
 

Nonlinear corrections for the nuclear gluon distribution in eA processes
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Abstract: An analytical study with respect to the nonlinear corrections for the nuclear gluon distribution function
in the next-to-leading order approximation at small x is presented. We consider the nonlinear corrections to the nuc-
lear gluon distribution functions at low values of x and  using the parametrization and the nuclear modi-
fication  factors  obtained  from  the  Khanpour-Soleymaninia-Atashbar-Spiesberger-Guzey  model.  The  CT18  gluon
distribution is used for the baseline proton gluon density at . We discuss the behavior of the gluon
densities in the next-to-leading order and the next-to-next-to-leading order approximations at the initial scale , as
well as the modifications due to the nonlinear corrections. We find that the QCD nonlinear corrections are more sig-
nificant for the next-to-leading order accuracy than the next-to-next-to-leading order for light and heavy nuclei. The
results  of  the  nonlinear  GLR-MQ evolution  equation  are  similar  to  those  obtained  with  the  Rausch-Guzey-Klasen
gluon upward and downward evolutions within the uncertainties. The magnitude of the gluon distribution with the
nonlinear corrections increases with a decrease in x and an increase in atomic number A.
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I.  INTRODUCTION
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The dynamics of parton interactions and the partonic
structure  of  nuclei  are  prime  research  topics  for  both
particle  and  nuclear  physics.  The  formation  of  quark-
gluon  plasma  inside  nuclei  is  explored  during  the  very
first  fractions  of  in  high-energy  nuclear  collisions.
This  probe  is  based  on  a  large  momentum  (or  mass)

 scale, which  is  the  main  motivation  for  study-
ing nuclear  parton distributions.  According to  the know-
ledge  of  the  parton  distribution  functions  (PDFs)  of  free
nucleons, arising  from  the  measurements  of  deeply  in-
elastic scattering (DIS) in lepton-nucleon ( ) collisions,
the program of extracting nuclear PDFs (nPDFs) also re-
lies  on  the  DIS  data  [1−3].  The  HERA data  for  the  free
proton reach  for perturbative values of , while
the  DIS-measurements  for  nuclear  targets  are  bound  to
severely higher momentum fractions, .

In Ref. [4], the authors studied the prospects for con-
straining  the  nuclear  parton  distribution  functions  by
small-x deep  inelastic  scattering  at  the  Large  Hadron
Electron Collider  (LHeC) [5],  where its  extension of  the
kinematic  covers  four  orders  of  magnitude  in  DIS.  The
effect  of  high-precision  DIS-measurements  at  the  LHeC

σA
reduced(x,Q2)/σp

reduced(x,Q2)
in  Ref.  [4] is  illustrated  by  the  ratio  of  the  reduced,  in-
clusive  DIS  cross-sections, ,
where 

σreduced(x,Q2) = F2(x,Q2)
ï

1− y2

1+ (1− y)2

FL

F2

ò
, (1)

Q2

1 fb−1 ePb
Q2 1/x

where x, y, and  are the standard DIS variables, and A
is the number of nucleons in a nuclear target. The LHeC
promises  the  equivalent  of  of  luminosity  for 
collisions at LH(e)C energies. With its large  and 
range, nuclear  shadowing  can  be  measured  very  pre-
cisely.

x≲0.1

FA
2 (x,Q2)/A

At high energies,  nuclear shadowing is  controlled by
coherence effects. Namely, shadowing is possible only if
the  coherence  time  exceeds  the  mean  inter-nucleon spa-
cing  in  nuclei,  and  shadowing  saturates  if  the  coherence
time substantially exceeds the nuclear radius [6−8]. Nuc-
lear  shadowing  at  small x (i.e., )  is  experimentally
well studied by NMC [9]. Experiments at CERN and Fer-
milab  focus  especially  on  the  region  of  small  values  of
the Bjorken variable x and show a systematic reduction of
the nuclear structure function  with respect to
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the  free  proton  structure  function . This  phe-
nomenon is known as the nuclear shadowing effect and is
associated to the modification of  the target  parton distri-
butions  so  that ,  [10].
The  relation  of  the  bound-proton  PDFs  with  respect  to
free-proton  PDFs  is  often  expressed  in  terms  of  the
nuclear  modification  factors 

.  For  a  nucleus A with Z protons  and 
neutrons, an average PDF is obtained as 

f A
i (x,Q2) =

Z
A

f p/A
i (x,Q2)+

N
A

f n/A
i (x,Q2), (2)

f p/A
i

f n/A
i f p/A

i

where  are the PDFs of a bound proton and the neut-
ron contents  are obtained from  via isospin sym-
metry  [11−14].  As  revealed  by  DIS  experiments,  the
bound nucleon PDFs are not  the same as those of  a  free
proton but are modified in a nontrivial way and obey the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi  (DGLAP)
evolution  [15−18], which  describes  how  the  PDFs  de-
pend on the factorization scale 

Q2 ∂ fi

∂Q2
=
∑

j

Pi j⊗ f j, (3)

Pi jwith splitting functions  governing the scale evolution.
For the evolution of the PDFs due to the evolution equa-
tion  (i.e.,  Eq.  (3)),  a  non-perturbative input  at  some  ini-
tial  scale  is  required  to  obtain  a  PDF  set.  The  baseline
parton  distributions  of  a  proton  are  parametrized  in  the
following formal form: 

fi(x,Q2
0) = α0xα1−1(1− x)α2 Pi(y,α3,α4, ...), (4)

α1 α2

fi(x,Q2
0) x→0 Pi

y = f (x)
0 < x < 1

where  the  coefficients  and  control  the  asymptotic
behavior of  in the limits  and 1, and  is a
sum  of  Bernstein  polynomials  dependent  on ,
which is very flexible across the whole interval .
For  PDFs  of  nuclei,  an  additional  dependence  on  the
atomic mass A is required [12, 14, 19].  In Ref.  [20],  the
authors  discussed  the  nuclear  cross  section  in  terms  of
nuclear volume and surface contributions 

σA = AσV +A2/3σS . (5)

1/A1/3
Therefore, the cross section per nucleon is assumed to

be proportional to  as 

σA

A
= σV +

1
A1/3

σS . (6)

