Chinese Physics C  Vol. 47, No. 12 (2023) 125106

Accretion around a hairy black hole in the framework of gravitational
decoupling theory
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Abstract: We investigate astrophysical accretion onto a static and spherically symmetric hairy black hole within
the framework of gravitational decoupling. To achieve this goal, we examine the accretion procedure for several
types of perfect fluids, including polytropic fluid and ultra-stiff, ultra-relativistic, radiation, and sub-relativistic iso-
thermal fluids. Moreover, we determine the critical or sonic points for numerous fluid forms that are accreting onto
the black hole by utilizing the Hamiltonian dynamical approach. Additionally, the closed form of the solutions are
presented for a number of fluids, which are represented in phase diagram curves. We estimate the mass accretion rate
of a static and spherically symmetric hairy black hole within the framework of gravitational decoupling. These find-
ings are helpful in constraining the parameters of black holes while physical matter accretes onto the black holes.
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I. INTRODUCTION

Black holes (BHs) are one of the most remarkable
phenomena in our Universe. First, we discuss BHs as an
essential part of the classical theory of physics. The clas-
sical theory of gravity is Einstein's theory of general re-
lativity (GR), which defines both time and space. BHs
were first assumed to only exist in theory, and despite the
fact that their models were thoroughly studied, many sci-
entists, including Einstein, had doubts about whether they
actually existed. In this instance, it was only logical to in-
vestigate whether Einstein's theory of gravity explains the
idea of time and space surrounding a massive object such
as a star. Schwarzschild found a solution to this issue that
essentially considers the mass of all stationary round ob-
jects. However, unexpected things occur when the entire
mass of an object is contained within a certain radius,
known as the Schwarzschild radius. When an event hori-
zon occurs at the Schwarzschild radius, the term "BH" is
used.

It has been established that BHs and other astronom-
ical objects acquire mass through a procedure called ac-
cretion. As a key concept in astrophysics, the accretion
phenomenon that encompasses tremendous gravitating
objects is essential for understanding a variety of astro-
physical behaviors and assumptions, including the forma-
tion of super-massive BHs (SMBHs), star formation,
emitted radiation of X-rays through the luminosity of

quasars, and compact star binaries [1—3]. Because it in-
volves various significant problems of general relativistic
magnetohydrodynamics, including radiation, turbulence,
and nuclear burning, the accretion of matter is a reliable
yet immensely complex astrophysical method. To prop-
erly explain the general accretion processes, it is useful to
characterize the problem using particular presumptions or
by assuming some fundamental requirements.

The basic accretion phenomenon has been illustrated
by Bondi [4] for a spherically symmetric object, which
implies that an infinitely massive homogeneous gas cloud
continuously accretes onto a compact object such as a
BH. The Bondi approach is founded on the Newtonian
theory of gravity. The steady-state spherically symmetric
flow of test fluids into a Schwarzschild BH was then in-
vestigated in the framework of GR by Michel [5]. Sub-
sequently, the concept of relativistic accretion on com-
pact objects was further investigated by Shapiro and
Teukolsky [6]. Furthermore, Babichev et al. [7] observed
that if phantom energy is allowed to accrete onto a BH
during the accretion process, the mass of the BH may de-
crease. The significant reduction in the BH mass by
phantom accretion transforms it into a naked singularity,
as illustrated by Jamil et al. [8]. Debnath [9] extended
Babichev et al.'s [7] idea of static accretion onto a gener-
al class of spherically symmetric BHs by investigating
how the cosmological constant would affect the rate of
accretion. Ficek [10] investigated the Bondi-type accre-
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tion in the Reissner-Nordstrom-(anti) de-Sitter spacetime
(RN-AdS). Using the methods outlined in Ficek [10], the
process of accretion onto the RN-AdS BH with a global
monopole was investigated by Ahmed et al. [11]. They
extended their previous research to accretion onto BHs
[12, 13] in the f(R) and f(T) modified theories of grav-
ity. Azreg-Ainou [14] discovered general relativistic dust
accretion for stationary rotating BHs. The relativistic dust
accretion of charged particles onto Kerr-Newman BHs
has been thoroughly studied by Schroven [15]. There
have been several studies devoted to exploring accretion
phenomena for various space-times, including the work
of Giddings and Mangano [16], Sharif and Abbas [17],
John et al. [18], Ganguly et al. [19], Bahamonde and
Jamil [20], and Yang [21].

The transonic accretion process and the existence of
the sonic point (or critical point) have a significant im-
pact on spherical accretion onto BHs. The accretion flow
changes at the sonic point from subsonic to supersonic.
The sonic points in specific BH space-times tend to be
close to the horizon. It is important and exciting to study
the small region close to the sonic point because it is in-
extricably connected to current research on gravitational
and electromagnetic wave spectra. Therefore, study of the
spherical accretion problem can not only help improve
our understanding of the accretion process in various BHs
but also, more importantly, provide a unique viewpoint
on how to obtain the nature of BH space-time in the pres-
ence of strong gravity.

