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Abstract: We study the decays of Ay — A(— pr)¢*¢~ with £ = (e,u,7). We examine the full angular distribu-
tions with polarized Ap, where the 7-odd observables are identified. We discuss the possible effects of new physics

(NP) and find that the 7-odd observables are sensitive to them as they vanish in the standard model. Special atten-

tion is given to the interference of (pseudo)scalar operators with (axial)vector operators in polarized

Ap = A(— pr~)r*1™, which are studied for the first time. Their effects are proportional to the lepton masses and
therefore may evade the constraint from A, — A(— pr~)uu~ at the LHCD naturally. As Ap = A(— pr)th 7™ is

uncontaminated by the charmonia resonance, it provides a clean background to probe NP. In addition, we show that
the experimental central value of Ko in A, = A(— pr~)u*pu~ at the LHCb can be explained by the NP case, which

couples to the right-handed quarks and leptons. The polarization fraction of A; at the LHCD is found to be consist-

ent with zero regardless of the NP scenarios.
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I. INTRODUCTION

The CP violating observables in b — s¢*¢~ with
¢ = (e,u,7) play important roles in probing new physics
(NP) as they are highly suppressed in the standard model
(SM) [1-7]. In recent years, special attention has been
given to B— KWu*u~ and B; — ¢utu~ [8—10]. Precise
measurements of angular observables are now accessible
owing to experimental developments [11—19]. They are
useful in disentangling helicities, providing reliable meth-
ods to probe the Lorentz structure of NP [20—27]. Be-
sides, the ratios of Ryge =I(B— KWu*u )/T(B—
K®e*e™) were measured, where discrepancies against the
SM were found. In particular, 3.10 and 2.5¢ deviations
have been found in Rx(1.1GeV? < ¢* <6.0GeV?) and
Rk-(0.045GeV? < ¢? < 6.0GeV?) [28, 29], showing that the
lepton universality may be violated by NP. Very recently,
a global fit of b — s¢*¢~ with B meson experiments was
performed [30], and the experimental data permitted the
large complex Wilson coefficients beyond the SM.

The baryonic decays of A, — A(— pr™)¢*¢™ are inter-
esting for several reasons. For polarized A,, the decays
provide a couple dozen angular observables, which are

three times more than those in B — Ku*u~. The polariza-
tion fraction (P,) of A, is reported as (6 +7)% at the cen-
ter of mass energy of 7 TeV of pp collisions [31]. The
full angular distribution of A, —» A(— pr7)u*u~ has been
measured at the LHCb [19]. Notably, the experiment ob-
tains that

Ko = —0.045+0.037 £0.006, (D

deviating from the SM prediction of K;p = 0 by 1.20. It is
reasonable to expect that the precision will be improved
in the forthcoming update. In this study, we explicitly
show that Ko is a T-odd quantity, which can be sizable in
the presence of NP.

Theoretically, the angular distributions of A, —
Au*p have been studied intensively [26, 27, 32]. In par-
ticular, an analysis of NP with real Wilson coefficients
has been performed in Ref. [33], where they found P, =
(0+5)% at 1o confidence level. In this study, we focus
on the time-reversal (7)) violating observables induced by
the complex NP Wilson coefficients. Unlike the direct CP
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asymmetries in decay widths, 7' violation does not re-
quire a CP-conserving phase. This feature is very useful
in leptonic decays, as strong phases are often negligible.
The roles of the (pseudo)scalar operators in A, » At* 7~
are studied for the first time. Their effects are enhanced
by m, and play an important role in examining NP.

This paper is organized as follows. In Sec. II, we de-
compose A, — Af*¢” into products of two-body decays.
In Sec. III, we construct the 7-odd observables. In Sec.
IV, we briefly review the angular distributions of
Ay = A(— pr)t*¢- and identify the 7-odd observables.
In Sec. V, we estimate the effects of the (pseudo)scalar
operators on the 7-odd observables. We conclude the
study in Sec. VI.

II. HELICITY AMPLITUDES
The amplitudes of A, —» A¢*¢~, induced by the
b — sC*¢ transitions at the quark level, are given as [34]:

Gg aV}\Vy,
N
+(A[5 s bIAGYEC + (N[5 jbl ALY Eys0), )

= (AISYbIAL) Oyl + (NS FDIAL) Ty ysC

where Gr is the Fermi constant, V,(q=s,b) are the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,

2
Fo=(CEM 4+ O - @c;;f i1(1 +ys) +(Cp, + COR,

Jﬁ =(Ci+ C )Ly +(Cr—Cp)R",

Js =Cs(I=7vs), jp=Cp(1-7ys),

3)

C™ represents the (effective) Wilson coefficients, o =
iy"y" —=y"y")q,/2 with g=(¢°G) being the four-mo-
mentum of £*¢~, I = y*(1 —ys), R* = y*(1 +7s), and m, is
for the quark mass. We only consider the NP operators
with the right-handed strange quark in jsp, as the heavy
quark mass would suppress the effects of the left-handed
ones.

The first (second) term in Eq. (2) can be interpreted as
Ay = AjRY followed by ji¥ — £+¢~, where i is an
effective off-shell (axial) vector boson, conserving the
parity in its cascade decays, and j, are the couplings of
b—s—jut. Alternatlvely, the interpretation can be reph-
rased as A, — Aj5F — AL by

(AISybIAL) Y, L+ (A5 fabIAL) Ey,yst
=(AI5 /IR, + (A5 /i bIATL,L, (4)

where ji,, = (fy £ /)/2 and j&" clearly couple only to

the right-handed (left-handed) leptons. As parity is con-
served in jli' — €+€, it is easier to obtain the angular dis-
tributions with the ]VA interpretation. In this study, the
angular distributions are obtained using j%', while for
NP, ;& isused. Similarly, the third (fourth) term de-
scribes A, — A7, with /57 the (pseudo)scalar boson,
decaying to {*¢~ subsequently.