σV σS 1/A1/3If  and  depend weakly on A, the  depend-
ence makes sense as the leading approximation.
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k < Qs(x)
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A much harder  task has  been to  determine the gluon
distribution of nucleons bound in a nucleus, i.e., the nuc-
lear gluon distribution ( ). The kinematic exten-
sion of the electron - Ion collider (EIC) [21, 22] will  al-
low  us  to  examine  the  non-linear  dynamics  at  low x.
When  the  gluon  density  becomes  sufficiently  large  at
small x, one needs to consider the effects of gluon recom-
bination (gluon-gluon fusion) leading to nonlinear correc-
tions to the DGLAP evolution equations [23−25]. Indeed,
the  gluon-gluon  recombination  processes  cause  the
growth of the gluon density to slow down at smaller val-
ues of x and  (but still ). In the Gribov-Lev-
in-Ryskin-Mueller-Qiu (GLR-MQ) approach [23, 24], the
gluon recombination is  addressed by analyzing so-called

fan  diagrams,  where  two  gluon  ladders  merge  into  a
gluon  or  a  quark-antiquark pair.  Adding  these  contribu-
tions to the DGLAP equations yields the nonlinear GLR-
MQ  evolution  equations  [23, 24],  where  the  nonlinear
term tames the growth of the PDFs at small x and leads to
their  suppression.  One  of  the  important  outcomes  of  the
study in Ref. [26] is the existence of the saturation scale

 (  where  and are free paramet-
ers), which is a characteristic scale at which the parton re-
combination  effects  become  important.  The  solution  to
the non-linear equation has the property of the geometric
scaling in the regime where , whereas in the case
when ,  the  solution  enters  the  linear  regime,
where k is the gluon transverse momenta.

x≲10−3

Effects  of  small-x nonlinear  corrections  to  the
DGLAP evolution equations due to gluon recombination
have  been  extensively  studied  in  the  literature  [27−32].
Recently, in Ref. [33], the authors considered the nonlin-
ear  GLR-MQ  evolution  equations  for  nPDFs  using  the
"brute force"  method  in  the  momentum  space.  The  au-
thors [33] confirmed the importance of the nonlinear cor-
rections  for  small ,  whose  magnitude  increases
with  a  decrease  in x and an increase  in  the  atomic num-
ber A. This paper is organized as follows. In the next sec-
tion, the theoretical formalism is presented, including the
GLR-MQ evolution equation. In Sec. III, we present a de-
tailed analytical analysis and our main results for the nuc-
lear  gluon  density  and  predictions  of  the  non-linear ef-
fects  at  higher  order  accuracy.  In  the  last  section,  we
summarize our findings. 

II.  FORMALISM

The  nonlinear  corrections  in  the  GLR-MQ  evolution
equations  for  nPDFs  are  defined  by  the  following
forms:1) 
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1) For future discussion please see the Appendix.
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and 
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where  for the parton distributions refer to
the standard DGLAP evolution equations. Here,  is the
characteristic radius of  the gluon distribution in the had-
ronic  target.  for a  nuclear  target  with  the  mass  num-
ber A is defined by  [33]. The value of

 depends  on  how the  gluons  have  a  hotspot-like
structure  within  the  nucleon.  Here,  and  is  the
boundary  condition  under  which  the  gluon  distribution
joints smoothly onto the linear region. The second terms
in the right-hand sides of Eqs. (7) and (8) are expected to
become important and related to the recombination of the
gluons in the low-x region, when the gluon density is very
large. This is known as the phenomenon of gluon satura-
tion.

f A(x,Q2), f (x,Q2)

x≲0.1
FA

2

αs

Since the parton distributions in  bound and free  pro-
tons  are  different, ;  therefore,  the  ratio
of structure functions is observed to deviate clearly from
unity.  The nuclear modifications at  are referred to
as  shadowing.  The  nuclear  structure  function  in  the
QCD-improved  parton  model  (in  leading  order  (LO)  of

 or in the DIS-scheme in any higher order) can be writ-
ten in terms of its parton distributions as 

FA
2 (x,Q2) =

∑
i=u,d,s,...

e2
q

î
xqA

i (x,Q2)+ xqA
i (x,Q2)

ó
, (9)

eq qA(qA)where  is the quark charge, and  is the quark (an-
tiquark)  density  in  the  nucleus  A.  The  nuclear  structure
function, with assumed flavor symmetric antiquark distri-
butions, becomes a summation of valence quark and anti-
quark distributions 

FA
2 (x,Q2) =

x
9

î
4uA

v (x,Q2)+dA
v (x,Q2)+12qA(x,Q2)

ó
. (10)

Q2

The nonlinear  equations (i.e.,  Eqs.  (7)  and (8))  show
that the strong rise corresponding to the linear QCD evol-
ution equation at small-x and  can be tamed by screen-
ing effects. After the successive integrating of both sides

ln Q2of Eqs. (7) and (8) with respect to and some rearran-
ging,  we  obtain  the  nonlinear  distribution  functions  in
terms of the linear by the following forms: 
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x f A
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Integrating  the  first  terms  in  the  left  and  right  hands
of  Eqs.  (11)  and (12)  and using the  linear  and nonlinear
initial conditions (given by Eqs. (15), (19), and
(20) below), we find the nonlinear corrections (NLCs) to
the parton distribution functions by the following forms: 

xgA,NLC(x,Q2) =xgA,NLC(x,Q2
0)+ [xgA(x,Q2)− xgA(x,Q2
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(13)

and 

xqA,NLC
s (x,Q2) =xqA,NLC

s (x,Q2
0)+ [xqA

s (x,Q2)− xqA
s (x,Q2

0)]

−
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− 27α2
s(Q
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[xgA(x,Q2)]2dlnQ2.

