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Abstract: The possible hadronic molecules in  systems with , and  are investigated
with  interactions  described  by  light  meson  exchanges.  By  varying  the  cutoff  in  a  phenomenologically  reasonable
range of  GeV, we find ten near-threshold (bound or virtual) states in the single-channel case. After introdu-
cing the coupled-channel dynamics of - - - - -  systems, these states, except those
below the  lowest  channels  in  each  sector,  move  into  the  complex  energy  plane  and  become resonances  in  the
mass range  GeV. Their spin-parities and nearby thresholds are , , ,

, , , , , , and . The im-
pact of the -term in the one-boson-exchange model on these states is presented. Setting  GeV as an illus-
trative value, it is found that  is a stable bound state (becoming unstable if the coupling to lower chan-
nels is turned on),  and  are physical resonances in cases where the -term is included
or excluded, and the other seven states are physical resonances or "virtual-state-like" poles near thresholds, depend-
ing  on  whether  the -term  is  included.  In  addition,  the  partial  decay  widths  of  the  physical  resonances  are
provided. These double-charm hidden-strangeness pentaquark states, as the partners of the experimentally observed

 and  states, can be searched for in the  final states in the future.
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I.  INTRODUCTION
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The study of multiquark states began even before the
birth of  quantum  chromodynamics  (QCD)  and  acceler-
ated  with  the  development  of  QCD.  It  is  speculated  that
other  than  the  well-known -baryons  and -mesons
[1, 2],  there  may  be  multiquark  states,  glueballs,  and
quark-gluon  hybrids  in  the  quark  model  notation,  which
are  collectively  known  as  exotic  hadrons.  Multiquark
states  can  be  categorized  into  tetraquark  states  ( ),
pentaquark states ( ), and so on. The study of multi-
quark  states,  especially  the  internal  grouping  of  quarks
(i.e., compact  or  molecular  configuration),  plays  a  cru-
cial role in understanding low energy QCD.

In  the  past  two  decades,  many  candidates  of  exotic
tetraquark  and  pentaquark  states  have  been  observed  in
experiments  (see  Refs.  [3−20]  for  recent  reviews  on  the
experimental and theoretical status of exotic hadrons). An
intriguing  fact  is  that  most  of  them  are  located  close  to
the  thresholds  of  a  pair  of  hadrons  to  which  they  can
couple. This property can be explained by an S-wave at-
traction between the relevant hadron pair [21], which nat-
urally  leads  to  their  hadronic  molecule  interpretation  (as
reviewed in Refs. [3, 8, 14, 17, 19, 20]). In the hadronic
molecular  picture,  several  of  them  can  be  interpreted  as
the loosely bound states of two hadrons via the strong in-
teraction  parameterized  by  light  meson  exchange  at  low
energy. The validity of the hadronic molecular picture is
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also reflected by the successful quantitative predictions of
some exotic states in early theoretical studies on hadron-
hadron interactions (see, e.g., Refs. [22−30]).
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The  pentaquark  states  and  were
observed by the LHCb collaboration [31] in 2015. In the
updated measurement [32],  the  signal split  into
two  narrower  peaks,  and ;  however,
there  was  no  clear  evidence  for  the  previous  broad

1). Meanwhile, a new narrow resonance 
showed up.  Several  models  have  been  applied  to  under-
stand  the  structures  of  these  states,  and  the  mo-
lecular explanation, which appeared in Refs. [23−28, 30,
34] even before LHCb observations, stands out because it
can  explain  the  three  states  simultaneously  (see,  e.g.,
Refs. [35−38]). The success of the hadronic molecule pic-
ture  for  the  states  prompted  the  extension  of 
systems to their SU(3) flavor partners with hidden-charm
(double-)strangeness channels [39−48]. Recently, two 
states  were  reported  by  the  LHCb  collaboration,

 [49] and  [50], which are perfect can-
didates of the  and  molecules, respectively (see,
e.g., Refs. [17, 51−64]).
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Last year, the LHCb collaboration announced the dis-
covery  of  a  double-charm  exotic  state, ,  which
reveals  itself  as  a  high-significance  peaking  structure  in
the  invariant  mass  distribution  just  below  the
nominal  threshold [65, 66]. This observation mo-
tivated  numerous  studies  on  double-charm  tetraquark
states, and  is a perfect candidate of the isoscal-
ar  molecule (see, e.g., Refs. [67−76]).
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It is well known that the interaction between a pair of
hadrons  can  be  effectively  described  by  light  meson
(pseudoscalar and  vector)  exchange.  Resonance  satura-
tion has been known to effectively approximate the low-
energy constants (LECs) in the higher order Lagrangians
of chiral perturbation theory [77, 78], and it turns out that
whenever  vector  mesons  contribute,  they  dominate  the
numerical  values  of  LECs  at  the  scale  around  the ρ-
meson  mass,  which  is  referred  to  as  the  modern  version
of  vector  meson  dominance.  Under  this  vector  meson
dominance  assumption,  it  can  be  easily  verified  that

 systems are more attractive than the correspond-
ing  systems [19], the latter of which corresponds
to  the  experimentally  observed  states. Such  observa-
tion  leads  to  the  predictions  of  more  deeply  bound
double-charm pentaquarks in the molecular scenario [19,
79−84].
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In  this  study,  we  extend  the  investigation  of  double-
charm  pentaquarks  to  systems  with  hidden-strangeness.
Specifically,  we  explore  the  light-meson-exchange
( )  interactions  in - - - - -

 systems and search for possible poles near the cor-

responding thresholds. In Sec. II, we introduce our theor-
etical  framework,  including  the  involved  channels,  the
relevant Lagrangian  satisfying  heavy  quark  spin  sym-
metry (HQSS) and SU(3) flavor symmetry, and the light-
meson-exchange potentials  in  terms  of  known  paramet-
ers. In Sec. III, we present the numerical results and dis-
cussions. Finally, we provide a brief summary in Sec. IV. 