In the SM, C§})=Csp.r =0 and the others are [26,

35]

C5y =—0.313,
7\ 1 q:
C" =Cy +h( 7)—7};( )(4C3+4c4+3c5+cﬁ)
my, mj 2 m?

1 2
——h (0, q—z) (C3+3C)+ 7(3C3 +Cy+3Cs+Cy),
2 mj, 9

(5)
where
2
me g ) _ 8me, 8,4 2
h(m;, ) l 27+9)c 9(2+x)
I+l ir |, forx<1
|1 = x|'2 N | '
1
2 arctan , forx>1,
Vx—1
2 2
q 8 4 ¢ 4
o, L )=2-ZmLt +2
(O’mb> 2779, Tol® ©

and x=4m?/q*. Their explicit values are found in Ref.
[35].
By decomposing the Minkowski metric as

g ==y e (7
A=0,+
we arrive at
GF QV Vb m pm m pm
G s (pm-yum).
m=V,A,S,P 1=0,+
where

B! = € (AI5fybIA,),
B*" = (Al5js.pblA,),

L)l/m = éf{m ﬁf‘y#v[ ?
Lﬁ‘,n = E//{mﬁ[’}/}l’}@ Ve,
Lf = ﬁg\/g N LIP = ﬁg’)’5V( . (9)
An = (2,0,%) is the helicity of jZ;, with ¢ indicating spin-0

off-shell contributions, and e are the polarization vectors
of ju., given as [36]
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€= \/_(0 +1,1,0)7,
=(0,0,0,-1)7,
=(~1,0,0,0)", (10)
and
IS ! —(0,¥1,i,0)7,
= F
V2
1
E'u = (|C_1)|3070’ _qO)Ta
0 \/qj
PR (an

— \/qjqﬂ’

in the center of mass (CM) frames of jZ; and A,, respect-
ively. Note that L = 0, as they do not contain the space-
like component. In Eq. (8), the amplitudes are decom-
posed as the products of Lorentz scalars, where B,, and
L,, describe A, — Aji and ji — €€, respectively, re-
ducing the three-body problems to two-body ones.

To deal with the spins, we adopt the helicity ap-
proach. The projection operators in the SO(3) rotational
(SO3)r) group are given by

2J+1
|J, M){J,N| =

/ dédcosOdyR (o)
X R(OR.(0))D” (8,6,4)" (12)

where N and M are the angular momenta toward the Z dir-
ection, the Wigner-D matrices are defined by

D’(¢,0.0)" N(J.NIJ, M) =

(13)

and R, are the rotation operators pointing toward ().
Notably, it is important for Eq. (12) to be a linear super-
position of R, ., which commutes with scalar operators. In
the following, we take the shorthand of D’(¢,6) =
D’(¢,6,0).

The simplest two-particle state with a nonzero mo-
mentum is defined by

P2, A1,4) = L|p=0,1. = 4, ®L|p = 0,J. = =A2),,
(14)

where A,, are the helicities, the subscript denotes the
particles, and LY is the Lorentz boost, which brings the
first (second) particle to (—)pz. As LY commutes with R,,
the state defined by Eq. (14) is an eigenstate of J, = 4,—

A>. Plugging Eq. (12) into Eq. (14) with N =2,
arrive at

—/12, we

152,250, J.)
_2J+1
T 4n

/d¢d cosOR(P)R,(0)p2, A1, A2)1 2D (¢,0)" .,
(15)

which expresses the angular momentum eigenstate as the
linear superpositions of the three-momentum eigenstate.
Conversely, we have

P2y => |
J

A1, 23 J,N). (16)

Note that the identities of Eqs. (15) and (16) are
purely obtained from the mathematical consideration. The
simplification occurs when the angular momentum con-
servation is considered. At the CM frames of A, and j,
it is clear that only J =1/2 and J = (0,1) need to be con-
sidered for the Aj% and £*¢ systems, respectively.

Utilizing Eq. (16), we find that

<ﬁ25/11’/12’J’N|S|J’ Jul) = <p29/llsﬂ'2|8|‘l’ Jz5l>3 (17)

where S is an arbitrary scalar operator, and |/, J,;i) stands
for an arbitrary initial state. In Eq. (17), the final state on
the left side possesses a definite angular momentum,
which is irreducible in the SO(3); group, i.e., it contains
only the dynamical details. On the contrary, the one on
the right side is a three-momentum eigenstate, containing
fewer physical insights but providing a way to compute
the helicity amplitude.

Let us return to A, — Aji and jip — ¢~. We take
the uppercase and lowercase of H and /4 for the helicity
amplitudes of A, — Aj% and ji — €€, respectively. To
be explicit, we have

Hjﬁ\ﬂm = Bilnm (/lAb = AA = A, Aps ﬁA =—q= IﬁA&) s
hgl,/l+/l_ = L:n(/Lr’/L"?: 0,7, =-p-=1p.l2),
hlff@l, = L;"VL(/L,/L,Q’: O’ﬁ+ =—-p-= |ﬁ+|2), (18)

where Aa,(44,4.) corresponds to the angular momentum
(helicities) of Ap (A,€*), and pp (p.) is the three-mo-
mentum of A (£*) in the CM frame of A,(j). Theoretic-
ally, the dynamical parts of the amplitudes are extracted
by Eq. (17), whereas the kinematic dependencies are gov-
erned by D’.