(14)

x f A
i (x,Q2) x f A

i (x,Q2
0)

Q2 Q2
0

Q2 ≡Q2
0

fi(x,Q2
0)

wi(x,A,Z)

Here,  and  are  the  linear  parton
distribution  functions  at  scales  of  and , respect-
ively,  and  obtained  from  the  coupled  DGLAP  evolution
equations using  the  modified  nuclear  distribution  func-
tions at the initial scale1). The initial nuclear parton distri-
butions  are  provided  at  a  fixed  ( )  due  to  a  free
nucleon  distribution  function  and a  multiplicat-
ive nuclear modification factor, , given as 

Nonlinear corrections for the nuclear gluon distribution in eA processes Chin. Phys. C 48, 033107 (2024)

Q21) The linear gluon distributions at the higher order approximations are discussed using the Laplace transform at  scale in Sec.III.
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f A
i (x,Q2

0) = wi(x,A,Z) fi(x,Q2
0). (15)

The nuclear  modification  is  based  on  the  QCD  ana-
lysis  available  in  the  literature  [14, 19, 34−38], and  as-
sumes the following modification function: 

wi(x,A,Z) = 1+
Å

1− 1
Aα

ã
ai(A,Z)+Hi(x)

(1− x)βi
, (16)

Hi(x) = bi(A)x+ ci(A)x2+di(A)x3

di

di

where  is  in  the  cubic
form. An advantage of the cubic form with the additional
term  in  contrast  to  a  quadratic-type  function, i.e.,
without ,  is  that  the  weight  function  becomes  flexible
enough  to  accommodate  both  shadowing  and  anti-shad-
owing in the valence quark distributions [14].

Q2

xgNLC(x,Q2
0) xqNLC

s (x,Q2
0)

Q2
0

The nonlinear corrections enter both the gluon and the
sea-quark  distributions  at  small x through (i)  modifica-
tions  of  the  initial  distributions  and  (ii)  the  presence  of
additional nonlinear terms in the -evolution equations.
To study  the  possible  importance  of  nonlinear  correc-
tions,  we  base  our  initial  gluon  and  singlet  distribution

 and  by imposing nonlinear cor-
rections  on  linear  distribution  functions.  The  nonlinear
corrections to the gluon distribution at the initial scale 
is obtained from the results in Ref. [39] as1) 

xgA,NLC(x,Q2
0) =xgA(x,Q2

0)
¶

1+ θ(x0− x)
î
xgA(x,Q2

0)

− xgA(x0,Q2
0)
ó
/xgA

sat(x,Q2
0)
©−1

, (17)

where 

xgA
sat(x,Q2) =

16R2,AQ2

27παs(Q2)
. (18)

xgA
sat

Q2

αsxgA
sat

Q2
0 = 1.69 GeV2

Q2

The  nonlinear  terms  in  the  right-hand side  of  evolu-
tion equations (i.e., Eqs. (7) and (8)) are defined by ,
and  this  is  the  value  of  the  gluon  which  would  saturate
the unitarity  limit  in  the  leading  shadowing  approxima-
tion.  In Fig.  1,  we  show  that  the  gluon  saturation  as  a
function  of  the  mass  number A is  expected  to  occur  for
various  values  of  [40].  In Fig.  2, the  gluon  distribu-
tion, , increases as the mass number A increases at
the  initial  scale  [41]. Therefore,  the  ef-
fect  of  the  gluon  saturation  is  expected  to  be  larger  in
heavy nuclei and important for small values of .

x < x0

We rewrite Eq. (17) by using Eq. (16) to take into ac-
count the nonlinear correction to the nuclear gluon distri-
bution at the initial scale for , given as 

xgA,NLC(x,Q2
0) =xg(x,Q2

0)wg(x,A,Z)

×
¶

1+
27παs(Q2

0)
16R2,AQ2

0

î
xg(x,Q2

0)wg(x,A,Z)

− xg(x0,Q2
0)wg(x0,A,Z)

ó©−1
.

(19)

xgA,NLC→xgA RA→∞
xgA

sat→∞ xgA,NLC→xgA
sat x→0

xgA,NLC xgA

x = x0(= 10−2)

qA
s (x,Q2)

We note  that  in  Eq.  (19),  when 
and . Also, we see that  when .
Moreover,  joins  smoothly  onto  at

. The nonlinear corrections to the gluon dis-
tribution  are  reflected  in  the  sea-quark  distributions

, which, at small x, are predominantly driven by
the gluon and modify the nuclear structure function as2)
 

 

αs xgA
sat

Q2

Fig.  1.    (color online) Results  of  for  different  values
of  in  a  wide  range  of  nuclei,  including  C-12,  Ca-40,  Ag-
108, Au-197, Pb-208, and the free proton.

 

αs xgA
sat

Q2
0 = 1.69 GeV2

Fig.  2.    (color online) Results  of  in  a  wide  range  of
nuclei at .
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1) For future discussion please see Ref. [39].
x < x0

xqNLC
s (x, Q2

0) = xqs(x, Q2
0)

xqNLC(x, Q2
0)

xg(x, Q2
0)

.

2) The shadowing corrections to the gluon distribution are reflected in the seq-quark distributions which the seq-quark starting distribution in the region  in

proportion to the shadowing correction to the gluon by the following form [39] 
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xqA,NLC
s (x,Q2

0) =xqA
s (x,Q2

0)
xgA,NLC(x,Q2

0)
xgA(x,Q2

0)

=xqA
s (x,Q2

0)
¶

1+ θ(x0− x)

×
î
xgA(x,Q2

0)− xgA(x0,Q2
0)
ó
/xgA

sat(x,Q2
0)
©−1

.