In this study, we investigate astrophysical accretion in
the vicinity of a static and spherically symmetric hairy
BH within the framework of gravitational decoupling
(GD). In GR, the minimal geometric deformation (MGD)
technique has been extensively used to achieve GD, in
which the primary objective is to obtain exact solutions
from a perfect fluid source. This technique was recently
implemented to extract exact solutions from the Schwarz-
schild vacuum metric in addition to obtaining solutions
from Einstein-scalar theory. The current method was first
introduced in the Randall-Sundrum braneworld approach
[22, 23], which has subsequently been extensively used in
brane-world theory to obtain exact solutions [24, 25] us-
ing the ideal fluid seed solutions in the setting of GR. The
applications of GD in GR are given in Ref. [26—32]. GD
has been further studied in modified theories of gravity,
including f{R, T) [33, 34], Gauss-Bonnet [35], f (G) [36],
and the Rastall theory of gravity [37]. The MGD method
was additionally utilized to explore the exact solutions in
Einstein-scalar gravity [38]. The considered BH was a
hairy BH that included a general matter sector using the
GD approach [39, 40]. Naturally, GD has been used in
the construction of hairy BHs, as demonstrated in Ref.
[41], where the researchers constructed BHs supported by
a generic source through the use of GD along with MGD.

To develop a BH solution with scalar hair, it was neces-
sary to use the equation of state (EOS), which fulfilled
some additional constraints, as noted in Ref. . Addition-
ally, a hairy BH solution that satisfies the strong and
dominating energy criterion anywhere beyond the hori-
zon was found in [42]. The thermodynamics of the BH
constructed in [42] were thoroughly examined in Ref.
[43], and a novel solution of the hairy BH in asymptotic-
ally AdS space-time is presented in Ref. [44]. A BH solu-
tion was recently found in [45]. Furthermore, periastron
advancements and gravitational lensing, impact paramet-
ers, inner stable circular orbits, marginally bound orbits,
and quasi-normal modes are discussed in [45]. The main
goal of this research is to use a Hamiltonian approach to
answer the unavoidable query of whether a static, spher-
ically symmetric hairy BH within the framework of GD
could have an impact on astrophysical accretion proced-
ures. We study the transonic phenomena for different
types of fluids, such as isothermal fluids (such as ultra-
stiff, ultra-relativistic, radiation, and sub-relativistic flu-
ids) and polytropic fluids, with a focus on perfect fluid
accretion onto the static and spherically symmetric hairy
BH in the framework of GD.

The structure of our paper is as follows. In Sec. I, a
brief overview of the static and spherically symmetric
hairy BH in the framework of GD is presented. In Sec.
III, we present some helpful quantities for constructing
the basic equations for the subsequent examination of the
spherical accretion of various fluids. In Sec. IV, the ac-
cretion process is examined as a dynamical system, and
critical points are identified. In Sec. V, we comprehens-
ively investigate the transonic phenomena of accretion for
a variety of well-known fluids onto the static and spheric-
ally symmetric hairy BH in the framework of GD. In Sec.
VI, we calculate the BH mass accretion rate. Finally, in
Sec. VII, we present our concluding remarks.

IO. REVIEW OF HAIRY BLACK HOLE IN THE

FRAMEWORK OF GD
In the following section, we present a review of the
hairy BH solution formulated in [45] within the frame-

work of GD. The corresponding Einstein field equations
are provided by [45],

. 1
Gy =Ty = Ry — Eng, (1)

8nG
where k> = —4 > and the energy momentum tensor 7,
C

has the following form:

Ty = Tuy + Oy, )
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where T, corresponds to some known solution that will
be utilized as a seed, and 6,, is the gravitational sector.
The Einstein tensor satisfies the Bianchi identity, imply-
ing that the source must be preserved,

v, T" =0. 3)
Spherically symmetric and static space-time is
ds? = =" Odr? +e"Vdr? + r2dQ?, (4)

where dQ? = (d6* + sin? §d¢?). From Eq. (1), we have

1 1 v
(T +60) = —-e" (5 --2), 5
(Ty 1) 2 € (r2 r) Q)
R340l = 5 —e (5 + 1), ©)
r2 2 r

/

2.3 1 e ” ” ’oy u’l_vl
k“(T; +01)=——4 (21/11 +ul —upyi+2 p ),

(7

and because of spherical symmetry, 73 =T} Using Eqgs.

(5)—(7), we can establish effective matter components
defined by

p=T]+6. (®)

Also,

pr==T3-63, ©)
where p, is the effective radial pressure

pi=-T3 -6, (10)

where p, is the effective tangential pressure. Here, we in-
vestigate a solution to Eq. (1) for the seed source T},
which excludes the term 6,,. Therefore, the line element
is given by

ds? = —efdr? +e#dr? + 2dQ?, (11)
with the form of the metric function [45] given by
IS Sl 2m
et =1-— [ yTidy=1-~—. (12)
r 0 r

By utilizing [45],

Eou =&+, (13)

and

e e =et+f (14)

The geometric deformations are represented by g and f.
Egs. (13) and (14) are employed to divide the Einstein
Egs. (5)—(7) into two sets. The first is derived from 7,
and can be used as a seed. It has the following form:

1 I BT

21y _

R(rh=5—e*(5-). (15)
IV RO

22y _

KR(T?) = —e ﬂ(ﬁ+7) * (16)

kZ(Té’)) — _(25// +2§/ —,Ll/ +§_-/2 _,U/fl)L

= T (17)

The source can be identified in terms of the second set as
6, components, which have the following forms:

eeh=-L-L (18)
r r
1 u
KO =-X-f(—=+-1), 19
@)=-X1—f(5+-}) (19)
273y _ f ’ 2 f ’” 7”2 M/l
(20)
where
y
X =° -, @1
e ’” 72 g’ 7 et 77
Xy = (28" +g2+2% +28'¢' —'g’). (22)
r r

