the elliptic integral of the first kind, E(x|c) is the elliptic integral of the second kind, and I1(n; x|c) is the
incomplete elliptic integral of the third kind, which are defined in Appendix A.

r+ = 1 2 r_ frd 1 2 . . . . . . .
Similarly, let ;- =" Y+ and P Y- reverting the substitution after the integration, we obtain the solution of
the azimuthal motion,

b= 2r, 2(6—akE)—r,t 7 ( arcsin r(r,—ry)
CVI=E2 \fri(ra—rp) \(a=r)(ra= 1) rp(r=ra)

_2At-aE)-rt Il (rp(ra _r_);arcsin ( rry _r“)>

(ra—r,)(m—r,) r—(ra_rp) rp(r_ra)

_2t-abE)-r.t - <rp(ra—i’+);arcsin( ”(”p_"a)>

(ra—r+)(r+—r_) r+(ra_rp) rp(r_ra)

rp(ra_rl)
rl(ra_rp)
rp(ra_rl)
rl(ra_ p)
rp(ra_rl)
. 68
rl(ra_rp)>> ( )

Noticing that a symmetry exists by exchanging r, and r,in (63) and with the replacements below (63), one can easily
obtain another equivalent solution as

o 2r, ( 2(l—aE)—r, - (arcsin ( r(ri — ra))
V=B \fr(ra—r) \ e =)= 1) r(r=ry)

2l—aE)—r_¢ (rl(ra—r) ( r(r1—a)>
_ I yarcsin

(ra=r)(re=ro)  \r-(ra—r1) ri(r=ra)

2l—aE)—r.¢ <r1(ra—r+) ( r(rl—ra))
— I1 yarcsin

(ra—r)(re—r-) ri(ra—r1) ri(r—ry)

rl(ra_rp)
rp(ra_rl)
rl(ra_rp)
rp(ra_rl)

rl(ra_rp)
. 69
rp(ra_rl))> ( )

Note that this solution also applies to the orbits inside the horizon.
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In Fig. 6, we illustrate the behavior of the trapped orbits, which exhibit similarities with the trapped orbits related to
circular orbits.

B. Trapped orbits related to deflecting orbits

The trapped orbits is confined in the first + region of the root structure |+e—e+), where we have

 in2
=sin"Y4 we have

n

r r
. a2 .2
ra<0<r, <r<r <rq<-r,. Setting Z~ =S v, - =sin Y1, and
n n

—VEZ—1dr = Sin2y dy, 70
! V(1 +csc2y)(escysin® gy — D(esc? ysin® gy — 1) v (70)

let x = cscy, and replace back after the integration, we obtain the proper time expressed as

- E2_1 _ . (r_rn)(rn+rd) (rl+rn)(rd_rn)
S (mm ( (r+ 1) (ra - m)) (ra+r)(ri - rn)) @y
. (r_rn)(rn+rd) (r1+rn)(rd_rn)
i (‘m‘“ ( () (ra - r,,)) (ra+ 1) - rn)> : 7
Tqa—"Fn . (r_rn)(rn+rd) (r1+rn)(rd_rn)
+CHH<rn+rd’arC51n< (r+rn)(rd_rn)> (rd+rn)(r1_rn)) (73)
Vr=r)2=r})(r=ra)
* 2r,(r+r,) ' 74
where
n— n
Cp = —v(r_rlz)r(rwd) , (75)
N e e 7o
|[+oe—0o+eo—) 0<r<mre a=0.9
(a) (b) (c)
< /N o &Q < /‘-\

-15 L L L L L L L L L L -15 L L L ]
-15 -10 -05 00 05 1.0 15 4 -3 -2 -1 0 1 2 -15 -10 -05 00 0.5 1.0 15
T COS ¢ 7 COS @ 7 COS ¢
>0 0<E<1 <0 0<E<1 <0 -1<E<O0
e =10 =3 Tq =20 rp=15 rq = 200 7y = 100

Fig. 6. (color online) Geodesics related to the bound orbits with the root structure |+ e —e+e—).
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Cp = _ —ntrg) (77)

V(rn_rl)(rn"'rd).