(20)

wi(x,A,Z)The weight function  for the linear distribu-
tion  functions  can  be  obtained  from the  three  constrains
for the nuclear distributions as the nuclear charge Z, mass
number A, and momentum conservations1) are defined by
the following forms [14, 19, 33−38]: 

Z =
∫

A
3

î
2uA

v −dA
v

ó
(x,Q2

0)dx,

A =
∫

A
3

î
uA

v +dA
v

ó
(x,Q2

0)dx,

A =
∫

Ax
î
uA

v +dA
v +2{uA+d

A
+ sA}+gA

ó
(x,Q2

0)dx. (21)

Q2
0 = 1.69 GeV2

For  a  detailed  investigation  of  these  functions,  we
constrain our results to the functions defined in Ref. [35].
The  gluon  distribution  at  low x is  dominant.  Therefore,
we used the standard gluon distribution at the input scale

 obtained  from  the  CT18  set  of  the  free
proton PDFs [43], i.e., 

xg(x,Q2
0) =a0xa1 (1− x)a2

î
sinh(a3)(1−

√
x)3

+3sinh(a4)
√

x(1−
√

x)2

+ (3+2a1)x(1−
√

x)+ x3/2
ó
, (22)

a0−4

wg(x,A,Z)
where  the  coefficients  are  listed  in  Ref.  [43].  The
weight function  for the gluon distribution func-
tion is defined by the following form [35]: 

wg(x,A,Z) =1+
Ä

1− 1
A1/3

ä
(1− x)−βg

î
ag(A)+ xbg(A)

+ x
Ä

1− 1
Aϵbg

ä
+ x2cg(A)

+ x2
Ä

1− 1
Aϵcg

ä
+ x3dg(A)

ó
, (23)

αs(Mz) = 0.118

Q2
0 = 1.69 GeV2

Q2
0 = 2 GeV2

where the coefficients at the next-to-leading order (NLO)
and the next-to-next-to-leading order (NNLO) approxim-
ations  are  listed  in  Ref.  [35].  The  strong  coupling  is  set
equal to  for both the NLO and NNLO ap-
proximations.  In Figs.  3 and 4,  we  show representations
of  the  nonlinear  corrections  to  the  gluon  modification
functions at the initial scale  for two selec-
ted nuclei, C-12 and Pb-208, at the NLO and NNLO ap-
proximations, respectively.  The  nuclear  gluon  distribu-
tion  functions  are  analyzed  using  the  CT18  proton  PDF
set as a baseline in these figures (i.e., Figs. 3 and 4) [43].
The nuclear modification factors are extracted from QCD
fits  to  the  nuclear  and  neutrino(antineutrino)  DIS  and
Drell-Yan  data2).  The  resulting  nonlinear  corrections  to
the gluon distribution function are presented in Fig. 5 for
carbon (left)  and iron (right)  at  in  the NLO
approximation. To achieve this, we used the gluon distri-
bution for a free proton defined in Ref. [44] as 

xg(x,Q2
0) = Agxαg (1− x)βg (1+γgxδg +ηgx), (24)

 

xgA,NLC(x,Q2
0) xgA(x,Q2

0)

Q2
0 = 1.69 GeV2

Delta = xgA,NLC(x,Q2
0)− xgA(x,Q2

0)

Fig.  3.    (color  online)  Nonlinear  gluon  distribution  function  ( )  compared  with  the  linear  ( )  for  C-12  at
 in the NLO and NNLO approximations. The delta values are differences between the nonlinear and linear distribution

functions ( ) at the initial scale.

Nonlinear corrections for the nuclear gluon distribution in eA processes Chin. Phys. C 48, 033107 (2024)

1) The nonlinear terms will lead to a very small violation of the momentum sum rules, which can be recovered by a simple rescaling of the gluon distribution [39].
Recently, nonlinear corrections have been considered in Ref. [42] for the nucleons and nuclei.

2) For future discussions see Ref. [35].
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where the coefficients at the NLO approximation are lis-
ted  in  Refs.  [19, 44].  The weight  function  for  the  nuclei
of carbon and iron has the same form in Eq. (16), and the
coefficients  are  presented  in  Ref.  [19] in  which  the  ef-
fects  of  shadowing,  anti-shadowing,  fermi  motion,  and
the EMC regions are included.

Q2
0 = 2 GeV2

In Fig. 6, we compare the nonlinear and linear gluon
distributions in lead at the NNLO approximation to those
of JR09 [45] at . The nuclear gluon distribu-
tion  is  obtained  from  JR09  parametrization  at  the  input
scale by the following form of the free proton PDFs:
 

xg(x,Q2
0) = 3.0076x0.0637(1− x)5.54473, (25)

where  the  parameters  in  the  weight  function  are  in  Ref.
[34].  To  quantify  the  magnitude  of  NNLO  corrections,
we present the nonlinear corrections of nuclear gluon dis-
tributions  obtained  at  the  input  scale  of  the  CT18  and
JR09  parametrizations  in Figs.  3, 4,  and 6 for  light  and
heavy  nuclei.  The  Delta  functions  in  these  figures  show
that  the  nonlinear  and  linear  gluon  distributions  have  a
similar  behavior  at  the  input  scale  in  a  wide  range  of x.
Therefore, Eq. (13) changes to an approximate relation at
the NNLO accuracy as

xgA,NLC(x,Q2)
∣∣

NNLO ≃ xgA(x,Q2)−
∫ Q2

Q2
0

81
16

α2
s(Q

2)
R2,AQ2

dlnQ2
∫ 1

χ

dz
z

ï
x
z

gA
Å

x
z
,Q2
ãò2

=wg(x,A,Z)xg(x,Q2)−
∫ Q2

Q2
0

81
16

α2
s(Q

2)
R2,AQ2

dlnQ2
∫ 1

χ

dz
z

w2
g

Å
x
z
,A,Z
ãï

x
z

g
Å

x
z
,Q2
ãò2

. (26)

 

Fig. 4.    (color online) Same as Fig. 3 but for lead.

 

xgA,NLC(x,Q2
0) xgA(x,Q2

0)

Q2
0 = 2 GeV2

Delta = xgA,NLC(x,Q2
0)− xgA(x,Q2

0)

Fig. 5.    (color online) Nonlinear gluon distribution function ( ) compared with the linear ( ) for carbon (left) and
iron (right)  at  in the NLO approximation.  The delta values are differences between the nonlinear and linear distribution
functions ( ) at the initial scale.
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xgA,NLC(x,Q2
0),xgA(x,Q2

0)In Figs. 3−5, we observe that  at the NLO accuracy. Therefore, the evolution of the nuclear
gluon distribution functions with the nonlinear corrections are defined by the following form:
 

xgA,NLC(x,Q2)|NLO = xg(x,Q2
0)wg(x,A,Z)

ï¶
1+

27παs(Q2
0)

16R2,AQ2
0

î
xg(x,Q2

0)wg(x,A,Z)− xg(x0,Q2
0)wg(x0,A,Z)

ó©−1
−1
ò

+wg(x,A,Z)xg(x,Q2)−
∫ Q2

Q2
0

81
16

α2
s(Q

2)
R2,AQ2

dlnQ2
∫ 1

χ

dz
z

w2
g(

x
z
,A,Z)

ï
x
z

g
Å

x
z
,Q2
ãò2

. (27)

Q2

For  the  evolution  of  the  nonlinear  corrections  of  the
nuclear gluon distributions, we need to a gluon analytical
distribution  function  for  a  free  proton  at  the  scale  in
the NLO and NNLO approximations.  Usually,  the gluon
analytical  distribution  function  at  the  LO  approximation
is  defined  in  previous  studies.  To  do  it,  we  extend  the
analytical solution used in the DGLAP evolution to con-
sider the nonlinear corrections in Eqs. (27) and (26) at the
NLO  and  NNLO  approximations,  respectively.  In  the
next section, we solve the DGLAP evolution equation us-
ing Laplace transform techniques.
 