Moreover, to determine the hairy BH, we can deform the
Schwarzschild metric (the seed), which is provided by

2M
et=e=1-"—, (23)
r

by assuming suitably specified deformation functions f
and g. First, we consider that the deformed solution has a
horizon, which can satisfy the relation

125106-3



H. Rehman, G. Abbas

Chin. Phys. C 47, 125106 (2023)

e“l(ru) — e“’l(”u) =0. (24)

Here, ry is the horizon radius. The Schwarzschild solu-
tion must trivially satisfy the condition

el =e™, (25)

pr=-P. (26)
The geometric formation function f can be written as [45]

f= (1—27M)(e8—1). 27)

Finally, the subsequent metric takes the form

2M 2M -1
ds? = —(1 - S ) w(nde + (1 - Z2) w7l + 20,
r r
(28)
and thus, we can specify w(r)=ef" for simplicity
throughout the discussion. Now, we require that the weak

energy condition (WEC) is satisfied by our proposed
solution [46]; hence, it must fulfill

p =0,
pr+p=0,
pi+p=0, 29

Hence, after using Eq. (26), the above constraints take the
form

6 >0, (30)

0} > 63, (31)

Utilizing Egs. (18) and (20), we obtain the following in-
equalities:

l-w—w'(-2M+r) >0, (32)

2-2w+4Mw +rw” (-2M +r) > 0. (33)

It is worth noting that we are able to find some /4 satisfy-
ing (32) whenever

1-w—=w(-2M+r)=H(r). (34)

This applies for certain G > 0. The general solution to the
equation under consideration is

r—c¢

1
w(r) = oM oMty /H(x)dx, (395

where ¢ represents the constant of integration. There are
additional constraints on H(r) as

2H-rH' >0, (36)

where H is an arbitrary positive function that fulfills Eq.
(36). In this study, we take

H= arﬂzln(é). (7)

Thus, from Eq. (34), we have

1—w—(—2M+r)w'=H(")=agln(é)’ (38)

where o and £ are constants with @ > 0. From Eq. (38),
we obtain

- M
<y r(_;’MH) (1 +ln<é)), (39)

where ¢ =2M. Eqgs. (39) and (28) lead to the following
metric:

-1
ds? = =N(r)d? + (N()) dr +7dQ?, (40)

where

2M aM PPA aM r
Nr)=1-—+———-—+—"1In( - ).
r 72 3 r2

III. FUNDAMENTAL EQUATIONS FOR SPHER-
ICAL ACCRETION FLOW

In this section, we construct basic accretion formulas
in the vicinity of the static and spherically symmetric
hairy BH in the framework of GD. We examine this us-
ing the following fundamental laws: the laws of energy
and particle number conservation. We suppose that the
perfect fluid flows around the BH. For the sake of a per-
fect fluid, the energy-momentum tensor is provided by

T = (e + p)u'u’ + pgt”, (42)
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where p and e denote the pressure and energy density, re-
spectively. If n is the proper number density, the flux
density is determined by J¥ =nuw*, where u* = dx"/dr is
the four-velocity of the particles. We assume that
particles are neither created nor destroyed throughout the
accretion procedure, which implies that the total number
of particles is preserved. As a result, the particle and en-
ergy conservation laws are presented as follows:

vV, J* =V, (nut) =0, (43)
v, 7% =0. (44)
In the equatorial plane (6 = %)’ Eq. (43) simplifies to

rnu=Cy, (45)

where C; is the integration constant. We presume that the
fluid is moving in the radial direction; hence, the only
non-zero components of velocity are u' and " =u.
Moreover, using the normalization condition, we have

,
oM aM (“M)ln(g) .
- T B
(ut) = 7 P (46)
M oM (aM)ln(B> 2
<1——+—2+72 >
r r r
and u, is given by
-
(@M)In (-
up = 1—2—M+%+725+u2. (47)
r r r

Furthermore, for the perfect fluid, the first law of thermo-
dynamics [47] gives

dp =n(dh-Tds), de=hdn+nTds, (48)

where s is the entropy, T is the temperature, and /4 is the
specific enthalpy, given by

(49)

According to relativistic hydrodynamics, the scalar hu, &
is preserved throughout the fluid flow [47], and we have

W, () = 0, (50)

where the space and time Killing vector is represented by
&I ¢4 =(1,0,0,0), we obtain [48]

9y (hu;) = 0, (1)

and by integrating the above equation, we obtain

)
(cyM)ln(f)
oM aM
p\1- M B e, (52
r

2 2

where C is the integration constant. It is straightforward
to show that the fluid's specific entropy remains un-
altered over the fluid flow lines; hence, #*V,s = 0. By re-
writing T* as nhu'u” + (nh—e)g"” and then applying the
conservation of 7" onto u*, we obtain

u, VT = u, V, (nh'u” + (nh— e)g"”)

=u(hVyn—-Vye) = —nTu"V,s=0. (53)

Here, we suppose that the fluid moves in the radial direc-
tion, which conserves the spherical symmetry of the BH.
Therefore, the preceding expression simplifies to d,s =0,
which indicates that s is constant throughout the fluid
flow. As a consequence, the motion of the fluid becomes
isentropic, and Eq. (48) reduces to

dp =ndh, de=hdn, (54)