Similarly, we obtain the solution of the ¢ motion as

2ry(2(6—aE) —r,0) . r(ri—r) \ |nlra—r)
¢= ¥ | arcsin
(E2_1)(r1_ n)rd(rn_rf)(rn_r+) rl(r_rn) (rl_rn)rd
2r(2(6—aE)-r.0) ri(r-—ra) . riri—r) \ |n(ra—r.)
- I1 ;arcsin
VE? = D(r1 = r)ra(ry—r)(r-—ry)  \ r-(ri=rs) ri(r=ry) J [ (ri=ryra
2rn(2(€_aE)_r+€) rl(r+_rn) . r(rl_ n) rl(rd_rn)
- 11 ;arcsin .
VE* =D —r)ra(rs —r ), —ry)  \re(ri—ry) ri(r=ry) ) | (ri—r)ry (78)
Note that the behavior of the trapped trajectory in this re- J— 1
gion is similar to the one depicted in Fig. 6. —VE? - ldr = r| S Vd dr.  (79)
V=D 0-7)0-%)

C. Deflecting orbits

For the deflecting orbits in the second + region from
the second turning point to infinity, the redial velocity
can be rewritten as

-VE?2-11= W—S(arcsin( (r,l—rl)(r—rd)>

r—r (r=r),—rq)

After the integration, we obtain the proper time ex-

pressed as

ri(rg—ry)
ra(ri —14)

(rn—m(r—rd))

rl(rd_ n)
ra(ri—r,)

(r\(ry+ 1)+ (ry —rr))F (arcsin (

ra(ri —ry) (r=ri)(ra—ra)
SR S (r1 = r)(r + 1 + 7T | 24712 arcsin (o =)= ra) | |1 (ra = 1) .
ra(ry—ra) =T (r=r)(rn=ra) J [ ra(ri=1y) (80)
For the ¢ motion, we have
2t—aE)Id - ¢1¢
== 71 "2 81
¢ L (81)
where
dr. (82)

ri-t
19 = /
! \/ (r=r))(r—r)(r-rq)
r

(r=r)(r=r.)

After the integration, we obtain the solution of the azimuthal motion,

b= 2(ry —1y) 2((—aE)r; —r} 7 (aresin [ o= =ra)
- VE2 = 1(r =r)rg \(ri—ra)(ri—r-)(ri—ry) (r=ri)(r,—rq)
2(¢-aE)r_ - tr? ((rd —r)r-r) ( (ry—r)(r— m))
I1 ;arcsin

(ro—ra)(r —r)(r-—ry) (Vl—’”n)(rd—’”—)’ (r=r)(r,—rq)

2-aEyr.~tr? H<<rd-rn>m-r+>, ( <><>>
- sarcsin

(re—r)(ri=r)(re—r) \ (i =ra)(ra—rs) (r=ri)(ra=ra)

rl(rd_rn)
ra(r —14)
r(ra—74)
ra(ry—ry)

Vl("d‘”n)))
ra(ry—ry) ’ (83)
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In Fig. 7, we depict the trajectory of deflecting orbits.
An intriguing characteristic of these trajectories is that, as
the turning point approaches the turning point of the cor-
responding trapped orbits, the particle completes more re-
volutions around the black hole. When these two turning
points merge into a double root, the orbit transforms into
a whirling deflecting orbit, which asymptotically con-
verges to the unstable circular orbit illustrated in Fig. 4.
Consequently, no outgoing trajectories are observed.

IV. MARGINAL ORBITS WITH E=1

For the radial potential of marginal orbits with E =1,
one root goes to infinity; then, the radial potential is re-
duced to

R, =2r—r+2(a-0). (84)

The circular orbits locate at r. = r"® in the root struc-
ture |+ e o +), with the angular momentum

& TGP
Tdr T r? '

(86)

For the root structure |+ e —e+) with the trapped and de-
flecting orbits, the turning point of the trapped orbit loc-
2

ates at r| = -5~ 14, where the angular momentum is

f(l)’(z) _ —2ai— VzrdA(rd)
MD T

o (87)
and the radial velocity is expressed as
Ur=g=i Vz”(”—rl)(r—rd)_ (88)
dr r?