For compactness, we take the abbreviations
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la) = 1A je £1/2,0),
Y = 1A je, £1/2,1),  dl =

Ib2) = 1A jeg, F1/2,F1),
= (d|Se 1A,

7!
l
‘—'7

by =HZ, ., =(al|SIAy), i =H

Is 1 = (LISl Ap), (19)
where SJ: is the transition operator responsible for
Ay = Ajl, and J; is not written down explicitly. The ar-
tificial S is needed to interpret A, — A{*{~ as products
of two-body ones. For the A, — A& interpretation, the
helicity amplitudes are

1 1
a’i = %(a‘;+a;‘), ai = %(af_f ai),
1 1
bY = — bl +bl), bi=—7®!-b),
+ ’\/§ + + + \/5 + +
1 1
K=—+ct), t=—V-ct). 20
N AR £=f TG (20)

III. T-ODD OBSERVABLES

From Eq. (3), we see that the NP contributions are ab-
sorbed into the couplings of b—s—ju;, whereas the
Lorentz structures of ji — ¢*¢~ are plain. Thus, to dis-
cuss the NP effects, it is sufficient to study A, — Aj%-.

The most simple 7-odd operator in A, = Ajjy, is
defined as [37]

T =(S\X5,) Pa, 1)

§x and §, are the spin operators of A and ;7 respect-
ively, and Pa is the unit vector of .. The spin operators
can only be defined for the massive objects, given as

M3=P"J-pxK- -0, (22)

1
PO+ M
where M is the particle mass, and P°, 7, j, and g are the
time translation, space translation, rotation, and Lorentz
boost generators, respectively. Note that (7,J) and § are
T-odd, whereas g is 7-odd. In addition, § satisfies the re-
lations

5 _’=Jﬂﬁ, [s;,5;]1=1€", [s;,p;1=0,
sexp(iK -@)|F=0,J. = My =exp(iK-&)J|p=0,J,= M),
(23)

Sexp(iK

with arbitrary @. The key to solving the eigenstates of 7
relies on 7' being a scalar operator. Thus, we have

T|ﬁ27/ll’/12;‘], Jz>
_2J+1
" 4n

X D™ (¢,0) 1, _1, (24)

/ d¢dcos 0Rz(¢)Ry(9)T|P2, AL

and

ao i - A
T|pz,A1,4,) = E(SXS,,,—S,\S;)|PZ’/11,/12>, (25)

with s* = s, +is,. It is then straightforward to show that

. A i
Taf) = +flb’” ), T =F—=la),

™y =10), (26
\/_ \/2 T|C¢> |>’ ( )

resulting in the eigenstates

1 11

A=t —, Ay = =) = —=(a7) FilpT)),

W = = 39 = (DT B

W=t de=—ty=Laamsipry. @)
_\/z, tot ) \/E e e

where A2 and A are the eigenvalues of 7 and j. P Te-
spectively. They are also the eigenstates of j. 3, as T
commutes with both j and p. Note that ¢} are not in-
volved since they are contributed by spinless ;.

Because 7' and J-p are T-odd and T-even, respect-
ively, we have

L7, o) = ei9T| =7, o) s LAT, dor) = 1= AT, —Aior)
(28)

where 7, is the time-reversal (space-inversion) operat-
or, and 6; depends on the convention. On the other hand,
I, would interchange j% and j;, given as

Isl/ll;’/ltoo = | - /1%, _/ltot> s Is|/l§“?/ltot> = | - /llre, _/ltot> s
(29)
with
1
MI;" Aot) :$ (MV, Aot) + MA’/ltot)) s
1
|/l§"’/ltot> =% (M‘T/a/ltot) - |/l;i"’/ltot>) P (30)

since j¥: and j4 have opposite parity.
For each combination of A and j%, we define a 7-
odd quantity
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T e =KA7 =1/ V2, /ltotlseff|Ab>|2

— A = =1/ V2, A Serl AP, 31)

which vanishes if S.r is invariant under 7,. Explicitly,
we find that

Tm==2Im(a?by), T™=2Im(a"d"),  (32)

which are proportional to the relative complex phase.
They are called 7-odd quantities, as 7, interchanges the
final states of the two terms in Eq. (31).

The operator of 7' contains §,, which is difficult to
measure directly. To probe the spin of A, it is plausible to
study the cascade decays of A — pzn~. Subsequently, the
final states involve four particles pr~¢*¢~, containing

three independent three-momenta. It is then possible to
observe the triple product, given by

a(P+ X Pp) - Pas (33)

where o is the polarization asymmetry in A — pr~, and
Py is the three momentum of the proton. Notice that a is a

(AISY*DIA,) = lin

TV (2
(ASic“bIA,) = iy | 1! (q)

b
(AI5y"ysblAy) = ﬁ/\{
L (v

TA
(Al5ic™ysbIA,) = ity [f' M(" ) (g

(A[S(1 =y5)b|Ap) = Un(fs — 8aY5)Un, »

where u,,, and M,, are the Dirac spinor and mass of
Awy, respectively. In turn, we find that

Vm _ Q Vmy 2 Vmy 2
HY"y = {M F"(q )+MAbF (q )} (37)
M.
HY' = /20 {FY’"(qmmFX’"(qz)} , (38)
Vm _ Q+ Vm Vm
Hi = o { M_F}"(q )+MAbF (g )} (39)
Hzf'z) — g;' { FAm( 2)_ N FAm( 2)} (40)