II.  THEORETICAL FRAMEWORK
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The  one-boson-exchange  (OBE)  potential  model  has
been successful  in  interpreting  the  formation  mechan-
isms  of  pentaquarks  [38, 85−88].  In  this  study,  we  also
use  the  OBE  potentials  of  the , ,  and

 systems  to  investigate  the  possibility  of  double-
charm pentaquarks  with  hidden-strangeness  in  the  mo-
lecular picture. 

A.    Investigated channels
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In our analysis, we focus on hadronic molecules with
spin-parities ,  and  in  the ,

, and  systems because the negative-parity
states  of  these  channels  can  be  coupled  in  the S-wave,
which is  usually  the  most  important  partial  wave  com-
ponent  in  a  hadronic molecule.  The thresholds and spin-
orbital  wave  functions  of  these  channels  are  listed  in
Table  1,  where  the  notation  is  used  to  identify
various partial waves. S, L, and J denote the total spin, or-
bital and total angular momenta, respectively. The state in
the partial wave  with a certain z-direction projec-
tion m can be explicitly written as 

|LS Jm⟩ =
∑
mlms

CJm
Lml,S ms

|Lml⟩|S ms⟩, (1)

CJm
Lml,S ms

|S ms⟩
|Lml⟩

where  is  the  Clebsch-Gordan  coefficient, 
is the spin state, and  is the spatial state. In the fol-
lowing,  we first  investigate the S-wave configurations to
search for possible near-threshold states. Then, we turn to
all  possible S-D-wave  mixing  to  introduce  possible D-
wave  components  in  each  system.  Other  higher  partial
wave components, i.e., the G-wave, are ignored owing to
strong suppression  from  the  repulsive  centrifugal  poten-
tial. 

B.    Effective Lagrangian and potentials
To investigate the coupling between a charmed bary-

on  or  meson  and  light  scalar,  pseudoscalar,  and  vector
mesons,  we  employ  the  effective  Lagrangian  satisfying
chiral symmetry and HQSS, developed in Refs. [90−96], 
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1) In Ref. [33], the results of fitting the  invariant mass distribution from the  decay suggest the former experimental date in Ref. [31] is not enough to claim
the existence of the .
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L =lS S̄ ab,µσS µ
ba−

3
2

g1εµνλκvκS̄
µ
abAνbcS λ

ca

+ iβS S̄ ab,µvα(Γαbc−ραbc)S µ
ca+λS S̄ ab,µFµν

bc S ca,ν

+ iβBB̄3̄Q,abvµ(Γµbc−ρ
µ
bc)B3̄Q,ca+ lBB̄3̄Q,abσB3̄Q,ba

+
{

ig4S̄ µ
abAbc,µB3̄Q,ca+ iλIεµνλκvµS̄ ν

abFλκ
bc B3̄Q,ca+h.c.

}
+ iβTr[HQ

a vµ(Γµab−ρ
µ
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i
2
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abH̄Q
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ò
+gS Tr[HQ

a σH̄Q
a ]+ igTr[HQ

a γ ·Aabγ
5H̄Q

b ],

(2)

a,b vµ

AµΓµ

where , and c are the flavor indices, and  is the four-
velocity of the heavy hadron. The σ meson is the lightest
scalar meson  and  is  governed  by  the  dynamics  of  Gold-
stone  bosons,  which  are  relevant  to  the  interaction
between two pions [97, 98].  The axial  vector  and vector
currents  read as
 

Aµ =
1
2

(ξ†∂µξ− ξ∂µξ†) = i
fπ
∂µP+ · · · ,

Γµ =
i
2

(ξ†∂µξ+ ξ∂µξ†) =
i

2 f 2
π

[P,∂µP]+ · · · , (3)

ξ = exp(iP/ fπ) fπ = 132
ρα

Fαβ ρα = igVV
α/
√

2 Fαβ = ∂αρβ−
∂βρα+ [ρα,ρβ] P Vα

where ,  MeV  is  the  pion  decay
constant,  the  vector  meson  fields  and  field  strength
tensor  are defined as  and 

,  respectively,  and  and  denote  the
light pseudoscalar  octet  and  light  vector  nonet,  respect-
ively,
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where  we  ignore  the  mixing  between  the  pseudoscalar
octet and singlet. The S-wave heavy meson  and bary-
on  containing a single heavy quark can be represen-
ted by the interpolated fields  and , respectively.
 