We investigate the fluid flow by utilizing Egs. (45), (52),
and (54). The fluid EOS, e = e(n, s), modifies from its ca-
nonical form to its baroscopic form because s is constant.
Hence, we have

e=F(n), (55)

d .
and from the second Eq. (54), we have h= é, which
provides

h=F'(n), (56)

where the derivative with respect to n is indicated by .
Moreover, p’ =nh’ is obtained using the first Eq. (54).
When & = F’(n), we may have

p’ =nF"(n), (57)
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and by solving Eq. (5§7), we obtain

p=nF'(n)—F(n). (58)

We are aware that the EOS with the form p = G(n) can-
not exist without the EOS with the form e = F(n). The re-
lationship between F and G can be established as

G(n) =nF'(n)-F(n), (59)

. 0
and with the use of the formula a2 = (—Ie’)s from [49], we

can calculate the speed of sound in a local inertial frame.
This can be reduced to a> = dp/de because entropy s is a
constant, and from Eq. (54), we have

2_dp_ndh:>dh_ 2d7n.

e e N 60
T Thdn T (60)
Eq. (54) is substituted into Eq. (60) to produce
2 _ @ _ l " o_ N
a” = ndn F'F =n(nF")". (61)

Another relevant quantity is the three-dimensional fluid
element v, which can be identified by a local static ob-
server. Because motion in the equatorial plane is radial,
df = d¢ = 0; therefore, Eq. (1) decomposes via [50]

2
\/ o o (aM)ln(/g)

de=— | \1-2ye%, By
r r2 r2

+ dr — . (©
¢ oM em @I <5>
l-—+—+———
r r2 r2

and the typical three-dimensional velocity v can be de-
termined using the standard relativistic approach [51, 52]
as viewed by a local, stationary observer. Thus, we have

dr
-
\/ 2M  aM (“M)ln(g)
- —+ 5+ ——5—"—
r I r
y= , (63)

-
\/ M aM (“M)h‘(/})

il Y A
r r2 r2

and by simplifying the above equation, we have

! dr
(aM)In (Z;) dr’

y= (64)
r r2 r2

. dr dr .
By assuming u" =u = - and ' =u= I where 7 is the
T T
proper time, we can determine

V2= - . (65)

We can compute #* and u? in terms of v?

r
5 (@M)ln ()
2V 2M oM B
u _1—y2 1—74‘74'7"2 . (66)
and
oM oM (aM)in ()
1_7 -
, + 2 2
2 _
Mt = 1—1/2 5 (67)
and by utilizing Eq. (45), we get
L . (@M)in ()
nwrt | - —+—- 5
r r r
=C2. (68)

These findings are useful for the subsequent Hamiltonian
analysis.

IV. DYNAMICAL SYSTEM AND SONIC POINTS

In accordance with the fundamental Egs. (45) and
(52), there are constants of integration, C; and C,. Addi-
tionally, the square of the L.H.S of Eq. (52) is interpreted
as the Hamiltonian A and defined as

(aM)ln(K)
MM B e (69)

r r2 r2

H = h?
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Here, to investigate the Michal flow, the Hamiltonian dy-
namical system is established as a function of (r,v)
[11-13, 53, 54], and written in the specific form

,
am an ()
r r2 r2
H(r,v) = W (r,v) 5 . (70)
1-v

The dynamical system that corresponds to the Hamiltoni-
an is also written in the following manner:

F=H, v=—H, (71)

where the dot denotes the 7-derivative. If r is considered
constant, H, represents the partial derivative of H with
respect to v, and H, indicates the partial derivative of H
with respect to », when v is presumed to be constant. The
system (71) eventually exhibits

(aM)In Z;)

2 b}

2M  aM
- —+—+
r r

2vh?
2_ g%

F=aoeeY r

(72)

RA(=2(a? + l)aMln(é +(3a® + HMQ2r - a)—4a*r?)

ve 02— 1)r

(73)

The critical points can be found by setting Egs. (72), and
(73) to zero and solving them simultaneously. Thus, the
critical values are
M(a+2aln () ~2r,)
v2=d? and o’ = = , (74)
6Mr. —aM2ln (E) +3)—4r2

where the speed of sound, distance, and three velocity of
the fluid at the critical points are v, r., and a2, respect-
ively. Additionally, by utilizing Eq. (68), we may determ-
ine the constant C? in terms of the critical points as fol-
lows:

re

CIZ:—%Mn%rf(a+2aln(ﬁ)—2rc). (75)

From Egs. (68) and (74), we obtain

(v2 - 1)Mr3,(a+2a1n <%> =2r¢)

()=

ne 4y2r2(aM1n([§)+M(01—27)+r2>. "

If Egs. (72) and (73) do not have a solution at the sonic
point, we can identify the point of reference (ro,vo) across
phase space to achieve

. (02 = 12r3 (aM(In (%’) +1)=2Mro+17)

n
<%) - 202~ )2 (aM1n ([;)+M(a—2r)+r2> - 77

Investigation of the spherical accretion of various fluids
may be conducted using the earlier formulae.

V. APPLICATIONS TO TEST FLUIDS

The results from the previous section are used to ana-
lyze various fluids that flow around the static and spheric-
ally symmetric hairy BH in the framework of GD.