@ =F (@io" - el =g @

N - £ )10“”

necessary component in Eq. (33), as 5, does not affect 7,
if @ =0. As the product in Eq. (33) is P-even, we have to
construct P-even observables from Eq. (32). From the
transformation rules, it is easy to see that

JTl=gR_gL, g2=9L_TF, (34)
are both 7-odd and P-even.
IV. ANGULAR DISTRIBUTIONS
The lepton helicity amplitudes are calculated as

h(‘J/++ =0, h‘1/++_2Mf’

Hy,.=2M,, I, =0,

W =—2¢, K., =2¢0-6),

hg++ =V 2q2(1 =0¢), h0P++ =V 2q2’ (35)

where 6, = 4M?/q* with M,being the lepton mass. In con-
trast, the baryon matrix elements are conventionally para-
meterized by the form factors, given by

:|uAb9

} YsUa,»

MAb
v

+f3(q)

My,

—q'd) - V(f)W} U,

o )~ @i ysun,

(36)
M_
H;"f'i = \/ZE {Ff\m(qz)ﬁLMiF?m(Clz)} ’ 40
Ap
mr= Ll - L) @
2 7 Ap
2
Hi%,r_cs |:fs \/]WQAJrq \/]WQA‘I :| (43)
2 2
H.y, = Cp {fx X X } , (44)

where M, = My, £ My, Q. = (M.)*-¢*, and
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F/V (@ =[Ceﬁ+cN" +(CL+CRIf (¢ FY(g") =[C§7 + O = (CL+ CR)I (D)
2m,M, _,
S ChA @, (45) + T ST, (50)
FyY(q*) =[C§" + CF +(CL+ Cr)If ()
E F{Mq") =[Cio+Ciy +(Cr=CIf (4. (51)
mbM/\h Ceff TV( ) (46)
FM(@?) = [Cro+CN = (Cr—COIfA (D), 52
FXV(qZ) :[Ceff+cNP +(CL+CR)]fE;V(q2) i (q ) [ 10 10 ( R L)]f; (q ) ( )
2m, M _
; V(). 47) with i = (1,2,3). Combining the relations
FY (g =[C + CYF —(CL+ CR)IfA (4P HY, =HY" —H" o HY o =HY
2 m m
+ O, (48) HY ) =—HY!,
Ap

FIV(@?) =[CF + O —(Cp+ CoNIAA () the evaluations of / are completed once the form factors

2my MA are given.
+ LC 1A, (49) The angular distributions of A, = A(— pr )™ ¢, re-
lated to the kinematic part, are given by piling D’, read as
2 T(Ap = A(= pr )t ) §(q )
D(¢*, Q) = =B(A—> A
(@) 8q20 cos B0 cos 8,0 cos 8,0¢,0¢, ( 32 2 A;lbpﬂ"ﬂb‘ 8 |
2
x|S0 D H, DE0.0)" 40, D (65,80 1y D (6060 0|
m Ay,Apn
2G2 VJFYV 2 2153
fqry =2 GV Vol 41PN i (53)

320 2403,

where p..=1%P)/2, AL =1=%xa)/2, A, =%1/2, are the azimuthal angles between the decay planes.

|PAl = VO, 0_/2M,,, and J,, =0 (1) for A, =1(+,0). The The breakdown of the physical meaning of Eq. (53) is
angles are defined in Fig. 1, where 6,6, and 6, are defined as follows:

in the CM frames of A, A and £*¢, respectively, and ¢, ,

+ S
£ S,

s ! p
,“ I~
e ward, O
| Jefr / A /

_______________________________________________

Fig. 1. Definitions of the angles.
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o H} AmD%*(O, )" a,-a, is responsible for A, — AjY,,
where H and D describe the dynamical and kinematic
parts of the amplitudes.

e The kinematic part of A — pn~ is described by
D ($y,0,)" », and the dynamical part by|A, |.

e} ., and D’ (¢, 00)* 1, _1_ describe the dynamic-
al and kinematic parts of jify — £*¢", respectively.

The derivation is similar to those in the appendices in
Ref. [36]. We cross-check our result of D(Q) with Ref.
[32] and find that they match. For practical purposes,
D) is expanded as follows [19]:

> 3
D, Q) =—— ( (K, sin’6,+ K, cos® 0 + Kxcos§)) + (K, sin” 6, + Ks cos” 6, + Kg cos 6;) cos 8

3212

+ (K7 sin 6, cos 8; + Kg sin ;) sin 6, cos (¢, + ¢;) + (Ko sinf;cos 6, + Ko sin6;) sin 6, sin (¢, + ¢;)

+ (Ky;sin* 6, + Ky cos® 6, + K3 cos ;) cos 0+ Ky sin’ 6, + K5 cos” 6 + K c0s 6;) cos 6, cos 0

+ (K7 sinf;cos 6, + K g sinf;) sin 6, cos (¢, + ¢;) cos 0 + (K9 sin6;cos 6, + K»g sin6;) sin 6, sin (¢, + ¢;) cos 6

+ (K51 cos6;sin6; + K, sinf;) sin ¢; sin 6 + (K,3 cos §;sin 6, + K,4 sin6;) cos ¢; sin

+ (K55 cos 6, sin 6, + Ky sind;) sin ¢, cos 6, sin @ + (K7 cos 6; sin; + K,g sin6;) cos ¢; cos 6, sin 0

+ (Ka9 cos” 6 + K3 sin” 6;) sin 6, sin ¢, sin6 + (K, cos” 6, + K3, sin” 6)) sin ), cos ¢, sin @