HQ
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1+ ̸ v
2

(P∗a,µγµ−Paγ
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H̄Q
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0HQ†
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S µ
ab = −
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(γµ+ vµ)γ5(B6Q)ab+ (B∗,µ6Q)ab, (8)

 

S̄ µ
ab = S µ†

abγ
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JP = 0− JP = 1−

P P∗µ
JP = 1/2+ 3/2+ 6F

B6Q

B∗,µ6Q Q = c

where  heavy  mesons  with  and  are de-
noted by  and , respectively, whereas the heavy bary-
ons  with  and  in  the  representation  of
SU(3) for light quark flavor symmetry are labeled by 
and ,  respectively.  For  the  case  of ,  they  are

 

JP D(∗)+
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mD+s = 1968.34 mD∗+s = 2112.20 mΞc = 2469.42 mΞ′c = 2578.80

mΞ∗c = 2645.97

Table 1.    Thresholds and spin-orbital wave functions of the spin-parity states  for the , , and  channels. The
masses of related hadrons are taken from Ref. [89]:  MeV,  MeV,  MeV,  MeV,
and  MeV.

Channels D+s Ξc D+s Ξ
′
c D∗+s Ξc D+s Ξ

∗
c D∗+s Ξ

′
c D∗+s Ξ

∗
c

Threshold/MeV 4437.76 4547.14 4581.62 4614.31 4691.00 4758.17
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written in the SU(3) flavor multiplets as 

P = (D0,D+,D+s ), P∗ = (D∗0,D∗+,D∗+s ), (10)
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With  the  Lagrangian  in  Eq.  (2),  we  can  derive  the
analytic expressions of the potentials describing the OBE
dynamics for the , , , , , and

 systems. Via  the  Breit  approximation,  the  poten-
tial in momentum space reads as 

Vh1h2→h3h4 (q) = − Mh1h2→h3h4

√
2m12m22m32m4

, (14)

mi hi q
Vh1h2→h3h4

h1h2→ h3h4
1/2 3/2

where  is the mass of the particle ,  is the three mo-
mentum  of  the  exchanged  meson,  and  is  the
scattering amplitude of the transition . In our
calculation,  spinors  of  spin-  and  fermions  with
positive energy in  the nonrelativistic  approximation read
as [99] 

u(p,m)B3̄c/B6c
=
√

2MB3̄c/B6c

(
χm

0

)
, (15)

 

u(p,m)B∗6c
=
»

2MB∗6c

(
(0,χm)

(0,0)

)
, (16)

χmwhere  is the two-component spinor, 

χm =
∑
m1,m2

C3/2,m
1,m1;1/2,m2

ϵ(m1)χm2
, (17)

ϵ(±1) = (∓1,−i,0)/
√

2 ϵ(0) = (0,0,1)with  and . The scaled

P P∗heavy meson fields  and  are normalized as [92, 100] 

⟨0|P|cq̄(0−)⟩ =
√

MP, ⟨0|P∗µ|cq̄(1−)⟩ = ϵµ
√

MP∗ . (18)
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′

c D∗+s Ξc
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∗
c 1−6

Vi j i→ j

For  convenience,  the  six  channels , , ,
, ,  and  are  labeled  as  channels ,

respectively, sorted by their  thresholds.  The OBE poten-
tials  in  the  momentum  space,  for  the  channel
transition,  are  derived  in  the  center  of  mass  frame  and
shown explicitly in Appendix A.

The  potentials  in  coordinate  space  are  obtained  by
performing Fourier transformation, 

V(r,Λ,µex) =
∫

d3q
(2π)3V(q)F2(q,Λ,µex)eiq·r, (19)

where the form factor  with the cutoff  Λ is  introduced to
account for the inner structures of the interacting hadrons
[22], 

F(q,Λ,µex) =
m2

ex−Λ2

(q0)2− q2−Λ2 =
Λ̃2−µ2

ex

q2+Λ̃2
. (20)

Λ̃ =
√
Λ2− (q0)2 µex =

√
m2

ex− (q0)2

q2−m2
ex =

(q0)2− q2−m2
ex = −(q2+µ2

ex) µex

q0

We  define  and  for
convenience. Note  that  for  inelastic  scattering,  the  en-
ergy  of  the  exchanged  meson  is  nonzero;  therefore,  the
denominator of the propagator can be rewritten as 

,  where  is  the  effective
mass of  the  exchanged  meson.  The  energy  of  the  ex-
changed meson  is calculated nonrelativistically as 

q0 =
m2

2−m2
1+m2

3−m2
4

2(m3+m4)
, (21)

m1(m3) m2(m4)

1/(q2+µ2
ex) A · qB · q/

(q2+µ2
ex) (A× q) · (B× q)/(q2+µ2

ex) A B

A = χ†3σχ1 B = ϵ∗4
1/(q2+µex) Yex

where  and  are the masses of the charmed-
baryon and  -meson  in  the  initial(final)  state.  The  mo-
mentum space  potentials  in  Eq.  (32)  in  Appendix  A  in-
clude  three  types  of  functions: , 

, and .  and  refer to
the vector  operators  acting  on  the  spin-orbit  wave  func-
tions of the initial or final states, and their specific forms
can be deduced from the corresponding terms in Eq. (32).
For  instance,  and  in  Eq.  (32b).  The
Fourier  transformation  of ,  denoted  by ,
reads as 