A. Isothermal test fluid

Isothermal flow describes the movement of a fluid at
a constant temperature. Simply, the speed of sound re-
mains constant during the accretion process. This ensures
that at any radius, at the critical point, the speed of accre-
tion flow is the same as the speed of sound. Therefore,
our system is operating adiabatically under these circum-
stances, and it is more likely that our fluid is flowing iso-
thermally. Therefore, using Egs. (55) and (59), we also
establish the general solution of the isothermal EOS with
the form p = ke. From the EOS, we obtain the following
outcomes: p =kF(n) and G(n)=kF. However, 0 <k <1
[55], and k& indicates the EOS parameter. Usually,
a=dp/de is used to define the adiabatic speed of sound.
As aresult, we have a® = k to relate the adiabatic speed of
sound to the EoS. Eq. (59) provides us with

nF’'(n)—F(n) = kF(n), (78)
which produces
e
e=F= n,éﬂnk“, (79)

and from Egs. (50) and (79) and p = ke, the outcome is

h

_ et beenys %0)

ne c

Using Egs. (76) and (80), we obtain the following results:
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2
B o 1=y . ., (81)
m u (a/M)ln(f>
e[ - 0
r r? r?
and
r 1-k
m aM (a/M)ln(B>
H(r,v) = (82)

(1 _V2)1—kV2kr4k ’

whereas all constant components are integrated into the
definition of time 7 and Hamiltonian H, where t is the
time variable for the dynamical system and is any vari-
able on which H (82) cannot explicitly rely, ensuring the
dynamical system is autonomous. Using different values
of the state parameter k, we investigate the fluid flow be-
havior.

1. Solution for ultra-stiff fluid (k=1)

Now, we consider the EOS for an ultra-stiff fluid pro-
duced by assigning k=1 and p = ke. The energy density
and isotropic pressure of this fluid are the same. The
Hamiltonian (82) can be transformed into

1
H= s (83)

The above equation reveals that the behavior of the fluid
flow is physical if | v |< 1. Therefore, the minimum value

of the Hamiltonian (83) for ultra-stiff fluid is
1 . . .
Himin = ercl By dlffe.rentlatmg Fq. (8?) with re-
spect to v and 7, the following system is obtained:
. 4
V= W, (84)
_ 2
r= _W. (85)

Eqs. (84) and (85) show that the dynamical system for
ultra-stiff fluid has no critical point. The minimum value
of H is Hpin = r~2(v+r)~2. Physical flows are represen-
ted by the curves that lie between the two green curves in
Fig. 1. Furthermore, the curves on the bottom half-plane
with v < 0 represent the fluid accretion, and the curves on
the top half-plane with v > 0 depict the outer flow of the
fluid or the emission of particles.

1
2. Solution for ultra-relativistic fluid (k = 3 )

Now, using the EOS parameter k=1/2, or p=e¢/2,
we study the ultra-relativistic fluid for which the isotrop-
ic pressure of the fluid exceeds its energy density. Ulti-

1
mately, we achieve the Hamiltonian (82) for k = 3 in the
following form:

H(r,v) = . s (86)

and the system expressed via (72) and (73) has the sub-
sequent structure:

aM+aMln <£> —2Mr+r?

72
(1—v2)32;2

aM+aMlIn (é) —2Mr+r?

72

_ , 87
vEV1—=y2p2 @7
%_EM_FZ,- 2(0/M+a/M1n(£)—2Mr+r2)
r _ B
b 2 3
aM+aMln(£) —2Mr+r?
2 VT2 s
;
aM +aMlIn (é) —2Mr+r?
2 ]
vV1—v2p3

(88)
Furthermore, using Egs. (87) and (88), we find the critic-
al points of the dynamical system for ultra-relativistic flu-
id. By assuming the BH parameters M =1, a =1.5, and
B=1.5, we determine that the physical critical points
(re,+v.) are (1.303808,-0.7071067) and (1.303808,
0.7071067), which represent the outer flow and accretion
of the fluid, respectively. This critical Hamiltonian,
H,.=0.557752, is obtained by inserting these critical
points into Eq. (86). Table 1 contains a list of the critical
points r., v, and H, for different values of the BH para-
meter. Several curves depict the behavior of the ultra-re-
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— HH=0.38
— 7H=0.38+0.1
— HH=0.38+0.2
— H=0.38-0.1
FH=0.38-0.2

0.0 0.5 1.0 1‘5 2‘0 2‘5 3‘0
r

Fig. 1. (color online) Profile of H (83) for the ultra-stiff flu-
id with BH parameters M =1, a=0.1, and f=0.16. The
magenta curve represents H = Hmin =~ 0.38. The green and
black curves refer to H > Hpin, whereas the blue and red

curves represent the behavior for H < Hpin.

lativistic fluid with the BH parameters M =1, a=1.5,
and 8= 1.5 in Fig. 2. In the dynamics of ultra-relativistic
fluid, the saddle points (r.,+v.) are indicated in Fig. 2. As
shown in Fig. 2, the green (with H = H,+0.08 branches)
and black curves (with H =H.+0.02 branches) repres-
ent purely supersonic outer flow (v > v, branches), super-
sonic accretion (v <-—v.), or purely subsonic accretion
followed by subsonic outer flow (-v.<v<v.). The
magenta (with H = H.-0.08 branches) and blue curves
(with H = H,.—0.02 branches) indicate no physical beha-
vior.