+ (K33 sin? 0,) sin 6, cos (2¢; + ¢,) sin 6 + (K34 sin? 0,) sin @, sin (2¢; + ¢;,) sin 0) ,

with

Kii=1~34)= K"+ K5F, (55)

where the definitions of K4 and K’ can be found in
Appendix A and Appendix B, respectively. We note that
K134 are proportional to P,, imposing difficulties in ex-
tracting physical meanings since P, depends on their pro-
duction. Interestingly, in the SM, Ky and K, are found to
be

2a(1-46
K9 = —7\/_0(4 [) (TI +TZ) B
_ \/ia ]—6[ 1 )
Kig= = (T -7 56

which are 7-odd according to Eq. (34). Notably, K92,
K212, Kasa6, Kaozo, and K4 are also sensitive to the com-
plex phases of NP, as they are proportional to the imagin-
ary parts of the helicity amplitudes.

V. NUMERICAL RESULTS

After identifying the 7-odd observables, we are ready
to estimate the NP contributions. If (pseudo)scalar operat-
ors from NP are involved, their contributions are divided
into two categories: one is from the interference between
NP, which scales as O(Cg} »), and the other arises from the
interference of (pseudo)scalar operators with the SM,
scaling as O(Cs p). We focus on the latter, as it is expec-

(54

ted to be larger. As the contributions are proportional to
the lepton masses, our main concern lies in the decay
channel of A, — A(— pn~)r*t~. Furthermore, this chan-
nel is contaminated a little by the charmonia resonance,
providing a clean background to probe NP. We take
CLr=Cy% =0 in A, » A(— pr)r*r" and notice that Ky
would not be influenced by the (pseudo)scalar operators.
However, K, is sensitive to Cs and Cp.

In this work, we evaluated the form factors of A, —» A
from the homogeneous bag model, the details of which
are given in Appendix C and good accordance to the ex-
periments is found in B(A, - Au*u~). The results are
plotted in Figs. 2 to 5 with error bands, where Ky =0
when Cs =Cp=0. In Figs. 2 and 3, Csp are set to be
purely real, whereas in Figs. 4 and 5, they are purely ima-

ginary.

0 . C=0
Cs=1
- =2
201
. —40-
S
<
¥ —60 -
80+
=100 A
1‘3 1‘4 1‘5 1‘6 1‘7 lé 1‘9 2‘0
q%[GeV?]
Fig. 2. (color online) ¢*>-dependencies of Kjo with different

values of Cs ({=71,Cp=0).
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K10/l [GF]

. Cp=0
6 m Cp=1
. Cp=2
5
4
31 \
2
14

1I3 1‘4 1I5 116 1I7 lé 1I9 2‘0
q%[GeV?]

Fig. 3. (color online) ¢*>-dependencies of Ko with different
values of Cp (¢=7,Cs =0).

700
N Cs=0
N Cs=i
. Cs=2i

300 4
200 4
100

3 14 15 16 17 18 19 20
q’[GeV?]

600 q

K10/ [GF]

Fig. 4. (color online) ¢*>-dependencies of Kjo with different
values of Cs (¢=1,Cp =0).

We find that Ky is more sensitive to the imaginary
part of Cs. In the region of 16 GeV?* < ¢*> < 18 GeV?, the
interference between (axial)vector and (pseudo)scalar op-
erators can be significantly enhanced. To estimate the ex-
perimental results, we consider the integrated K, related
to Figs. 2 to 5 in Table 1. The integrated K; is defined as

(K) = % / ' (Kdg*, T= / ' (K, +2K,)dg? . (57)

where (k,«") = (4M?,(M, — Ma)*). From the table, we find
that the contributions from the imaginary part of Cs are
primary and larger than others by one order of magnitude.
If we take Ny, =5x 10" at the LHCb Run3&Run4, a re-
construction efficiency € = 107, and Im(Cs) = 1, we have
€N, (K10)B7 ~ 20, which can be measured at the LHCb
Run3&Run4.

To consider the NP contributions in A, — A(—
pr)utu~, we may ignore the contributions from
(pseudo)scalar operators, as they are suppressed by the

04 . Cp=0
. Cp=i
. Cp=2i
-10 4 7
S 201
5
5
<
~30
-40
1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 Zb
q?[GeV?]
Fig. 5. (color online) ¢*>-dependencies of Kjo with different

values of Cp (£ =7,Cs =0).

Table 1. The (psuedo)scalar Wilson coefficients and (Kjo)

with £=7.

Re(Cs)  Re(Cp) (K10) Im(Cs)  Im(Cp) (K10)
1 0 -0.0031(2) 1 0 0.0202(10)
2 0 —-0.0062(3) 2 0 0.0403(20)
0 1 0.0002 0 1 —0.0014(1)
0 2 0.0004 0 2 —0.0027(2)

muon mass. From the global fit in the B meson decays
[30], the permitted imaginary parts of the NP Wilson
coefficients are found in Table 2 with four different scen-
arios’. To illustrate this, we calculate (K;) with
K; € {Ko, K0, K19, K3} and (k,&') = (15 GeV?>,20 GeV?) in
different scenarios given in Table 2. We fit P, from the
experimental K; 34 and find that P, is consistent with
zero regardless of the presence of NP.

In the absence of relative complex phases in the SM,
(K;) are found to be less than 107*. Therefore, they
provide excellent opportunities to test the SM. Although
K; are proportional to the imaginary parts of the NP
Wilson coefficients, which have not yet been determined,
their signs remain unknown. However, nonzero values in
the experiments would be a smoking gun in NP, regard-
less of the signs. Scenario #1 affects little in (K;), and the
results are not listed. We find that (Ky) is very small in all
scenarios, which is consistent with the experiments. Re-
markably, the experimental data of (Kj,) canbe ex-
plained by Scenario #4. On the other hand, Ky and K3
are highly suppressed by P,.