III.  HIGHER ORDER CORRECTIONS TO THE

GLUON DISTRIBUTION

Q2According to the DGLAP -evolution equations, the
singlet distribution  function  leads  to  the  following  in-
tegro-differential equation:
 

∂F2(x,Q2)
∂lnQ2

= Pqq(x)⊗F2(x,Q2)+ < e2 > Pqg(x)⊗xg(x,Q2)

(28)

Pqq Pqg

αs

< e2 > e2

< e2 >= n−1
f
∑n f

i=1 e2
i

⊗
υ≡ ln(1/x)

w≡ ln(1/z)

where  and  are  the  quark-quark  and  quark-gluon
splitting  functions  calculated  to  the  desired  order  in 
[46−48]. Here,  is the average of the charge  for
the active quark flavors. Also, , and the
symbol  denotes convolution according to the usual pre-
scription.  Considering  the  variable  definitions 
and ,  one  can  rewrite  Eq.  (28)  in  terms  of  the
convolution integrals and new variables as 

∂“F2(υ,Q2)
∂lnQ2

=

∫ υ

0
[“F2(υ,Q2)“H (φ)

2,s (αs(Q2),υ−w)

+ < e2 > Ĝ(υ,Q2)“H (φ)
2,g (αs(Q2),υ−w)]dw,

(29)

where 

∂“F2(υ,Q2)
∂lnQ2

≡ ∂F2(e−υ,Q2)
∂lnQ2

,

Ĝ(υ,Q2) ≡G(e−υ,Q2),“H (φ)(αs(Q2),υ) ≡ e−υP̂(φ)
a,b(αs(Q2),υ), (30)“H(αs(Q2),υ)The  Laplace  transform of ,  are  given  by

the following forms: 

Φ
(φ)
f (αs(Q2), s) ≡ L[“H (φ)

2,s (αs(Q2),υ); s]

=

∫ ∞

0

“H (φ)
2,s (αs(Q2),υ)e−sυdυ,

Θ
(φ)
f (αs(Q2), s) ≡ L[“H (φ)

2,g (αs(Q2),υ); s]

=

∫ ∞

0

“H (φ)
2,g (as(Q2),υ)e−sυdυ. (31)

Consequently, we can rewrite Eq. (29) in the Laplace
space s by  using  the  convolution  theorem  for  Laplace
transforms  and  considering  the  fact  that  the  Laplace
transform of the convolution factors is  simply the ordin-

 

xgA,NLC(x,Q2
0) xgA(x,Q2

0)

Q2
0 = 2 GeV2

Delta = xgA,NLC(x,Q2
0)− xgA(x,Q2

0)

Fig.  6.    (color  online)  Nonlinear  gluon distribution function
( )  compared with  the  linear  ( )  for  lead
at  in the NNLO approximation. The delta values
are  differences  between  the  nonlinear  and  linear  distribution
functions ( ) at the initial scale.
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ary product of the Laplace transform of the factors, i.e., 

∂ f2(s,Q2)
∂lnQ2

=Φ
(φ)
f (αs(Q2), s) f2(s,Q2)

+ < e2 > Θ(φ)
f (αs(Q2), s)g(s,Q2), (32)

where 

L[“F2(υ,Q2); s] = f2(s,Q2), (33)

and 

η(φ)
f (αs(Q2), s) =

φ∑
ϕ=0

αϕ+1
s (Q2)η(ϕ)

f (s), for η = (Φ,Θ),

(34)

The  coefficient  functions  Φ  and  Θ  in  the  Laplace
space s at the LO approximation are given by 

Θ
(0)
f (s) = 2n f

Å
1

1+ s
− 2

2+ s
+

2
3+ s

ã
, (35)

 

Φ
(0)
f (s) = 4− 8

3

Å
1

1+ s
+

1
2+ s

+2(ψ(s+1)+γE)
ã
,

(36)

ψ(x) γE = 0.5772156...where  is the digamma function and 
is the Euler constant.

The explicit expressions for the NLO and NNLO ker-
nels  in s space are  rather  cumbersome;  therefore,  we re-
call  that  we are  interested  in  investigating  the  kernels  in
small x [49−51].  In  the  Laplace  space,  we  consider  the
kernels  at  small s,  with  the  two  and  three-loop  kernels
given as 

Θ
(1)
f ,s→0(s) ≃CAT f

ï
40
9s

ò
,

Φ
(1)
f ,s→0(s) ≃CFT f

ï
40
9s

ò
, (37)

and 

Θ
(2)
f ,s→0(s)≃n f

ï
−1268.300

s
+

896
3s2

ò
+n2

f

ï
1112
243s

ò
,

Φ
(2)
f ,s→0(s)≃n f

ï
−506

s
+

3584
27s2

ò
+n2

f

ï
256
81s

ò
, (38)

CA = Nc = 3 CF =
N2

c −1
2Nc

=
4
3

T f =
1
2

n f SU(3)

with  the  color  factors , ,  and

,  associated  with  the  color  group ,  where

n f  represents the number of flavors.
Strong  coupling  satisfies  the  renormalization  group

equation, which, up to the NNLO, reads 

d
dln Q2

Å
αs

4π

ã
= −β0

Å
αs

4π

ã2

−β1

Å
αs

4π

ã3

−β2

Å
αs

4π

ã4

− ...