The red arcs in Fig. 2 depict an interesting solution
and demonstrate transonic behavior outward to the BH
horizon. There are curves for v <0 that intersect the son-
ic point (7., v.). One solution originates at spatial infinity
with subsonic flow and proceeds to supersonic flow after
exceeding the sonic point. This solution is related to the
standard non-relativistic Bondi accretion, as described in .
It is difficult to identify such behavior because according
to Ref. , the alternative solution that tends to spatial infin-
ity with supersonic flow but changes to subsonic after
reaching the sonic point is unstable. There are two pos-
sibilities: if v>0 or v < 0. If v > 0, the transonic solution
of the stellar wind, starting at the horizon with superson-

—— FH=H.-0.02
— H=H.-0.08
— H=H;

— H=H+0.02 |
FH=FH:+0.08

0.5+

E .Or 25 3.0
(color online) Plot of H (86) for ultra-relativistic flu-

Fig. 2.
id with the BH parameters M =1, a = 1.5, and g = 1.5. The crit-
ical points (r.,v.) are shown by black dots. In Fig. 2, five plots

are provided, with red, black, green, magenta, and blue corres-
ponding to the specified Hamiltonian values H =%H, =
0.557752, H =FH,+0.02, H =H,+0.08, H =H,—008, and
H =H,—0.02, respectively.

ic flow and transferring to subsonic flow after crossing
the sonic point, is one solution for non-relativistic accre-
tion that is described in. The other solution corresponds
to the case v <0, which is unstable and difficult to
achieve. In general, different Hamiltonian values correl-
ate with distinct dynamical system initial states. At the
sonic point, the Hamiltonian of the transonic solution of
the ultra-relativistic fluid can be evaluated. Because its
values are different from those of the transonic one, the
Hamiltonian is unable to present any transonic solutions
to the flow. The magenta curve, for instance, shows fluid
subcritical flow because it cannot reach the critical point.
The nearest point this type of fluid is able to reach before
rebounding or turning around infinity is the turning point,
which exists physically for the solutions. Similar reason-
ing applies to the blue curves. Supercritical flows are
shown by the green and black curves. Fluids move faster

Table 1. Values of v., r., and H, at critical points with several values of BH parameters for ultra-relativistic fluid.

a=15 B=15
g Te Ve H, o Te Ve H.
1.1 0.90919 0.7071 1.25519 1.1 1.57581 0.7071 0.356241
1.2 1.02015 0.7071 0.95472 1.2 1.5 0.7071 0.397523
1.3 1.12339 0.7071 0.767776 1.3 1.429009 0.7071 0.444709
1.4 1.2179 0.7071 0.644097 1.4 1.36349 0.7071 0.498093
1.5 1.303808 0.7071 0.557752 1.5 1.303808 0.7071 0.557752
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than the permitted critical value, even when they do not
reach the critical points. Eventually, these particles reach
the BH horizon. It is also important to note that other flu-
ids, including radiation, sub-relativistic, and polytropic
fluids, are subject to the same examination.

1
3. Solution for radiation fluid (k = g)

Here, the state parameter value for radiation fluid is

1 . . . .
k= 3 and we obtain the Hamiltonian in the following

form:

2/3
aM +aMlIn (é) —2Mr+r?

72

H(r,v) =

V23 (1 =2 )213,A73 . (89)

The previous system of Egs. (72) and (73) minimizes to

M
Y oM +2r

2 L -
2 3

2(aM+aMln(/g)—2Mr+r2)

JaM +aMin(sy - 2Mr+ 2
32/3(1 —y2)2/3 /413 B

72

2/3
aM +aMIn (é) —2Mr+r?

4

72

3y213(1 —y2)2/3,7/3 ,  (90)

a'M+aMln(£) —2Mr+1r? 2

4 s

I%

3(1— 230

2/3
aM +aMIn (é) —2Mr+r?

72

- 3y5/3(1 = y2)2/3,473 ) (€29

From Egs. (90) and (91), we can determine the critic-
al points (r., v.), and then by inserting these points into
Eq. (89), we obtain the critical Hamiltonian for radiation
fluid. The critical values r., v., and H, are given in
Table 2.

In Fig. 3, several curves illustrate the physical behavi-
or of radiation fluid with the BH parameters M =1,
a=1, =15, and B=1.5. The red curve corresponds to
H =H.. The green and black curves correspond to
H > H,, whereas the blue and magenta curves corres-
pond to H < H,. Figure 3 shows the three primary types
of fluid motion. For v>v,, the red and green curves
demonstrate supersonic outflows. These curves represent
supersonic accretion for v < —v.. The curves displayed for
—v <v.<v exhibit only subsonic accretion along with
subsonic flow out with vanishing speed near the horizon.
Non-physical behavior is illustrated by the magenta and
black curves.