Since the CP-conserving phases are absent, the 7-odd
observables are proportional to the imaginary parts of the
Wilson coefficients. Noting that @ = —a, we deduce that
(Kg,Klo,Klg,K30) in Kb —>K(—> ﬁﬂ+)€+€_ are equal to
those in A, — A(— pn )f*¢~. Here, @ represents the de-
cay asymmetry of A — pn*.

1) See Fig. 1 of Ref. [30]. It is clear that the signs of NP Wilson coefficients are barely determined.
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Table 2. The Wilson coefficients and () in units of 10~ in four NP scenarios.

Scenarios Im(C§®) Im(CYY) Im(Cy) Im(Cg) Ko K10 K19 K30 P,
Scenario #1 +0.73 0 0 0
Scenario #2 0 +1.86 0 0 0 ¥4 0 0 —0.022(72)
Scenario #3 +1.66 £1.66 0 0 0 +3 0 0 —-0.021(65)
Scenario #4 +0.77 0 %0.77 %0.77 ¥l 42 ¥l 0 -0.019(64)
VI. CONCLUSION plaln the K 10, pu;zle. We recomment'i revisiting the exper-
iment, considering Kj, for a stringent constraint. In
We  derived the angular distributions of A, — A(— pn )™, we focused on the effects of the in-

Ay, = A(— prn)*{~ based on the effective schemes of
Ap = A(—= pr7) ji(— £7¢7), and the results were found to
be consistent with those in the literature. By studying the
effective two-body decays of A, — Aj%, we identified
the T-odd correlations in the form of (5\ x3§,)-p. We
found that Ky and K, are related to (5 X 5,,)- Pa, and Ko
is sensitive to the complex phases generated by NP. For
Ay = A(— pr)utu~, we found that Cr = —0.77i can ex-

N ScbybY  Sebiby

1 _ _
VA _ A A
K" = ( —6pal,at —6palat

terference of (pseudo)scalar operators with (axial)vector
operators and found that the effects of the (pseudo)scalar
operators can be largely enhanced in the high ¢* region.

APPENDIX A: ANGULAR OBSERVABLES
IN THE SM

Here, all K; are real. They are given by

5bYBY _ 6,b'b

+8,chcd

4 2 2

Ard a2 +aVa + AaA
+6,ctcA +alaV +atat +a’aV +atat

. b DY . bAbA bYBY  bADA

2 2

2

).

2 2 2

1 _ _ _ _ _ _ _ _ _ _
KA =2 (@afaz +6,a"a¥ —8,b b — 5,6 bA + 5, + 5, A + bV BY + bEbA + bV bV + b*_‘bé),

Sb¥bY  5,btbA

K2 NT=08, (v s one v ars
KA=_—I6 - d <b}r’bﬁ +bibY — bV b - b’fb‘_’)
P, 4
1 — — 5bYBY  5bibh
KA :Za/<—6ga’ia’j+5gaéa’f— g =+ 5 -+

bIBY  bbE DYV bAbA

) ) + 5[64&

—5:AA+d"ad’ +ad® —a"a’ —argh —
occtct +a,al +alalt —a’a¥ —alal

2

)

2 2 2

1 _ _ _ _ _ _ _ _ _ _
KV =Za(5mxax — 800" a" +6,bY DA — 6, DX + 8,c4 X — 5, A — b/BY — bABA + bVBY + B ),

VA
K13

LSBT | B

~bBY),

+ 6((’?_6’?

2 2

S G CR L
KV —iky :M (a"BY +a'b2 - bYa¥ - biat),
e M (a B3+ B + bYa + T ),
Kt =% (-6watal +6,a%ar+ M’EH - MfE
—SctcA +alal +alat —a’a¥ —a'at

. b DY . bt DY bAbA
2

P _ _ _ _ _ _ _ _ _ _
KV = Zb (60alal — 500" a¥ - 6,b2D% +6,b* B + 8,c X — 5,c* X+ bYBY + b — bVBY — b7 ),

)

2 2 2

(AT)
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P — — 6YDY 5bADE 5bYBY 5, A
K&Azfa(—&afaﬁ—éga‘faé— [5 =+ ()2)' t - [2 + fz +8,chch
— e u— . bBYBY DA BYBY bAbA
+6,ctcA +alal +atat +a'a” +atat - +2+— +2+— ‘2‘— ‘2‘),

P _ _ _ _ _
KA =Zba(6(ea§: a’ +6,a"av +8,b°bA +6,b b + 5,c ch

+6,AA—bVBY ~ DA~ BBV~ bABA ),

KVA—iKVA = — w (aVBY +a'B + bYal + 1),
Kj§ —iKy' =~ m —aYE—aéﬁ+b‘fE+bﬁE),
KYA —iKVA = P, ‘/_(1 Py V2(1 -6,) (brﬂ— a5 — '+ bi‘@) ,

Ky iK' == % =00 (B8 Y + bV + T ),
ki -k == POV (g ),
ki - ik == DONNOEDD (v - - ),
K iKY = 220 (alal + ),

K iKY == T~ aVal - aal) + o, (el - Ak,

K3 —iky) :%b{ﬁ

APPENDIX B: ANGULAR OBSERVABLES WITH (PSEUDO)SCALAR OPERATORS

For real K;, we have

SP _ _/~, 2 /1 _ a’cﬁz_
Kl = 2q Mg( 1 6[ )