Yex =

∫
d3q

(2π)3
1

q2+µex

Å
Λ̃2−µ2

ex

q2+Λ̃2

ã2

eiq·r,

=
1

4πr
(e−µexr − e−Λ̃r)− Λ̃

2−µ2
ex

8πΛ̃
e−Λ̃r. (22)
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A · qB · q/(q2+µ2
ex)

Before  performing  the  Fourier  transformation  on
, we can decompose it as 

A · qB · q
q2+µ2

ex
=

1
3

ß
A ·B

Å
1− µ2

ex

q2+µ2
ex

ã
− S (A,B, q̂)|q|2

q2+µ2
ex

™
,

(23)

S (A,B, q̂) = 3A · q̂B · q̂− A ·B

δ(r)

δ(r)

δ(r)

δ(r)

δ(r)

where  is the tensor operator
in  momentum  space.  It  is  found  that  without  the  form
factor,  the constant  term in Eq.  (23) leads to a -term
in coordinate space after the Fourier transformation. With
the form factor, the -term becomes finite, and it dom-
inates the short-range part of the potential. From the phe-
nomenological  perspective,  the -term  can  mimic  the
role of  the contact  interaction [88],  which is  also related
to  the  regularization  scheme  [22].  In  Refs.  [101, 102],
after removing the -term, the hadronic molecular pic-
ture for  several  observed  hidden-charm  states  is  dis-
cussed with  the  pion-exchange  potential,  which  is  as-
sumed  to  be  of  long-range.  In  this  study,  we  separately
analyze the poles in the system with or without the effect
of  the -term. For  this  propose,  we  introduce  a  para-
meter a to distinguish these two cases, 

A · qB · q
q2+µ2

ex
− a

3
A ·B =1

3

ß
A ·B

Å
1−a− µ2

ex

q2+µ2
ex

ã
−S (A,B, q̂)

|q|2
q2+µ2

ex

™
. (24)

After  performing the  Fourier  transformation of  Eq.  (24),
we have 

∫
d3q

(2π)3

Å
A · qB · q
q2+µ2

ex
− a

3
A ·B
ãÅ
Λ̃2−µ2

ex

q2+Λ̃2

ã2

eiq·r

=− 1
3

[A ·BCex+S (A,B, r̂)Tex], (25)

S (A,B, r̂) = 3A · r̂B · r̂− A ·B
Cex Tex

where  is  the  tensor  operator
in coordinate space, and the functions  and  read as 

Cex =
1
r2

∂

∂r
r2 ∂

∂r
Yex+

a
(2π)3

∫ Å
Λ̃2−µ2

ex

q2+Λ̃2

ã2

eiq·rd3q,

(26)
 

Tex = r
∂

∂r
1
r
∂

∂r
Yex. (27)

δ(r)
a = 0(1)

The  contribution  of  the -term  is  fully  included  (ex-
cluded)  when  [88, 100].1) Similarly,  the  Fourier

(A× q) · (B× q)/(q2+µ2
ex)

(A× q)·
(B× q) = A ·B|q|2− A · qB · q

transformation  of  the  function 
can  be  evaluated  with  the  help  of  the  relation 

.

Yex Cex Tex

With the above prescription, the coordinate space rep-
resentations  of  the  potentials  in  Eqs.  (32)  can be  written
in terms of the functions , ,  and  given in Eqs.
(22) and (25). The potentials should be projected into cer-
tain  partial  waves  by  sandwiching  the  spin  operators  in
the potentials between the partial waves of the initial and
final states.  Computing the partial  wave projection is  la-
borious; hence, we refer to Refs. [88, 104] for details.

mσ = 600.0 mη = 547.9 mϕ = 1019.5

lS = 6.20 gS = 0.76 lB = −3.65
g = −0.59 g1 = 0.94 g4 = 1.06 βgV = −5.25 βS gV =

10.14 βBgV = −6.00 λgV = −3.27 GeV−1 λsgV = 19.2
GeV−1 λIgV = −6.80 GeV−1

In our calculations, the masses of exchanged particles
are  MeV,  MeV,  and 
MeV.  The  coupling  constants  in  the  Lagrangian  can  be
extracted from  experimental  data  or  deduced  from  vari-
ous  theoretical  models.  Here,  we  adopt  the  values  given
in  Refs.  [96, 105−107], , , ,

, , , , 
, , , 
, and , and their relative phases

are fixed by the quark model [104, 108].

Λ = 1.5
D+sΞc D+sΞ

′

c D∗+s Ξc D+sΞ
∗
c

Y(r, Λ,
mex) δ(r)

δ(r)

a = 0
δ(r)

δ(r)

The  possible S-wave  potentials  of  the  six  channels
with  GeV are shown in Fig. 1. The S-wave poten-
tials  of  the , , ,  and  channels  are
only  proportional  to  the  Yukawa-type  potential 

, and thus they are independent of the -term. The
potentials  of  the  other  channels  except  from σ exchange
depend on the -term, and thus the short-range (smal-
ler  than  approximately  1  fm)  potentials  have  different
shapes  for  or  1.  We  can  also  see  that  if  the  short-
range potentials depend on the -term, they are domin-
ated by the -term. 