1
4.  Sub-relativistic fluid (k = 7 )

The energy density is greater than the isotropic pres-
sure, and according to the EOS for a sub-relativistic fluid,
we have p = e/4. The Hamiltonian (82) in this scenario is

3/4
aM +aMIn <£> —2Mr+r?

r2

V(1 =2y ’

H(r,v) = 92)

and the two-dimensional dynamical system expressed via

Table 2. Values of v., r., and H, at critical points with various values of BH parameters for the radiation fluid.

a=15 B=15
8 Fe Ve H, a e Ve H.
1.1 1.01804 0.57735027 0.952249 1.1 1.8585 0.57735027 0.379317
1.2 1.1527138 0.57735027 0.774299 1.2 1.75934 0.57735027 0.40996
1.3 1.27901 0.57735027 0.660915 1.3 1.66576 0.57735027 0.44493
1.4 1.39485 0.57735027 0.58408 1.4 1.57902 0.57735027 0.484581
1.5 1.5 0.57735027 0.529134 1.5 1.5 0.57735027 0.557752
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0.5+ =

FH=H.-0.02
— H=H.-0.08
N oo} —_— H=H, E
— H=H+0.02
—— FH=H.+0.08

re

!
1.5 20 25 3.0

Fig. 3. (color online) Contour plot H (89) of radiation fluid
with the BH parameters M =1, a = 1.5, and 8= 1.5. The critic-
al points (r.,+v.) are indicated by black dots. In Fig. 3, five
plots are provided, with red, black, green, magenta, and blue
corresponding to the specified Hamiltonian values H = H, =~

0.5291336, H =H.+0.02, H=H.+0.08, H=H.-002, and
H =H,—0.08

(72) and (73) becomes

M ot ior 2@M+aMin(s)-2Mr+ 1)
3 . 72 N r§8
gom
4 aM+aM1n(£)—2Mr+r2
4\V(1 —v2)3/4y ;o
3/4

aM+aMln (é) —2Mr+12

72

V(1 —2)3/42

(93)
3/4
aM +aMIn (é) —2Mr+r?
3y s
"= 2(1-v2)7Fr
3/4
aM +aMIn (£> —2Mr+r?
B
72
- , %94)

213/2(1 —y2)3/4y

Table 3 displays the critical values r., w., and H, for
the sub-relativistic fluid, and Fig. 4 displays the sub-re-
lativistic fluid phase space characteristics. The motion of

the sub-relativistic fluid with (k = 7) is equivalent to that
1
of the radiation ﬂuld with (k= 7) and the ultra-relativist-

ic fluid with (k =

black and green curves show supersonic accretion,
whereas for v < -v,, they exhibit only supersonic outer
flows. Additionally, when —v, < v <v,, these curves show
subsonic flows. In Fig. 4, the red curves show the tran-
sonic outer flow solution for v >0 and the spherical ac-
cretion for v <0, which are incredibly interesting. The
magenta and blue curves, similar to the case of the radi-
ation fluid, reveal that the ultra-relativistic fluid exhibits
non-physical behavior in this case.

2) as observed in Fig. 4. For v > v,, the

B. Polytropic test fluid
For polytropic test fluid, the EOS is

p=G(mn)=Kn, 95
where K and y are assumed to be constants. To work with
ordinary objects, the constraint y > 1 is often utilized. For
the specific enthalpy [12], we obtain the following equa-
tion:

FH=FH.-0.04
— H=H.-0.08
— H=H,

— H=H+0.2
— H=H.+0.4

051 v,

L L L L L
1 2 3 4 5

Fig. 4. (color online) Contour plot of H (89) for sub-relativ-
istic fluid with the BH parameters M =1, a=1.5, and 8= 1.5.
The critical points (r.,+v.) are indicated by black dots. In Fig.
4, five plots are provided, with red, black, green, magenta, and
blue corresponding to the following Hamiltonian values:
H =H, ~0.526558, H =H.+02, H=H,+04, H=H—004,
and H =H.-0.08.
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Table 3. Values of v., r., and H_at critical points with different values of BH parameters for ultra-relativistic fluid.

a=15 B=15
p re Ve H. a re Ve H,
1.1 1.10713 0.5 0.834557 1.1 2.14397 0.5 0.405427
1.2 1.26724 0.5 0.705269 1.2 2.01837 0.5 0.429966
1.3 1.41874 0.5 0.622867 1.3 1.89838 0.5 0.458071
1.4 1.55782 0.5 0.566852 1.4 1.7862 0.5 0.455547
1.5 1.683639 0.5 0.526559 1.5 1.683639 0.5 0.526559
Kyn'~!
_ ~1Y
h=M;+ y— 1 (96) (12 — (7/ ) Y = K’yﬂy_l. (97)
Mi(y-1)+Y
where the baryonic mass M; is the integration constant.
The speed of sound is Egs. (76) and (97) give us
y=1
2
1— 2
h=M |1+2 4 . : (98)
M oM (aM)In <7)
M - —+—+ 5 +u?
r T T
where
B KynX™! 1, re VT_I B
= m(_ZMrC (a+2aln(E) —2rc)) = constant > 0, (99)
where Z is a positive constant. Utilizing Eqgs. (98) and (70), we determine
_ 172
r 2
M oM (aM)In (B)
l-—+—+—
r r2 r2
1—v?
H = 2 1+Z (r) , (100)
- (aM)In( =
2M M
M2 1-— ot B
r I I
where M? disappears within the re-definition of 7,7{. Be- M(a+2aln (r—‘> —2rc)
cause the Hamiltonian is constant on the solution curve, wr=— 7 B . (102)
no global solutions are possible. Considering the proced- aM(2In (E> +3)=6Mr, +4r?
ure given in [12, 56], we can obtain
- As observed from Fig. 5, the solution curve does not
=12 ’ cross the r-axis at point (r;,0)because the Hamiltonian
a@=Z(y-1-w?) " (100) diverges there. Moreover, the numerical solution of
viri(aM (IH(E) +1)=2Mr.+r2) the Hamiltonian (100) is shown, which demonstrates that

the motion of a polytropic fluid has similarities to those

(101) of isothermal, radiation, and sub-relativistic fluids, which
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— H=H.-5
— H=H-10
— H=H,

— H=H+5
FH=H:+10

0.5

1.‘5 2‘.0 2.‘5 3‘.0
r

Fig. 5. (color online) Contour plot H (100) for the polytrop-
ic fluid with the BH parameters M =1, a=1.5, and g=15.
The sonic critical points (r.,+v.) are indicated by black dots.
In Fig. 5, five plots are provided, with red, black, green,
magenta, and blue corresponding to the Hamiltonian values
H=H,=6928, H=H.+5 H=H+10, H=H.—10, and
H =H. -5, respectively.

are given in the previous sub-sections.