β0 β1 β2

MS

where , , and  are the one, two, and three loop cor-
rections to the QCD β-function. The standard representa-
tion  for  QCD couplings  in  the  NLO and  NNLO (within
the -scheme) approximations have the forms 

αs(t) =
4π
β0t

î
1− β1

β2
0

ln t
t

ó
(NLO),

αs(t) =
4π
β0t

ï
1− β1

β2
0

ln t
t
+

1
β3

0t2

×
ß
β2

1

β0
(ln2 t− ln t−1)+β2

™ò
(NNLO), (39)

t = ln
Q2

Λ2where ,  and  Λ  is  the  QCD  cut-off  parameter
[52].

Consequently, the discretized form of Eq. (32) for the
gluon distribution reads 

g(s,Q2) = h(φ)(αs(Q2), s)
∂ f2(s,Q2)
∂lnQ2

− k(φ)(αs(Q2), s) f2(s,Q2),

(40)

k(φ)(αs(Q2), s) h(φ)(αs(Q2), s)where  the  kernels  and  con-
tain  contributions  of  the s-space  splitting  and coefficient
functions up to the NNLO approximation.  These kernels
can  be  evaluated  from s-space  results  in  the  following
forms: 

h(φ)(αs(Q2), s) =
1

< e2 >
∑φ

ϕ=0α
ϕ+1
s (Q2)Θ(ϕ)

f (s)
,

k(φ)(αs(Q2), s) =
∑φ

ϕ=0α
ϕ+1
s (Q2)Φ(ϕ)

f (s)

< e2 >
∑φ

ϕ=0α
ϕ+1
s (Q2)Θ(ϕ)

f (s)
. (41)

k(as(Q2), s) h(as(Q2), s)
The  inverse  Laplace  transform  of  coefficients

 and  in  the  above  equations  are
defined respectively as kernels 

η̂(as(Q2),υ)≡L−1[k(αs(Q2), s);υ]

and 

Ĵ(as(Q2),υ)≡L−1[h(αs(Q2), s);υ].

The kernels are dependent on υ and the running coup-
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1/s

ling at  the  higher  order  approximations.  In  order  to  ob-
tain  an  analytical  form  for  these  kernels  at  higher  order
approximations,  we  consider  the  terms  on  the  order  of

,  as  these  terms  are  dominant  at  higher  orders  [53].
Therefore, we have 

ĝ(υ,Q2)≡L−1[g(s,Q2);υ]

=

∫ υ

0

ï
∂F̂2(w,Q2)
∂lnQ2

Ĵ(φ)(αs(Q2),υ−w)

− F̂2(w,Q2)η̂(φ)(αs(Q2),υ−w)
ò
dw.

Consequently,  the  general  analytical  expressions  for
the gluon distribution function in x-space at the higher or-
der approximations are given by 

xg(φ)(x,Q2) =
∫ 1

x

dy
y

ï
∂F2(y,Q2)
∂lnQ2

J(φ)(
x
y
,Q2)

−F2(y,Q2)η(φ)
Å

x
y
,Q2
ãò

. (42)

ln Q2

Q2

Having an analytical proton structure function and its
derivative with respect to , one can extract the gluon
distribution function at any desired x and  values.

F2

Q2 x < 0.01
0.15 < Q2 < 3000 GeV2

Using  a  parametrization  suggested  by  the  authors  in
Ref. [54] on the proton structure functions in full accord-
ance with the Froissart  predictions [55]. The explicit  ex-
pression for the parametrization, obtained from a com-
bined fit  of  the  H1 and ZEUS collaboration data  [56]  in
the  range of  the  kinematical  variables x and (
and ), is given by 

F2(x,Q2) = D(Q2)(1− x)n
2∑

m=0

Am(Q2)Lm, (43)

and
 

∂F2(x,Q2)
∂lnQ2

= F2(x,Q2)

ñ
∂lnD(Q2)
∂lnQ2

+
∂ln

∑2
m=0 Am(Q2)Lm

∂lnQ2

ô
,

where
 

A0(Q2) =a00+a01ln
Å

1+
Q2

µ2

ã
,

A1(Q2) =a10+a11ln
Å

1+
Q2

µ2

ã
+a12ln2

Å
1+

Q2

µ2

ã
,

A2(Q2) =a20+a21ln
Å

1+
Q2

µ2

ã
+a22ln2

Å
1+

Q2

µ2

ã
,

D(Q2) =
Q2(Q2+λM2)

(Q2+M2)2
, Lm = lnm

Å
1
x

Q2

Q2+µ2

ã
. (44)

µ2Here, M and  are  the  effective  mass  and  scale
factor,  respectively. The effective parameters in Eq. (44)
are defined in Refs. [54] and [57].
 

IV.  RESULTS FOR NONLINEAR NUCLEAR

GLUON DISTRIBUTION FUNCTION

Using the analytical approach outlined above (i.e., Eq.
(42))  in  the  NLO  and  NNLO  approximations,  we  solve
the nonlinear gluon distributions for nuclei at low x as

xgA,NLC(x,Q2)|NLO = xg(x,Q2
0)wg(x,A,Z)

ï¶
1+

27παs(Q2
0)

16R2,AQ2
0

î
xg(x,Q2

0)wg(x,A,Z)− xg(x0,Q2
0)wg(x0,A,Z)

ó©−1
−1
ò

+wg(x,A,Z)xg(1)(x,Q2)−
∫ Q2

Q2
0

81
16

α2
s(Q

2)
R2,AQ2

dlnQ2
∫ 1

χ

dz
z

w2
g

Å
x
z
,A,Z
ãï

x
z

g(1)
Å

x
z
,Q2
ãò2

, (45)

and
 

xgA,NLC(x,Q2)|NNLO ≃ wg(x,A,Z)xg(2)(x,Q2)−
∫ Q2

Q2
0

81
16

α2
s(Q

2)
R2,AQ2

dlnQ2
∫ 1

χ

dz
z

w2
g

Å
x
z
,A,Z
ãï

x
z

g(2)
Å

x
z
,Q2
ãò2

. (46)

x−Q2

Now, we present our numerical results of the nonlin-
ear  gluon  distribution  for  light  and  heavy  nuclei  in  the

 kinematic regions,  where  the  nonlinear  correc-
tions are  important.  The  computed  results  of  the  nonlin-
ear gluon distribution function for Au-197 compare with
the suggested method by Rausch, Guzey, and Klasen (the
RGK  model)  [33].  This  was  based  on  the  brute  force

QCDNUM16
method, where the authors in Ref.  [33] extended the nu-
merical algorithm used in the  DGLAP evol-
ution  code  [58]  to  consider  the  nonlinear  corrections,  as
the nCTEQ15 nPDFs [59] are used as baseline PDFs.