C.    Schrödinger equations and poles
Pc

J/ψp

D̄(∗)Σc

D̄(∗)Σ(∗)
c

D(∗)+Ξ(′∗)
c
V jk

The  LHCb  pentaquarks  were  discovered  in  the
analysis  of  the invariant  mass distributions of ,  and
their  masses  are  several  MeV  below  the  thresholds  of

 systems [31, 32]. A natural explanation is that the
pentaquarks arise as bound states of , in which the
nonrelativistic  potentials  for  the  time-independent
Schrödinger equation deduced from the t-channel scatter-
ing amplitude are a good description for the interaction of
these systems [35−38, 86, 88]. We use the nonrelativistic
potentials  derived  in  the  previous  subsection  to  explore
bound states  or  resonances  in  systems.  For  the
coupled-channel  potential  matrix ,  the  radial
Schrödinger equation can be written as ï
− 1

2µ j

d2

dr2 +
l j(l j+1)

2µ jr2 +W j

ò
u j+

∑
k

V jkuk = Eu j, (28)

D(∗)+
s Ξ

(′,∗)
cMolecular states in  systems Chin. Phys. C 47, 123101 (2023)

a = O(1) Pc D̄(∗)Σ(∗)
c

D(∗)D̄(1,2)

1) From the perspective of effective field theory, such short-range interactions actually serve as the counter terms for the renormalization to cancel the cutoff depend-
ence of the pole positions. It was found that the parameter  in the previous studies of  states as molecules of  [88] and charmonium-like states as
molecules of  [103].
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u j u j(r) =
rR j(r) R j(r)

µ j W j

where j is  the  channel  index,  is  defined  by 
,  with  the  radial  wave  function  for  the j-th

channel,  and  are  the  corresponding  reduced  mass
and  threshold,  respectively,  and E is  the  total  energy  of
the system. The momentum for the channel j is expressed
as 

q j(E) =
√

2µ j(E−W j). (29)

By solving Eq. (28), we obtain the wave function, which
is normalized to satisfy the incoming boundary condition
for the j-th channel [109], 

u(k)
j (r)

r→∞−→ δ jke−iq jr −S jk(E)eiq jr, (30)

S jk(E)

W1 < W2 < · · · S jk(E)

E =W j

S jk(E)

where  is  the  scattering  matrix  component.  In  the
multi-channel problem, there is a sequence of thresholds,

, and the scattering matrix element  is
an  analytic  function  of E,  except  at  the  branch  points

 and possible  poles.  Bound/virtual  states  and  res-
onances  are  represented  as  the  poles  of  in  the
complex energy plane [109].

q j

The characterization of  these poles  requires  analytic-
ally extending the S matrix to the complex energy plane,
and  the  poles  should  be  searched  for  on  the  correct
Riemann sheet (RS). Note that momentum  is a double-
valued function of energy E, and there are two RSs in the
complex energy plane for each channel, one known as the
first or physical sheet and the other known as the second

Im[q j] ≥ 0 q j

Im[q j] < 0 q j

2n

q j(E)

r = (±, · · · ,±) ±
q j(E)

or  unphysical  sheet.  In  the  physical  sheet,  the  complex
energy E maps to the upper-half plane ( ) of .
In  the  unphysical  sheet,  the  complex  energy E maps  to
the  lower-half  plane  ( )  of .  In  a  coupled-
channel system with n channels, the scattering amplitude
has  RSs,  which can be defined by the imaginary part
of  the momentum  of  the j-th channel  (see Chapter
20 of Ref. [109] for more details). Each RS is labeled by

, and the j-th " " here denotes the sign of the
imaginary parts of the j-th channel momentum . 

III.  RESULTS AND DISCUSSIONS
 

A.    Single-channel analysis

D+sΞc D+sΞ
′

c D∗+s Ξc D+sΞ
∗
c D∗+s Ξ

′

c
D∗+s Ξ

∗
c 1.0−2.5

δ(r)

δ(r)

Pc

a = 0

Now, we discuss the possibility of bound {or virtual}
states  in  the , , , , ,  and

 systems by varying Λ in the range  GeV.
Considering  the  OBE  potentials  and S-D-wave  mixing,
the  pole  positions  are  obtained  by  solving  the
Schrödinger equation in Eq. (28). As discussed in the pre-
vious section, the -term dominates the short-range dy-
namics of the potentials and thus serves as the phenomen-
ological  contact  term,  which  is  used  to  determine  the
short-range  dynamics  of  hadron  interactions  [38].  The
proper  treatment  of  in the OBE model  plays  an im-
portant role in the simultaneous interpretation of the LH-
Cb  states  [88].  Therefore,  we  represent  the  results  in
two extreme cases with  or 1.

In the  single-channel  case,  the  bound  state  corres-
ponds to the pole located at the real energy axis below the

 

Λ = 1.5 a = 0(1)
δ(r)

Fig.  1.    (color  online) S-wave potentials  in single channels  with  GeV. Solid (dashed) lines correspond to ,  i.e.,  with
(without) the -term.