_aclel =5, acsch
2 2
— A

+2cA¢P + +4/1-6,—=

KSP = /29 M, (/1= il

2
3cPeh —
+ % +2cPcA -

SP /m 2 / aayg
K3 = Zq M{( 1—6g -

2
_maa‘fcs aa’cs
2 2
acsa’  acta¥
- 1me e
) 2

acgg B m&c/ﬁg . acsé N macfg

V1-6,

2 2
acSch AP 3cicP AcS
“C o5, 2GS s,
2 ) 2 )
A 3 S A S A
cler 3¢l e V-6 ==+ E5) v o)
2 2 2 2
3 AP A
czc \/1—5f—+2c o+ \/1—56020
Sch C§cf_‘
 ty ) rOE)
VP VP o VP
aa£c+ + \/1_—66@2@ +2 1—(5[/ach——a+2c+
37S QS PV PV
n m aéc +a72C7+ \/]_76((16'5’61+ _CYCECZJr
PV 3 v
+/1=5,8% _ =6, 5al + /- cal
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K" = K" =\/2¢°Mea(\/1=6,ccl + el + /1 =6,c2cS =24 cP — AcS

+\/1=6,cfch+ et =2 ch+ \/1-6,c5 A =) + O(Cs p) (B4)
K" =\2¢? M [(\/1=6,—DalcE+2\/1=6,alcS —(/1=6+1)a’cS
+(/1=8,=Dcfal +2\/1-6,cfal — (/1-6+ 1) a] (BS)
K3" =K' =0
K" —iKS, =aM; /¢ [( V1=6,=1D(BYcP)+2/1=6,bYcS)—(\/1-6,+ 1)(&@)]
acAc acAcT’ actcS  actcS actcd
Kiglp \/261 M[(\/ 5 ++ 1—6[ 3 - 3 1—6[ 5 +
_acked I _6[ac_c/j _adsch mc’*c 3cic? . \/1—76[&3
2 2 2 2 2
s P T=6,cA 3cPcA o S A SA
2T - Sm e SRR L O o TS - S5+ 0 ) (B6)
cA cAcP A" cAcS P A
Klszp—\/ng(\/ia cy a£c++ 1_6[a/c£c__a/£c_+ \/ma/cgar
acteh a/c_cé acsch cicP 3&2 cAcS
-4 /1-6 - +4/1-6 1-6
2 ) 2 2 2 2
— A 3cPcA SCA  SpA
A s 55626 % 2cPeA ¢ \/1—5[‘-26- C5yrocz,) (B7)
V., P VP VP VP
KSP =2 My( /1 -6, 285 _L0% 15 B ) 1—6[afc§r—%
a’acS  avacS 3¢S d¥cS actaV  acta’
1_ - - _ = - 1_ - = _ == 1_ ++ +7+
* Vim0 2 0 2 t Vim0 2
SV SV PV 3c5aV SV
+ 1-@‘”5”- “C;l- + \/1—7@%" : =2/ T-0ctal - /1675 L 2“ (B8)
K =K = /22 M (\/1 =6, P + el — /1 =6, S +2c*cP + S
+/1=6,cheh+ et +2¢8cA — /16,5 ch +Ech) + O(CE p) (B9)
SP / / a+a / QKE HYE / a’cS a¥cS
K16 = Zsz[( 1—6[ 4 + 1—6€ - + 1—6() 4 T
v v SV 7 v
+/1- 5,c: car, \/1—56“2 \/1—5€C L ’)+O(CSP) (B10)
Ki7 =Kijy =0 (BIT)
KS —iK3, = My /P2 \/1=6bY T +4\/1=8,b)cS —2b P +2 /1 =6,5bY +2c5bY) (B12)
Ky =K' =0 (B13)
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K5l —iK3 == M, \/*(\/1=6,ab!cS —ab!cS + \/1-6,actbY —acth”

=3/ 1=6b7cS —bYcS + \/1=6,c"bY —cPbY +4\/1-6,c5DbY)

K =Ky =0

K5y —iK3) = =2M; \/@P(\/1=8:bLcS +bYS + \/1=6,c5bY - cFbY +2

K3f —iK3y = K3 —iK3yy = /2¢2M(—c* /1= 6,0 — Al = 2Pt +¢5 \/1=6,ch = S ) + O(C5 )

K =KL =0

APPENDIX C: NUMERICAL RESULTS BASED ON
THE HOMOGENEOUS BAG MODEL

In this study, we estimate the form factors using the
homogeneous bag model (HBM), where the calculation
details are given in Ref. [38]. The bag parameters adop-
ted in this work are given as

(m, ,my) = (0.28,4.8) GeV,
0.313 GeV < E,; < 0.368 GeV, (C1)

where R =4.8 GeV™' is the bag radius, and E,is the quark
energy. Recently, a has been updated by BESIII [39, 40]
with remarkable precision. We take @ =0.732+0.014,
My, =5.6196 GeV, and the A, lifetime of 7, =1.471x
10~"2s from the particle data group [41]. The main uncer-
tainties of the HBM model are attributed to E, affecting
the form factors largely at the low ¢* region.