Q2 = 4, 16 100 GeV2

In Fig.  7,  we  show  representations  of  the  nonlinear
gluon  distribution  functions  for  Au-197  at  scales

, and  as a function of the momentum
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033107-9



Q2

Q2
0 = 4 GeV2

Q2 = 16 100 GeV2

Q2
0 = 100 GeV2

Q2 = 16 4 GeV2

x = 0.01

fraction x to  show  the  effects  of  the  evolution.  The
nuclear weight functions for the gluon are extracted from
the suggested  method  by  Khanpour,  Soleymaninia,  Ata-
shbar  Tehrani,  Spiesberger,  and  Guzey  (the  KSASG20
model)  [35],  where  the  CT18  nPDFs  [43]  are  used  as
baseline  PDFs.  These  results  are  compared  to  the  RGK
model [33], where the nCTEQ15 nPDFs [59] are used as
baseline PDFs in the nonlinear GLR-MQ evolution equa-
tion. In the RGK model, the dashed-dot curves show the
results  of  the  upward  evolution  from  to

 and  (green curves). They also show the
results of the downward evolution from  to

 and  (purple curves) [33]. The uncertain-
ties, due  to  the  statistical  errors  of  the  coefficient  func-
tions of the parametrization of the proton structure func-
tion [54] and the nuclear modification functions [35], are
shown in Fig. 7. For the NLO analysis, the nonlinear nuc-
lear distribution function for the gluon shows an increase
as x decreases, which is similar to what one can observe
in the analyses by RGK [33]. However, the magnitude of
these  results  slightly  differs  at  different  scales,  but  they
are within the uncertainty error bands. As can be seen in
the figure, the nonlinear gluon densities come with relat-
ively  large  error  bands  at  the  critical  point  between  the
linear and nonlinear (i.e., ), reflecting the fact that
there are  large  errors  due to  the  coefficients  in  the  para-
metrization of the proton structure function.

Q2 = 4 100 GeV2

In Fig.  8,  the  nonlinear  gluon  distributions  for  C-12
and Pb-208 at  the  NLO approximation are  considered at

 and  as a function of x and accompanied
by  their  uncertainties.  To  quantify  the  magnitude  of  the
nonlinear  corrections,  we present  ratios  of  nuclear  gluon
distributions  obtained  in  the  nonlinear  corrections  over

Q2 = 4 100 GeV2

Q2

x = 0.01

those of the linear. Figure 9 quantifies the size of the non-
linear  corrections  as  a  function  of  the  mass  numbers  A
and x for C-12 and Au-197 at  and . The
difference  between  the  nonlinear  and  linear  evolved
gluon densities grows steadily with a decrease of x.  This
is  largest  at  the  smallest  values  of x and  and disap-
pears  for .  The  saturation  gluon  increases  as  the
atomic  number  increases.  Therefore,  the  nonlinear/linear
ratio  decreases  as  the  atomic  number  increases.  As  one
can  see,  the  nonlinear/linear  ratio  is  slightly  larger  for
light nuclei  than  for  heavy  nuclei.  As  expected,  this  ef-
fect is mainly due to the large gluon saturation values of
heavy nuclei.

Q2 = 10
100 GeV2

In Figs.  10 and 11,  the  nonlinear  corrections  to  the
gluon distribution function at the NLO approximation for
the C-12 and Pb-208 nuclei are presented at  and

 as  a  function  of  the  momentum fraction x, re-
spectively.  In these figures,  our numerical  results,  which
are  accompanied by statistical  errors,  are  compared with

 

xgA,NLC(x,Q2) Q2 = 4, 16

100 GeV2

Fig. 7.    (color online) Nonlinear gluon distribution functions
( )  and  their  uncertainties  at ,  and

 for Au-197 compared with the results of the nonlin-
ear  GLR-MQ  gluon  distribution  function  (the  RGK  model)
[33].  The  dashed-dot lines  (green  and  purple  curves)  are  up-
ward and downward evolutions [33].

 

xgA,NLC(x,Q2) Q2 = 4 100 GeV2
Fig. 8.    (color online) Nonlinear gluon distribution functions
( ) and their uncertainties at  and 
for C-12(left) and Pb-208(right) as a function of x.

 

Q2 = 4 100 GeV2
Fig. 9.    (color online) Ratio of nonlinear/linear gluon distri-
butions  for  C-12  and  Au-197  at  and  as  a
function of x with their uncertainties.
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RA = 2A1/3 GeV−1

the linear results based on the KSASG20 (NLO) paramet-
rization [35]. The KSASG20 parametrization is a new set
of nuclear parton distribution functions (nuclear PDFs) at
the  NLO  and  NNLO  approximations  in  perturbative
QCD, which include the new CT18 PDFs on proton PD-
Fs. These  figures  show  the  effects  of  nonlinear  correc-
tions  are  noticeable  at  small x values,  and  the  strong
growth of the gluon distributions is tamed by shadowing
effects  as x decreases. The solid curves represent  the ef-
fect  of  shadowing  correction  for ob-
tained  using  Eq.  (45).  As  can  be  observed,  the  nuclear
gluon  distributions  increase  as x decreases, correspond-
ing  to  the  perturbative  QCD  fits  at  small x. However,
these  behaviors  are  tamed  with  respect  to  the  nonlinear
terms  in  the  GLR-MQ  equation.  These  tamed  behaviors
of nuclear  gluon distributions  due to  the  shadowing cor-

Q2

rections  satisfy  the  Froissart  bound  in  the  perturbative
QCD mean. Hence, as one can see from Figs. 10 and 11,
the deviations from the linear nuclear gluon distributions
based  on  the  KSASG20 (NLO)  parametrization  increase
as x decreases. The deviations from the KSASG20 (NLO)
nPDFs  increase  as increases,  and  they  decrease  as
atomic number A increases (indeed, the nonlinear nuclear
gluon  distributions  increase  as  atomic  number A in-
creases).  Significant effects are found for heavier nuclei,
such  as  lead.  These  behaviors  for  the  nonlinear  nuclear
gluon distributions are similar to those from the analysis
of RGK [33]. 