Nijiati Yalikun, Xiang-Kun Dong, Bing-Song Zou Chin. Phys. C 47, 123101 (2023)
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threshold on the first RS, whereas the virtual state corres-
ponds  to  the  pole  at  the  real  energy  axis  below  the
threshold on the second RS. The binding energies of the
bound or virtual states are defined as 

B = Epole−W. (31)

JP = 1/2−,3/2− 5/2−

1.0 2.5

D∗+s Ξ
′

c D∗+s Ξ
∗
c

δ(r)
δ(r)

δ(r)

Λ = 1.0
JP = 1/2− D+sΞc D∗+s Ξc

D+sΞ
′

c
D∗+s Ξ

′

c D∗+s Ξ
∗
c δ(r)

δ(r) D∗+s Ξ
′

c D∗+s Ξ
∗
c

JP =

1/2−D+sΞ
∗
c

JP = 3/2−

D∗+s Ξ
′

c D∗+s Ξ
∗
c

δ(r)
D∗+s Ξ

′

c δ(r)
D∗+s Ξ

∗
c

In  the  single-channel  case,  the  binding  energies  for
these  systems  with ,  and  when  the
cutoff  varies  from  to  GeV  are  shown  in Fig.  2.
Complementary to this, as shown in Fig. 1, the OBE po-
tentials for the  and  channels depend on the

-term, whereas those of the other channels are free of
the -term. The results for these two channels when the

-term is removed are given in the three subplots in the
right  panel  of Fig.  2.  As  shown  in  the  three  subplots  in
the left panel of Fig. 2, ten virtual states are found when

 GeV, which become bound states as the cutoff in-
creases.  In  the  sector,  the , ,  and

 states are more easily bound compared to those in
the  and  channels because the -terms in
the  potentials  of  the  latter  two  channels  are  repulsive.
After removing the -term, both the  and 
channels can form relatively deep bound states, as shown
in  the  top-right  subplot  in Fig.  2.  However,  the 

 system  is  in  the D-wave  and  cannot  form  a
bound state. In the  sector, the formation of the

 and  bound states  is  sensitive  to  the  treat-
ment of the -term. For instance, it is more difficult for
the  system to  be  bound when the -term is  re-
moved,  whereas  the  situation  is  reversed  for  the 

δ(r)
JP = 5/2−

D∗+s Ξ
∗
c

δ(r)

system  owing  to  the  opposite  sign  of  the -term  in
these  two  systems.  For  the  system,  only  one
near-threshold pole is found, corresponding to the 
channel.  Including  the -term  in  this  channel  makes
the binding easier.

S −D

D(∗)+
s Ξ

(′,∗)
c

As shown in Ref. [19], when only ϕ meson exchange
is  considered,  the  poles  in  the  ten  channels  mentioned
above are located at the second RS below the correspond-
ing  thresholds  and  move  toward  the  thresholds  as  the
cutoff  increases  in  a  reasonable  range.  In  this  study,  we
consider the contribution from other meson exchanges, η
and σ;  hence,  the  more  attractive  potentials  used  in  our
study  together  with  the  wave mixing  effect  natur-
ally  push  the  poles  on  the  second  sheets  to  the  1st  RS
when the cutoff is increased. In addition, the formation of
the bound states in double charm and hidden strangeness
systems, ,  is  easier  than  in  hidden  charm  and
double strangeness systems, as investigated in Ref. [110]. 

B.    Coupled-channel analysis

D+sΞc D+sΞ
′

c D∗+s Ξc D+sΞ
∗
c D∗+s Ξ

′

c D∗+s Ξ
∗
c

S (E)

26 r =
(±±±±±±)

We further investigate the coupled-channel dynamics
of the - - - - -  system by
solving  the  Schrödinger  equation  in  Eq.  (28).  Physical
resonances are calculated via analytic continuation of the

 matrix extracted  from  the  asymptotic  wave  func-
tion in Eq. (30) (see Refs. [109, 111]). In our case of the
6-channel  system,  there  are  RSs,  labeled  as 

. Note that we only focus on those that are re-
latively close to the physical real axis. We refer to the re-
view  section  of  Ref.  [89]  for  connections  between  each
RS and the physical real axis.

D+sΞc
D+sΞ

′

c D∗+s Ξc D+sΞ
∗
c D∗+s Ξ

′

c D∗+s Ξ
∗
c

Because the S-wave component of the coupled chan-
nels is  important  for  near-threshold  poles  and  contribu-
tions  from  other  higher  partial  wave  components  are
highly suppressed by centrifugal  potentials,  we first  turn
off S-D-wave mixing and only consider the S-wave com-
ponents  to  observe  the  pole  trajectories  in  the -

- - - -  coupled-channel sys-
tem by varying Λ.

