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Abstract: A new method based on the maximum entropy principle for reconstructing the parton distribution func-

tion (PDF) from moments is proposed. Unlike traditional methods, the new method does not require any artificial as-

sumptions. For the case of moments with errors, we introduce Gaussian functions to soften the constraints of mo-

ments. Through a series of tests, the effectiveness and reconstruction efficiency of this new method are evaluated

comprehensively, demonstrating that this method is reasonable and can achieve high-quality reconstruction with at

least the first six moments as input. Finally, we select a set of lattice quantum chromodynamics (QCD) results re-

garding moments as input and provide reasonable reconstruction results for the pion.
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I. INTRODUCTION

At high energy, the scattering process with a hadron
actually involves the internal constituents, namely the
quarks and the gluons, which are commonly called the
partons. Thus, to obtain the cross-sections of these scat-
tering processes, information from partons should be ac-
quired. Generally, partons are described using the parton
distribution function (PDF), which defines the probabil-
ity that the parton carries a certain momentum fraction of
the hadron momentum. Therefore, the determination of
the PDFs of hadrons has remained an important project in
hadron physics.

The PDF is difficult to predict in theory as it involves
non-perturbative quantum chromodynamics (QCD). Tra-
ditionally, only the first few moments of a PDF are calcu-
lated and then methods are adopted to reconstruct the
PDF [1-7]. Although the new methods that can directly
obtain the PDF have been proposed in recent years
[8—12], many problems continue to occur, such as excess-
ive error and limited computable regions. The reconstruc-
tion of the PDF with the finite moments is a problem that

needs to be frequently addressed. Accordingly, various
methods have been developed. However, these methods
require assumption of the functional form of the PDF in
advance and then use moments to determine the paramet-
ers, ultimately completing the reconstruction. The presup-
position of the PDF form inevitably includes some
artificial choices, providing insufficient reconstruction
results.

In this study, we propose a new reconstruction meth-
od for the symmetric PDF of the pion to avoid the impact
of artificial choice. This method obtains the PDF by
maximizing entropy under moment constraints, without
the need to introduce any artificial presets regarding the
PDF. This paper is organized as follows: Section II
provides details on the new reconstruction method, in-
cluding the cases of precise moments and moments with
errors. Section III presents the series of calculation res-
ults, including validity test, reconstruction efficiency as-
sessment based on artificial inputs, and the results corres-
ponding to real inputs. Finally, a summary is presented in
Sec. IV.
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II. MODEL AND METHOD

A. Algorithm design

The maximum entropy method is utilized to determ-
ine the distribution function f(x), which is a mature idea
that has been practiced multiple times [13—15]. The Shan-
non entropy of the distribution function f(x) is defined as
follows:

1
5= [ stog seoas ()
0

If the system has no constraints, it will produce a con-
stant distribution function, which is the principle of equal
a priori probabilities. However, the distribution of par-
tons requires several constraints to be considered. These
constraints for the pion at the hadron scale can be math-
ematically expressed as follows:

1
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We define a Lagrange function L to describe the sys-
tem, so that entropy and all the constraints can be com-
bined, as follows:

L=S+Y AA;, Q)
i=0
where A; are unknown coefficients, and

1
A = / X f(x)dx — " (6)
0

prior

where y; ~ are the prior informations or constraints giv-
en by the first principle theory.

Considering the challenges of obtaining an analytical
solution for the distribution function, it is often benefi-
cial to employ an approximate distribution function with
undetermined coefficients. The larger the number of coef-
ficients included, the higher the flexibility of the distribu-
tion function. Additionally, regarding the system's sym-
metry, we selected a suitable basis set, given by

f@) =" asin(2k - Drx. (7

k=1

If the system function has reached its maximum point,
the derivation of the Lagrange function should be equal to
Zero:

L oL
a0 67,- =0. (8)
This reconstruction has thus been converted so that
only the derivation equations need to be solved.
However, determining the analytical solutions to these
complex equations is challenging. To resolve this, we ad-
opted the self-consistent field (SCF) method, originally
introduced by Hartree for solving multiple-electron sys-
tems [16]. This method is valuable for seeking the steady
status of a complex system with constraints and one sys-
tem function. Starting with initial values, the SCF pro-
cess iteratively finds nearby steady solutions. The SCF
process can be described using the recurrence equation:
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In this equation, H represents the bordered Hessian
matrix of Shannon entropy S. Specifically, it can be rep-
resented as
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In this equation, ¢ represents the step size. A larger &
leads to a faster convergence process but may comprom-
ise program stability when the initial values are inad-
equate. For all calculations in this paper, the default value
of £=1 is used. Moreover, we set the iterative tolerance
to 1075, which provides sufficient accuracy for our calcu-
lations.

After obtaining the coefficients, a reasonableness test
is necessary to ensure that the result represents the local
maximum point of entropy. For this purpose, the
bordered Hessian matrix must satisfy a sufficient condi-
tion: the leading principal minors starting from 2m+ 1
must alternate in sign, with the smallest one having the
sign of (—1)™*!,

In conclusion, this SCF method contains five steps:

e Guess the initial values of the coefficient array;

e Obtain the Hessian matrix (integration is calculated
by the grid point method);

e Calculate the inverse of the Hessian matrix and up-
date the coefficient array;

e Determine whether the variation of the Lagrange
function is less than the preset tolerance 107. If not, go
back to the second step;

e Reasonableness test. If the test fails, repeat the pro-
cess with the new initial value.

B. Reconstruction from constraints with errors

The calculated results of the moment of the PDF ob-
tained by QCD are always accompanied by errors, repres-
ented as y; +0;. Consequently, using the simple Lag-
range functions to address these constraints is insuffi-
cient, as they impose excessively strict conditions. There-
fore, it is necessary to relax the moment constraints. One
approach to achieving this is by replacing the original
constraint terms with a relaxation function. In our study,
we employ the Gaussian-shaped function as this relaxa-
tion function:

exp (— A"z ) i=1,2,...,m). (13)

2072

1
Al — E(f) = @m.

Notably, the above replacement starts from i=1 as
Ay, which serves as the normalization factor, is known to
be completely accurate. The peak of the Gaussian-shaped
function corresponds to the center of the error bar, with

its value gradually increasing as A; approaches zero. Ad-
ditionally, as o; increases to represent larger errors, the
curve becomes flatter. Consequently, the constraint of
moments is weakened in proportion to its uncertainty.
Considering these properties, our replacement is a reason-
able approach.

Introducing this Gaussian shape function, the new
Lagrange function is corrected as follows:

L'=S§ +/10A0 +ﬁZEt(f)’ (14)

i=1

where the coefficient § represents the strength of the con-
straints. By adjusting the value of £, the model can effect-
ively control the trade-off between maximizing the en-
tropy and satisfying the moment constraints. A higher
value of § emphasizes the importance of meeting the con-
straints, resulting in a distribution that closely aligns with
the specified moments. Conversely, a lower value of S
places more emphasis on maximizing the entropy, allow-
ing for a distribution that may deviate slightly from the
constraints. Correspondingly, the SCF method changes
by replacing L with L'.

III. RESULTS

A. Parameter determination and validity assessment

Within our model, two parameters, i.e., the term num-
ber of the basis set and the size of the grid point, are de-
termined through comparison with the analytical solution.
In scenarios where the distribution is constrained solely
by the second-order moment, the PDF can be ascertained
by the variational approach. This approach yields a Gaus-
sian function as the analytical solution. Specifically,
when the second moment y, = 0.3, the Gaussian function
is represented as follows, with an associated entropy of
-0.114:

f(x) = 1.63exp (-7.5(x-0.5)?). (15)

For the same situation, we calculate entropy using the
SCF method with various parameters and then compare
these results with the analytical results. The relative error
obtained from the comparison is visualized in Fig. 1.