When the second turning point locates at the ergosphere,
i.e., ry =2, we have

(a*-4)
r = N =
! 8a?

2 a
£+§. (89)

Note that, when r,>2, we have £\, >0 and £, <0;

when r, <r;<2, we have ¢{? >0, which means that,
£ = 321 + VT a), ) nsideth - o :
M inside the ergoregion, only the prograde marginal deflect-
ing orbits exist. Note that, when E = —1, the angular mo-
the radial velocity is expressed as mentum is —£\)),.
| +o—e+) T > 1y r, =—20 a=0.5
20+ | 20+
\ 15+ 1
10+ B
10+ 101
5 L 4
< ASS <
: > ) 2 )
~ ~ ~
_5¢ ]
-10¢ 1ol 1 -10+
/ -15- 1
-20r 1 -20r
202468 -4-20 2 46 810 -20 2 4 6
7 COS @ 7 COS @ 7 COS O
rqg =38 rq =3 rq = 2.8
Fig. 7. (color online) Deflecting orbits with the root structure |+ e —e+).
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A. Unstable circular orbits

For the whirling trapped orbits in the first + region of
the root structure | +ee+),

-V2dr = r‘/; dr, (90)
t_1

r

and after the integration, we obtain

2
~V2r =27 tanh™ rL -3 Vr(r+3r.). 1)

*

For the whirling deflecting orbits in the second + region
of the root structure | +e e +),

-V2dr = 1\/’_;,*dr, (92)

r

and then,
2
- VIr=—2rPanh ([T DV +3R). (93)
r

The explicit expressions for the ¢ motion are given as fol-
lows:

e whirling trapped orbits in the region r, <r <r.,

¢=C.tanh™ \/— +C_tanh™ /= +C, tanh™ \/E (94)
1 r r

e whirling deflecting orbits in the region r > r.,

¢ =—-C,tanh™' \/E—C,tanh_l \/E—Qtanh-l \/E
r r r

(95)

o the orbits in the region r_ <r <r,,

¢=C,tanh™ /—+C_tanh™ /= +C,tanh™" \/—, (96)
Ty r rs

e the orbits in the region 0 < r <r_,

¢ =C,tanh™ \/L +C_tanh™ 1/L +C, tanh™ \/L, (97)
I r- ry

where

o - Q-0

« = ) 98
V20 = 1)y =) .

V-l —a)—r_0)
C.= , 99
V2(r, —r)(r - 12) ©%)

. - NEQU-a)-r.0)

= . 100
V2(ry = r)(re = 1) (190

B. Trapped and deflecting orbits

When the angular momentum [£] > £}, or £ < {7, the

root structure is |+ e —e+). Note that, similar to the non-
marginal deflecting orbits, when E = 1 and £};, < ¢ < ¢, or
€< (), both trapped and deflecting orbits exist; when
E=1 and ¢>¢,,the trapped orbits are disallowed al-
though the deflecting orbits exist; and when E = —1 and
¢ <{,,the trapped orbits are allowed although the de-
flecting orbits do not exist.

For the trapped orbits in the first + region of the root
r

— 42
structure |+e—e+), O<r<r;<ry; let fd—x , and we

obtain the proper time expressed as

2
T= —T\/_( r(ri=r)(rg—r)

=24/r(ri +r)& (arcsin v/ L
rq
+rQr+r)F (arcsin v/ L

rq

7)
r
r—")) .o
r
The ¢ motion for trapped orbits is expressed as
¢=- 357" (arcsin ,/L ﬁ)
ra ri|rq

+ \/5(2a+€(r, _2))H (Q;arcsin 1/ L
r

rl)
ra

\/ﬁ(r—_r-%-) r_
V2Qa+0r=2) (.. [T]|n
T VR “(Z"‘mm\[i a)' (102)

For the deflecting orbits in the second + region of the

. r .
root structure |+e—e+), we introduce - =siny and

Tq
gion. Then, we obtain the proper time expressed as

=siny to confine the variables in the deflecting re-

—T=§ r(r=r)(r=ra)(r+2(ry +rq))
2V2
T‘/_ Vri(r +r)& (arcsin \/Zrl :—‘:)