JP = 1/2− D+sΞc
D+sΞ

′

c D∗+s Ξc D∗+s Ξ
′

c D∗+s Ξ
∗
c

1.0

δ(r)
Λ = 1.0

1.80, 1.70, 1.75, 2.65 2.40

D+sΞc D+sΞ
′

c D∗+s Ξc D∗+s Ξ
′

c D∗+s Ξ
∗
c

For  the  system,  the  five  channels -
- - -  can  couple  in  the S-wave.  In

this  case,  the  trajectories  of  poles  near  the  thresholds  of
these five channels as the cutoff increases from  GeV
are  shown in Fig.  3, and the  similar  results  after  remov-
ing the -term from the potentials are shown in Fig. 4.
When  GeV,  five  near-threshold  poles  emerge
simultaneously  on  the  complex  plane,  below  the
thresholds of the five channels; however, they are not dir-
ectly  connected  to  the  physical  real  axis.  They  move  to
the right  and  approach  the  thresholds  as  the  cutoff  in-
creases. If the cutoff increases up to sufficiently large val-
ues such that , and  GeV are ob-
tained  for  the  five  poles  below  the  thresholds  of  the

, , , ,  and  channels, re-
spectively, these five poles move into other RSs and be-

 

B

δ(r)

Fig. 2.    (color online) Binding energy ( ) of the bound states
(solid  curves)  or  virtual  states  (dashed  curves)  in  the  single
channels as Λ increases. The results without the -term are
shown in the left panel.

D(∗)+
s Ξ

(′,∗)
cMolecular states in  systems Chin. Phys. C 47, 123101 (2023)
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δ(r)
D∗+s Ξ

′

c
D∗+s Ξ

∗
c

δ(r)
D∗+s Ξ

′

c D∗+s Ξ
∗
c

come  directly  connected  to  the  physical  real  axis.  As
shown in Fig.  4,  if  the -terms  are  removed  from the
potential,  the  poles  near  the  thresholds  of  and

 appear in the region connected to the physical real
axis with smaller cutoff. Such behavior of these two poles
from the effect of the -term also mimics that of bound
states  in  the  single-channel  case  of  and  in
the previous subsection.

JP = 3/2− D∗+s Ξc

D+sΞ
∗
c D∗+s Ξ

′

c D∗+s Ξ
∗
c

1.0
δ(r)

δ(r)
D∗+s Ξ

∗
c

1.0−3.0

For  the  system,  the  four  channels -
- -  can  couple  in  the S-wave.  The  pole

trajectories  near  the  thresholds  of  these  four  channels  as
the  cutoff  increases  from  GeV  are  shown  in Fig.  5,
and the pole trajectories after removing the -term are
shown  in Fig.  6. In  both  the  cases  of  including  and  ex-
cluding the -term, the pole below the threshold of the

 channel  does  not  appear  on  the  RS  connected  to
the  physical  real  axis  within  the  cutoff  range 
GeV.1)

D∗+s Ξ
∗
c JP = 5/2−Because only  can form the  system if

only  the S-wave is  considered,  no  coupled-channel  dy-
namics appear.

D+sΞc D+sΞ
′

c D∗+s Ξc D+sΞ
∗
c D∗+s Ξ

′

c D∗+s Ξ
∗
c

JP = 3/2−,5/2−

D∗+s Ξ
′

c D∗+s Ξ
∗
c

To  estimate  the  contribution  of  the  possible D-wave
components,  we  turn  to  the S-D-wave  mixing  potential
and calculate the pole positions near the thresholds of the

, , , , ,  and  channels.
The  behaviors  of  these  poles  by  varying  the  cutoff  are
presented in Appendix B, which indicates that S-D-wave
mixing effects  cause  the  poles  to  appear  on the  RS con-
nected  to  the  physical  real  energy  axis  with  smaller
cutoff.  In  other  words, S-D-wave mixing  provides  addi-
tional attractions to these systems. In particular,  such ef-
fects  are  more  important  for  poles  with 
near the thresholds of the  and  channels.

δ(r)

In our calculation, we can determine neither the cutoff
Λ  nor  the  reduction  parameter a,  which  represents  the
contribution of the -term, i.e., the short-range interac-
tion,  because  there  is  no  experimental  data  on  double-
charm pentaquarks with hidden strangeness. However, as
an illustrative result, we can present full coupled-channel
results  including S-D-wave  mixing  effects  by  fixing  the

 

D+s Ξc D+s Ξ
′
c D∗+s Ξc D∗+s Ξ

′
c D∗+s Ξ

∗
c

JP = 1/2−

D+s Ξc

Fig. 3.    (color online) Trajectories of the near-threshold poles
in  the - - - -  channels  with

 by  varying  the  cutoff.  For  each  pole,  the  dashed
(solid)  curve  represents  the  trajectory  of  the  pole  in  the  RS,
whose label  is  shown in  the  left  (right)  parenthesis  in  the  le-
gend, where the number (in units of GeV) is the starting value
of  the  cutoff.  The  trajectory  of  the  virtual  pole  of  the 
system is artificially moved from the real axis to the complex
plane for better illustration.

 

δ(r)

Fig.  4.    (color  online)  Similar  to Fig.  3,  but  after  removing
the -term.

 

D∗+s Ξc D+s Ξ
∗
c D∗+s Ξ

′
c D∗+s Ξ

∗
c JP = 3/2−

D∗+s Ξc

Fig. 5.    (color online) Trajectory of the near-threshold poles
in  the - - -  channels  with  by
varying  the  cutoff.  The  trajectory  of  the  virtual  pole  of  the

 system  is  artificially  moved  from  the  real  axis  to  the
complex plane for better illustration. See the caption of Fig. 3.

 

δ(r)
Fig.  6.    (color  online)  Similar  to Fig.  5,  but  after  removing
the -term.