Based on the analysis of entropy, our approach
demonstrates a high level of reliability. Opting for a dens-
er grid and a larger basis set generally yields more accur-
ate results but at the expense of heightened computation-
al time. Specifically, the time complexity of the term
number and the grid size are O(N°) and O(N), respect-
ively. Consequently, striking the right balance between
time efficiency and accuracy is of utmost importance.
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Fig. 1.
method with various parameters. Gray dotted lines signify in-

(color online) Relative errors of entropy by the SCF

teger percents, and the black point signifies parameters util-
ized in our reconstruction.

Given our available computational resources, all calcula-
tions presented in this paper were conducted employing
50 terms and 500 points.

The analysis discussed above is exclusively based on
entropy, which only carries partial information about dis-
tribution. Therefore, a more nuanced comparison is ne-
cessary. To elucidate the deviation at each data point, we
compare the SCF result using the aforementioned para-
meters with the analytical result, which is shown in
Fig. 2.
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Fig. 2.  (color online) Comparison of the analytical and the
SCF result.

It is evident that the curve from the SCF method
closely aligns with the Gaussian distribution derived
through the variational approach. Notably, the SCF meth-
od produces the anticipated outcome within the majority
of the function's range, indicating that our method is suf-
ficiently reliable. Nevertheless, slight oscillations can be
observed at the tails of the distribution function. These
oscillations primarily arise due to the nature of the basis
set.

B. Reconstruction efficiency assessment
This section concerns discussion of a model that

holds physical significance. Our objective is to assess the
effectiveness of reconstruction under different numbers
of constraints. The symmetric function presented below is
a widely used form for characterizing the distribution of
partons:

f(x) =N, log(1 +x*(1-x)*/p?), (16)

where N, is the normalization constant.

This function is effective enough to describe PDF by
adjusting p. Notably, there exists a unique correspond-
ence between the parameters p and p, within this distri-
bution; for example, when u, equals 0.3, the correspond-
ing value of p is 0.0658. Considering the specific physic-
al meanings of (,, in this section, we apply u, to repres-
ent different functions.

Subsequently, to show the efficiency of reconstruc-
tion under different numbers of constraints, we use the
first few moments corresponding to u, =0.3 as con-
straints to attempt to reconstruct the distribution. The res-
ulting distribution functions and entropy are displayed in
Figs. 3 and 4, respectively. Only even numbers are con-
sidered since odd-order moments are not independent be-
cause of the symmetry.

Figures 3 and 4 unmistakably illustrate that as addi-
tional constraints are integrated, the outcomes progress-
ively approach the sought-after symmetric function, i.e.,
the efficiency of reconstruction improves. Importantly, it
is apparent that with a minimum of six moment con-
straints, the precision of the reconstruction reaches a high
level, with an error margin of approximately 1%. Not-
ably, employing ten constraints yields a considerably ro-
bust and accurate reconstruction. Therefore, reconstruc-
tion with at least six constraints is suggested for a reli-
able result.

The comprehensive analysis thus far exclusively con-
cerns the scenario wherein y, is equal to 0.3. Therefore,
the calculations must be extended across a spectrum of
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X
Fig. 3. (color online) Variation in reconstruction results un-
der different numbers of constraints. The black curve repres-
ents the target symmetric function.
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(color online) Variation in entropy under different

resented by the black and red curves, respectively. The gray
dashed line represents the entropy of the target symmetric
function.

values to validate the robustness of our previous conclu-
sions. Figure 5 presents the relative errors of entropy for
varying p, values ranging from 0.29 to 0.32. This scope
comprehensively covers the possible scenarios for the
PDF to confirm the generalizability of the earlier-drawn
conclusions.

The insights provided by Fig. 5 indicate that relative
errors exhibit an increasing trend as the second-order mo-
ment increases. However, for the six constraints case, the
relative error remains confined within a threshold of 5 %.
This level of variability has been found to be satisfactory
for a significant proportion of reconstruction tasks.
Therefore, a minimum of six constraints provides the ne-
cessary foundation for achieving reliable and accurate re-
constructions.