V.  SUMMARY

Q2
0

Q2

We  conducted  an  analytical  study  on  the  effects  of
adding the nonlinear corrections to the gluon distribution
function  for  light  and  heavy  nuclei  at  small x.  We  used
the  parametrization  of  the  proton  structure  function  to
consider  an  analytical  solution  for  the  gluon  density  at
low x in the NLO approximation.  The nuclear  modifica-
tion  factors  are  obtained from KSASG20 nuclear  PDFS,
which are based on the CT18 framework. The shadowing
effects of the gluon distribution at small x through modi-
fications of  the starting distributions and the presence of
additional  nonlinear  terms  in  the  initial  point  at  the
NLO and NNLO approximations for light and heavy nuc-
lei were  considered.  We  obtained  the  nonlinear  correc-
tions for small x in a wide range of  values. These res-
ults show that the magnitude of the nonlinear corrections
increases  with  a  decrease  in x and  an  increase  in  the
atomic  number A. Our  results  are  consistent,  within  un-
certainties, with the determination of nuclear gluon distri-
bution  using  the  upward  and  downward  evolution  from
the RGK model, with nCTEQ15 nPDFs as the input. Our
determination of  nuclear  gluon  distributions  includes  er-
ror estimates  obtained  with  respect  to  the  coefficient  er-
rors in  the  parametrization  of  the  proton  structure  func-
tion  and  the  nuclear  modification  function  errors.  We
found  differences  between  our  results  and  those  of  the
RGK model in terms of the NLO accuracy;  these differ-
ences occur based on the difference in assumptions, such
as the  input  parametrizations  and  the  approximate  rela-
tion between the gluon distribution and the proton struc-
ture function due to the Laplace transform method at low
x. These results for the nonlinear corrections to the nucle-
ar gluon  distribution  function  may  be  important  for  fu-
ture  experiments  at  the  Electron-Ion  Collider  [21, 22],
LHeC Collaboration, Future Circular Collider (FCC) [5],
and Electron-Ion Collider in China (EiCC) [60] at low x. 
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Fig.  10.    (color online)  Nonlinear  gluon  distribution  func-
tions  ( )  and  their  uncertainties  at  and

 for  C-12 compared with the linear  results  based on
the KSASG20 (NLO) model (dashed-dot curves) [35].

 

Fig. 11.    (color online) Same as Fig. 10 but for Pb-208.
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lowing access  to  data  related  to  the  nonlinear  correc-
tions for the gluon distribution function for Au-197. 

APPENDIX

g(x,Q2)
∼ 1/Q

∼ xg(x,Q2)/Q2

W≲αs

W∼αs(Q2)
πR2Q2

xg(x,Q2) πR2

R

Previous studies of the GLR-MQ terms in the context
of  extracting  the  parton  distribution  functions  can  be
found in Ref. [39]. The nonlinear evolution equations rel-
evant at high gluon densities have been studied at small x,
where we expect annihilation or recombination of gluons
to occur. A measurement of  in this region probes
a  gluon  of  transverse  size . Therefore,  the  trans-
verse area of the thin disc they occupy is .
The  shadowing  effects,  at  sufficiently  small x where

,  can  be  calculated  in  perturbative  QCD.  Here,

, where  is the transverse area and
 is the proton radius. The QCD evolution equation mod-

ified for  the  gluon  distribution  is  defined  by  the  follow-
ing form: 

∂xg(x,Q2)
∂lnQ2

=Pgg⊗xg+Pgq⊗xqs

− 81
16

α2
s(Q

2)
R2Q2

θ(x0− x)
∫ x0

x

dx′

x′
[x′g(x′,Q2)]2,

(A1)

x≥x0

x0=10−2

x′ =
x
z

where the θ function reflects the ordering in longitudinal
momenta,  and  as  for ,  the  shadowing  correction  is
negligible  ( ).  The  shadowing  term  has  a  minus
sign  because  the  scattering  amplitude  corresponding  to
the  gluon  ladder  is  predominantly  imaginary.  Equation
(47) can be rewritten with a variable change ( ) as
 

∂xg(x,Q2)
∂lnQ2

=
∂xg(x,Q2)
∂lnQ2

|DGLAP

− 81
16

α2
s(Q

2)
R2Q2

θ(x0− x)
∫ 1

χ

dz
z

ï
x
z

g
Å

x
z
,Q2
ãò2

.

(A2)
There are also shadowing corrections to the evolution

equation for the sea-quark distributions, given as
 

∂xqs(x,Q2)
∂lnQ2

=Pqg⊗xg+Pqq⊗xqs

− 27α2
s(Q

2)
160R2Q2

[xg(x,Q2)]2+GHT, (A3)

GHTwhere the higher dimensional gluon term  here is as-
sumed to be zero.

The  standard  DGLAP  evolution  equation  for  singlet
and gluon distributions has the following forms:
 

∂xg(x,Q2)
∂ln Q2

|DGLAP =Pgq⊗xqs+Pgg⊗xg

=
αs(Q2)

2π

∫ 1

x

dz
z2

x
ï

Pgq

Å
x
z

ã
xqs(z,Q2)

+Pgg

Å
x
z

ã
xg(z,Q2)

ò
,

(A4)

 

∂xqs(x,Q2)
∂ln Q2

|DGLAP =Pqq⊗xqs+Pqg⊗xg

=
αs(Q2)

2π

∫ 1

x

dz
z2

x
ï

Pqq

Å
x
z

ã
xqs(z,Q2)

+Pqg

Å
x
z

ã
xg(z,Q2)

ò
,

(A5)

P,
i j

αs

where s are the splitting functions in the desired order
in .
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