VI. BLACK HOLE MASS ACCRETION RATE

In this section, we obtain the mass accretion rate of
fluid onto the static and spherically symmetric hairy BH
using the GD framework. We know that as matter ac-
cretes in the vicinity of a compact object, its mass varies
over time. As matter accumulates around the compact ob-
ject, its mass varies gradually. The provided relationship,
M =-[T}dS  where dS = \/—gdéd¢, can be employed to
determine the BH mass rate change over time. We can
utilize the typical formula provided in [9] to compute the
mass accretion rate as follows:

M = 4nLM3(e + p), (103)

and from Egs. (43) and (44), we have

Myee = 1627

.
(aM)in ()

XM oM
Pup\[1-=2 e B

2 _
+u* = K.
r r? r?

(104)

The specified expression can be calculated using the re-
lativistic flux equation under

fe _de’
Pulele. @) = K, (105)

where K; indicates the constant of integration. By substi-
tuting p = ke into Eq. (105), we acquire

K \k+1
ez(%> : (106)
From Egs. (80), (106) and (104), we get
,
2_@ 4"(_ )2k+(1_m+m+wmln<ﬁ)>—o
k+nz rR 2 -
(107)

We can analytically compute #” to consider various val-
ues of k by evaluating the above expression. For k=1,
Eq. (107) gives us

myin (3)
oM am @5
S R
= +2K 108
==k K —4K? > (08)
and using Egs. (108), (106), and (103), it yields
. K2r* -4k
M =2n 0 1 ——,  (109)
M oM WM)I“(;;)
r r T

where M is the mass accretion rate for the static and
spherically symmetric hairy BH in the framework of GD
with constants Ky and K;. Furthermore, if we set k =1/2,
we can acquire the mass accretion rate for ultra-relativist-
ic fluid presented below.

3/2

4
Kl

(110)

AR 81 (a/M+a/Mln ([3) —2Mr+ r2>

r

—2K22

2| K

K?

72
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The graph of the mass accretion rate is depicted in
Fig. 6. From Fig. 6, we find that, as the values of the BH
parameters increase, the mass accretion rate decreases.

S At il
— a=1.1
— a=1.2

2| a=1.3 i
— a=14
— a=15

5 3 ¥ 3 3 70

r
Fig. 6. (color online) Macc versus r for M=1, g=1.5, and

various values of a. As a increases, the mass accretion rate de-

creases.

VII. CONCLUSION

This study investigates the spherical accretion flow of
a perfect fluid around a static and spherically symmetric
hairy BH in the framework of GD. Applying energy and
particle conservation equations, we provide two funda-
mental expressions for analyzing accretion phenomena.
Then, using these basic formulations, we investigate the
accretion flow of various perfect fluids, such as ultra-
stiff, ultra-relativistic, radiation, sub-relativistic, and per-
fect isothermal fluids. Figures 1, 2, 3, 4, and 5 depict the
motion of a variety of fluids around the static and spher-
ically symmetric hairy BH in the framework of GD. It is

important to note that the sonic point does not exist for
ultra-stiff fluids. We determine the critical values for ul-
tra-relativistic, radiation, and sub-relativistic fluids,
which are listed in Tables 1, 2, and 3. We examine the
physical characteristics of matter, including ultra-stiff, ul-
tra-relativistic, radiation, and sub-relativistic fluids, with
the EOS, which permits us to determine the nature of
BHs. We discover that the various forms of accreting flu-
id exhibit distinct accretion behavior, such as subsonic,
supersonic, and transonic flow, according to the EOS and
model parameters. We observe that supersonic accretion
followed by subsonic accretion ends within the horizon of
the BH. This means that the fluid flow throughout the ac-
cretion of matter onto hairy BHs within the framework of
GD is neither supersonic nor transonic within the vicinity
of the horizon. The outer flow is unstable as it follows a
subsonic path that passes through the critical point (7.,v.)
and then becomes subsonic.

Moreover, the mass accretion rate of BHs is found for
ultra-stiff fluid (k=1) and ultra-relativistic fluid
(k=1/2). The effect of the BH parameters on the spheric-
al mass accretion rate of perfect fluid onto massive ob-
jects is also graphically examined. It is obvious from Fig.
6 that the mass accretion rate would attain its highest
value for a BH with a small radius and then decline to a
constant value for BHs with larger radii. Moreover, we
observe an inverse relationship between mass accretion
and the BH parameters. The results described in the pre-
ceding section indicate that the mass accretion rate is de-
pendent on the EOS parameter, and this dependence is
only discernible when the EOS parameter value is small.
Because Eq. (107) becomes highly non-linear with re-
spect to u, it is impossible to identify an explicit form of
M for further values of the state parameter.
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