C. Reconstruction based on real data

This section outlines the reconstruction based on real
data with error bars. The first six moments of the pion
valence-quark distribution are provided using lattice
QCD in Ref. [17]. However, these data are all at 5.2 GeV,
and the PDF at this scale is not symmetric. Therefore, we
altered these data to the hadron scale according to the
method in Refs. [18, 19], and the results are displayed in
Table 1.

To select an appropriate value for f, it is crucial to
understand how the entropy curve behaves under differ-
ent f settings. Figure 6 represents the changes in entropy
with varying values of £.

In Fig. 6, we observe a significant trend: as £ in-
creases, there is a consistent decrease in entropy. At both
extremes, we observe a convergence toward two distinct
values. One corresponds to a state where maximum en-
tropy prevails, while the other represents a situation
where constraints are rigorously enforced. This observa-
tion aligns seamlessly with our earlier discussions. As a
consequence, it is reasonable to infer that the ideal value
for f lies somewhere between these two extremes. A
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2nd Order Moment
Fig. 5. (color online) Variation in the relative error of en-
tropy with the second-order moment.

Table 1. Data for the first six moments

Order 1 2 3 4 5 6
0.29(3) 0.14(5)  0.10(5)  0.08(4)

Moment 0.5 0.19(5)

0.00

-0.04 3

Entropy
o
&

_0-127 !

10 10% 1 6'2 1 (')‘1 1 E)O 1 '01 10?
B
Fig. 6.  (color online) Variations in entropy values as S
changes. The axis is converted to a logarithmic scale. Red
dashed lines serve as asymptotes, while the blue and orange
dots correspond to the median and boundaries of the error
range of 3, respectively.

straightforward approach involves selecting the midpoint
between these extremes as the ideal value for f. To
quantify our uncertainty, we recommend defining an er-
ror range by dividing the entropy range into four equal
parts and designating the two central segments as the er-
ror range. This distribution function and its associated er-
ror range are described in Fig. 7. Additionally, Fig. 8
presents a comparison between the lattice input and mo-
ment error range of the reconstruction result.

As can be seen in Fig. 7, the reconstruction result is
outstanding, closely mirroring the findings reported in
prior research as detailed in Ref. [20]. This striking simil-
arity underscores the robustness and consistency of our
reconstruction method. Moreover, Fig. 8 clearly shows
that the error range of our reconstruction is well within
compatibility bounds with the lattice input. However, it is
important to note that the error range of the current recon-
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Fig. 8. (color online) Comparison between the lattice input

and moment error range of the reconstruction result.

struction consistently lies slightly above the lattice input,
particularly for higher-order moments, where a more no-
ticeable deviation is observed.

In conclusion, the effectiveness and reliability of the
proposed reconstruction method have been proven in this
work. However, a more precise method for selecting the

optimal S value requires further investigation and re-
search.

IV. SUMMARY

In this study, we combined the first few moments and
entropy as constraints to define the Lagrange function
and numerically reconstruct the PDF at the maximum
point of the Lagrange function. To include the error in
calculating moments with QCD, we replaced the original
moment constraints with Gaussian-shaped functions to
soften the constraints. Accordingly, the result appears
more natural and convincing than the methods that pre-
suppose the function form of PDF artificially.

Furthermore, we comprehensively evaluated the con-
vergence and reconstruction efficiency of the proposed
method of reconstructing PDF; the results show that our
method is reasonable. As the number of moments entered
increases, the results become more accurate, and high-
quality reconstruction is achieved using only the first six
moments as input. Moreover, a set of lattice QCD results
were selected regarding moments in Ref. [17] as input to
reconstruct the PDF. Finally, an excellent reconstruction
result was produced and provide a reasonable error band.

Although reasonable and reliable results are obtained,
using this PDF reconstruction method, which avoids arti-
ficial selection, the method can be further developed. For
the input with error, we can multiply each A; by B;, which
can increase the accuracy of the calculation but also in-
creases the difficulty of the calculation. For the asymmet-
ric case, the base set can be replaced, but this leads to
greater computational complexity and potential conver-
gence difficulty. It is hoped that this work can promote
the research of PDF reconstruction in the field of hadron
structure.
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