2
- 7\/_ N Q@ry+r)F <arcsin \/? Ld) . (103)

r
For the ¢ motion of marginal deflecting orbits, (17) is ex-
pressed as
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dﬁ B 2(€—a)—tr
dr 5 JO=r=r
r

The direct integration of the equation above contains
imaginary terms. To obtain the real solution, we split this
integral into two parts such that

(104)

2(C-a)l, -l
e 105
N (105)

while I, contains the imaginary terms and is not real. I,
can be expressed simply as

ry )

rd

2 /
= L (H(ﬂ;arcsin r
\/r_d(r—_rJr) r- r
—H(ﬂ;arcsin \/L ﬁ)) .
Iy ry\rg

However, it is still not real owing to the inverse sine
function. By noticing the structure of the proper time
solution in (103), and comparing it with the results in pre-
vious sections, we assume that the solution might contain

functions such as
rq ry . r(ra
— ), or II|—;arcsiny/—|— |,
r I r|r

r_ . r
11 <—;arcs1n A/ —
ry r
rd)
ry )
(107)

(106)

and F (arcsin . r—r'

By comparing the derivatives of these functions to
find the coefficients, we obtain the solution of the azi-
muthal motion expressed as

_ V2 r_ . Iy Ta
¢ = \/M(2a+f(r_—2))n<rl,arcsm \/; 71)

V2 re . [rlr
_\/M(2a+€(r+—2))ﬂ<rl,arcsm \/; 71) _
(108)

V. CONCLUSION

In this study, we provide explicit analytical solutions
for the equatorial Kerr geodesics related to circular,
bound, and deflecting orbits and marginal geodesics. Spe-
cifically, we focus on the region ¢* <{<¢* in the phase
space depicted in Figure 8 of [34].

We investigate the geodesic motion in relation to cir-
cular motion, present the analytical solutions, and demon-
strate the performance of the trajectories. We identify the

7 COS ¢

5 . 10 i 15 20
7 sin ¢
Fig. 8.
bits (83) (depicted in orange color) with the non-equatorial

(color online) Comparison of outgoing deflecting or-

results in [38] (the blue dashed curve). The black curve rep-
resents the outer event horizon.

turning points for the ¢ motion of retrograde trapped or-
bits, which depend on the parameters a and r.. Moreover,
we provide general results for all retrograde trapped or-
bits. Additionally, we determine the positions of stable
circular orbits, which serve as a criterion for the admiss-
ibility of related trapped orbits. We also analyze the tra-
jectories of motions with negative energy and find that,
despite the negative angular momentum, the trajectories
remain prograde outside the horizon.

Subsequently, we examine the trapped orbits associ-
ated with bound and deflecting orbits, revealing that, al-
though the trapped orbits may exhibit different mathemat-
ical expressions, their trajectory behaviors are quite
similar. We further observe that, as the radial turning
point of the deflecting orbit approaches the turning point
of the related trapped orbit, the particle completes more
circles around the black hole. When these two turning
points merge into a double root, the resulting orbits be-
come whirling deflecting orbits that asymptotically ap-
proach unstable circular orbits. Finally, we provide expli-
cit expressions for marginal orbits, noting that only pro-
grade marginal deflecting orbits can traverse the ergore-
gion.

Theoretically, trapped orbits are expected to originate
from white holes and then plunge into black holes.
However, in practice, such trajectories may arise from
particle collisions, where the resulting particles can oc-
cupy the corresponding trapped or deflecting regions in
phase space. Thus, our findings have potential implica-
tions for investigating collisional Penrose processes and
scattering problems. Furthermore, some techniques we
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employ to obtain solutions may prove useful for solving
non-equatorial geodesics.
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APPENDIX A: A BRIEF INTRODUCTION
ON ELLIPTIC FUNCTIONS

The elliptic functions are introduced for solving integ-
rals in the form of [41, 42]

/ F(x, /R())dx, (A1)

where F(x, VR(x)) is a rational function of x and R(x),
and R(x) is a cubic or quartic polynomial