The total branching fractions obtained by integrating
¢ and ¢* in Eq. (53) are given as

M?
(K +2Ky)dg”.  (C2)

4m;

B[ = 8(/\;, - A€+g_) =T

(B14)
(B15)
1-6,¢ibY) (B16)

(B17)

(B18)

(CQM), Refs. [43—45], the light-cone QCD sum rules
(LCSR), Ref. [35], the relativistic quark model (RQM),
and Ref. [46], the Bethe-Salpeter equation (BSE). Our
results of B,agree with the results of the CQM and RQM
as well as current experimental data but are systematic-
ally smaller than the results obtained from LCSR. Not-
ably, we find that 8B, > B,is consistent with Refs. [35]
and [43]. Nevertheless, the tendency has not been found
in the BSE and CQM. Explicitly, we obtain that 8,/8, =
1.15 with a little uncertainty due to the correlations. Fu-
ture experiments on 8B,/8, may distinguish between the
approaches.

The integrated hadron (lepton) forward-backward
asymmetry of A%, (A%,) is related to (K;) via

1 3
Ay =(Ki)+ 5 (Ks), Ay = 5K, (C3)

while
3
Ay = J(Ke), FL=2(K)—(Ks), (C4)

are the combined forward-backward asymmetry and lon-
gitudinal polarized fraction, respectively. The average de-
cay branching fraction is defined as

Their computed values and the ones in the literature B\ T
within the SM are listed in Table C1. In the literature, o/ = K,_Kl" K (©5)
Refs. [26, 42] consider the covariant quark model
Table C1. 8, in units of 1076,
HBM CQM[26] LCSR[43] LCSR [44] BSE[46] CQM[42] LCSR[45] RQM[35] Exp[41]

B, 0.91(25) 1.0 4.6(1.6) 0.660 ~ 1.208 2.03(2%) 1.07

B, 0.79(18) 1.0 4.0(1.2) 6.1 0.812 ~ 1.445 0.70 1.05 1.08(28)

B, 0.21(2) 0.2 0.8(3) 213 0.252 ~ 0.392 0.22 0.26
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Notice that the ¢> region of [«,«']=[8,11] and
[12.5,15] in units of GeV?are contaminated largely by the
charmonium resonance and are not considered.

The computed results within the HBM are given in
Table C2, along with those from the literature and the ex-
perimental data [18, 19]. The computed values of A"
and F; have little uncertainties as K; are correlated in the
model calculations. In the literature, Ref. [47] employs
the lattice QCD, and Ref. [35] includes the contributions
from the charmonium resonances. We see that the angu-

lar observables in the literature and this study are basic-
ally consistent. Our results of (A% ;) and (A%) are slightly
larger than the others owing to the updated o). Notably,
the experimental values of A%, are nearly twice larger
than the theoretical predictions.

Integrating Eq. (54) over 33, we get the differential
decay rate as

dr

dT]z =2K,; + K>, (C6)

Table C2. Decay observables, where (98/d¢%) and «” are in units of 1077 GeV~2 and GeV?, respectively.

[k.«'] HBM RQM [35] lattice [47] LHCb [18, 19]
[0.1,2] 0.25(11) 0.34 0.25(23) 0.36(1)
[2,4] 0.16(7) 0.31 0.18(12) 0.11(}%)
[4,6] 0.20(8) 0.40 0.23(11) 0.02(})
[6,8] 0.26(9) 0.57 0.307(94) 0.25(13)
<g—; [11,12.5] 0.44(11) 0.65 0.75(21)
[15,16] 0.61(10) 0.72 0.796(75) 1.12(30)
[16,18] 0.65(8) 0.68 0.827(76) 1.22(29)
[1.1,6] 0.18(7) 0.34 0.20(12) 0.09¢%)
[15,20] 0.60(6) 0.61 0.756(70) 1.203%)
[0.1,2] 0.076(0) 0.067 0.095(15) 0.37G)
[11,12.5] -0.357(6) -0.35 0.01(39)
ALy [15,16] -0.403(8) -0.41 -0.374(14) -0.10(%)
[16,18] —0.396(9) -0.36 -0.372(13) -0.07(1%)
[18,20] -0.320(9) -0.32 -0.309(15) 0.01(1%)
[15,20] -0.369(7) -0.33 -0.350(13) —0.39(4)
[0.1,2] —0.294(2) -0.26 -0.310(18) -0.12G3%)
[11,12.5] —0.408(2) -0.30 -0.50(,"
Al [15,16] -0.384(4) -0.32 —0.3069(83) -0.19(1)
[16,18] -0.358(6) -0.31 -0.2891(90) —0.44(1%
[18,20] —0.275(6) -0.25 -0.227(10) -0.13(19)
[15,20] —0.333(4) -0.29 -0.2710(92) -0.30(5)
[0.1,2] -0.028(0) -0.021 —0.0302(51)
[2,4] —0.001(1) 0.010 ~0.0169(99)
Al [4,6] 0.047(2) 0.045 0.021(13)
[6,8] 0.084(1) 0.072 0.053(13)
[15,20] 0.179(1) 0.129 0.1398(43) 0.25(4)
[0.1,2] 0.541(4) 0.66 0.465(84) 0.56(2%)
[11,12.5] 0.615(0) 0.51 0.40G7)
Fp [15,16] 0.507(1) 0.41 0.454(20) 0.49(30)
[16,18] 0.469(0) 0.38 0.417(15) 0.68(})
[18,20] 0.416(1) 0.35 0.3706(79) 0.62(3%)

1) They used @ = 0.642 +0.013 [48], in sharp contrast to & = 0.732 +0.014 adopted in this work.
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we use the differential decay rate to normalize our an-

gular observables. The first ten K observables are access-
ible even if P, is zero, i.e., the A,baryon is unpolarized,
which is the case that most A,baryons produced at the
LHC satisfied.

The completeness relations read as

4
1= — |, A, )X I, AL, A Cc7
Y s e X Akl (CT)

Sz,
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