R(x) = Ax*+Bx* +Cx* + Dx+E, (A2)

where A,B,C,D, and E are constants. It has been shown
that a general elliptic integral can be expressed by three
elliptic integrals [41, 42], the Legendre elliptic integrals
of the first, second and third kind, which are defined as

sing 1
- S A
T glm) /0 (l—tz)(l—mtz)dt (A3)
/ ’ ! d A4
. —, 1/}
o V1-msin’6 (&4)
Elglm) = e__l-mf (A5)
A N G s T ey
= / ’ V1 —msin®6dé, (A6)
0
sing 1 A
TI(n: olm) =
(r: lm) /0 I vapa s AD

4 1 1
= deé.
/o 1-nsin*0 V1—msin6

(A8)

The inverse of the elliptic integral of the first kind
gives the elliptic function, namely the Weierstrass ellipt-
ic function or Jacobian elliptic function, by rewriting the
polynomial into the Weierstrass or Legendre form. The
Weierstrass elliptic function has been recently used to

solve for non-equatorial Kerr geodesic motion [38]. With
the Jacobian elliptic function, the bound orbits and those
related to spherical orbits are solved [26, 27].

Now, consider the integral

1
/ Vo=—a)(x=b)(x—o)(x—d) d. (49)

where a>b>c>d. When x>a or x<d, by taking the
replacement

,  (x—a)b-d)
~ (x=b)a-d)’

_(a—d)b-c)

" amow-a Y

the integral can be rewritten in the form of the elliptic in-
tegral of the first kind

2 1
/ wa—ow—d>va—ﬂx1—mﬂfh

(All)

For more replacements under different cases, we refer the
readers to [41].

APPENDIX B: CONSISTENCY CHECK WITH
BOUND AND CIRCULAR CASES

When the eccentricity of the bound orbits goes to
zero, the separated roots r, and r, merge into a double
root, and the bound motion turns into a stable circular or-
bital motion located at r,=r, — r.. Then, the elliptic
functions in solution (69) become

¥ — —arctan r*(r—rl)’ (B1)
r(rl - r*)
e o)yt 202D (B2)
r.r—r2) r(ri—r.)
I, - Mtanh_l M’ (B3)
r(ri—ry) r(ri—r,)

where ¥, Il_, and II, are the elliptic functions in the
first, second, and third terms of (69) respectively. Com-
bined with the coefficients, the trapped orbital motion as-
sociated with stable circular motion (48) is then obtained.

When the separated roots r, and r, merge into a
double root, the unstable circular orbits emerge, and the
trapped motion turns into the whirling trapped orbits.
Then, the quantities in solution (69) change into

=T, > T,

r,—r (B4)
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The elliptic integrals can thus be re-expressed as

F — tanh Py s
(r.=ry)r-tanh™ nezn) \/r*r_(rl —r.)(r; —r_)tanh™' rr-—n)
I - r(r—r) =1 "
_ r(r.—r-) ,
(. = ri)r. tanh™ nen, rore(ri=r.)(r —r,)tanh™' rre=r)
r.(r—ry) =
I, — | o

rl(r*_r+)

Combined with the coefficients, one can easily obtain
the solution of the corresponding whirling trapped solu-
tion (24) related to the unstable circular case. Likewise,
for the deflecting orbits, when r, = r,, the deflecting or-
bits turn into the whirling deflecting orbits, and the whirl-
ing trapped orbits (78) associated with the deflecting or-
bits become the whirling trapped orbits associated with
the unstable circular orbits (36).

APPENDIX C: CONSISTENCY CHECK WITH
NON-EQUATORIAL DEFLECTING CASE

The authors in [38] solved for the non-equatorial
geodesic motion in Kerr spacetime in terms of Weier-

strass functions. Here, we illustrate that our results are in
very good agreement using equatorial outgoing deflect-
ing orbits as an example. We chose the same value of
parameters as those in the second picture selected in Fig.
7. The corresponding parameters of the results in [38] are
as follows:

e=1066951, A, =3.785653, «=10.576662, (Cl)

G=r/2, &=1, &=3, ¢=0, 6=1.  (C2)
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