Nijiati Yalikun, Xiang-Kun Dong, Bing-Song Zou Chin. Phys. C 47, 123101 (2023)

D∗+s Ξ
′
c a = 11) We have noticed the strange behavior of the pole close to and below the threshold of  when  in Fig. 6 and we have verified it by varying a from 0.5 to

1.0 in a step of 0.1.
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1.5
Pc

Λ = 1.4
Λ = 1.04

Λ > 1.5

Λ = 1.5
D+sΞc D+sΞ

′

c D∗+s Ξc D+sΞ
∗
c D∗+s Ξ

′

c
D∗+s Ξ

∗
c

D+sΞc

JP = 1/2−

△

△

δ(r)

δ(r) δ(r)
1/2−(D∗+s Ξ

′

c) 1/2−(D∗+s Ξ
∗
c)

3/2−(D∗+s Ξ
∗
c) 3/2−(D+sΞ

∗
c)

3/2−(D∗+s Ξ
∗
c) 5/2−(D∗+s Ξ

∗
c)

cutoff  to  GeV, which  is  somehow  phenomenologic-
ally  reasonable  because  the  LHCb  pentaquarks  [32]
are  reproduced  with  GeV  in  Ref.  [88],  with

 and  1.32  GeV  in  Ref.  [86].  It  is  mentioned  in
Ref.  [22]  that  in  nucleon-nucleon  interactions,  values  of
Λ between 0.8 and 1.5 GeV have been used depending on
the  model  and  application,  and  larger  values  (
GeV) are also required for nucleon-nucleon phase shifts.
By  setting  GeV,  ten  poles  are  found  near  the
thresholds of the , , , , , and

 channels,  as  shown in Table  2.  Among them,  the
pole below the threshold of the lowest channel  with

 is  a  bound  state.  The  poles  with  imaginary
parts,  except for those labeled with superscripts  " ,"  are
resonances.  These  poles  correspond  to  the  solid  lines  in
Figs. 3 and 5, which are directly connected to the physic-
al  real  axis  and  therefore  known  as  "bound-state-like"
poles or  physical  resonances.  Conversely,  the poles with
superscripts  " ,"  corresponding  to  the  dashed  lines  in
Figs.  3 and 5,  are  not  directly  connected  to  the  physical
real  axis  and  are  therefore  known  as  "virtual-state-like"
poles. We must emphasize that a "virtual-state-like" pole,
although located on the RS remote from the physical real
axis, may cause a clear cusp (peak- or dip-like) structure
at  the  threshold  if  the  pole  is  located  close  to  the
threshold.  The  resonances  can  decay  to  lower  channels,
and the partial decay widths shown in the last column of
Table  2 are  calculated  using  the  procedure  presented  in
Ref. [104]. Similar results obtained by removing the -
term  from  the  potentials  are  shown  in Table  3.  For  the
cases  without ,  compared  to  the  cases  with  the -
term,  we  find  that  1) , ,  and

 become  resonances,  and  2) ,
, and  turn to "virtual-state-like"

poles.
From the above results, we find that some states, such

1/2−(D+sΞ
′

c) 3/2−(D+sΞ
∗
c)

η′

f0(980)

η′ f0(980)
D(∗)+

s Ξ
(∗,′)
c

f0(980)

g1
η′ SU(3)

η′

f0(980) 957.8 990.0
Λ = 1.5 GeV

1/2−(D+sΞc) 1/2−(D+sΞ
′

c) 1/2−(D∗+s Ξc) 3/2−(D∗+s Ξc)
3/2−(D+sΞ

∗
c) 3/2−(D∗+s Ξ

′

c) 5/2−(D∗+s Ξ
∗
c)

4436.81 4546.45− i0.03 4558.57− i1.38
4564.9− i0.11 4612.86− i0.3 4684.02− i3.6 4716.58−
i12.22 MeV

1/2−(D+sΞ
′

c)

δ(r)
1/2−(D+sΞ

′

c) 3/2−(D+sΞ
∗
c)

(4544.84− i0.22) MeV
(4613.99− i0.44) MeV

as  and ,  are  extremely  close  to
their  thresholds  and  will  appear  as  resonances  with  the
additional  attraction  due  to  the  exchange  of  and

 mesons. Consequently, the pole positions for the
other states also move slightly away from the correspond-
ing thresholds owing to this attraction. Up to the masses
of the exchanged mesons, the  and  exchanges in
the  systems  are  the  same  as  the η and σ ex-
changes, respectively, and the potentials of these systems
are described  in  Appendix  A.  For  their  coupling  con-
stants, we assume that the  coupling has the same
strength as the σ coupling, and the universal couplings of
the  pseudoscalar  octet  mesons  and g are  adopted  for
the couplings of  by including it into the  octet of
the  pseudoscalar  meson  [112].  The  masses  of  and

 are taken as  and  MeV [89]. With the
cutoff ,  the  pole  positions  for  the

, , , ,
, ,  and  states in this

case  are , , ,
, , , and 

 in  units  of ,  respectively.  Compared  to  the
results  in Table  2,  the  pole  corresponding  to  the

 state  appears  at  the  RS  connected  to  the
physical  real  energy axis,  and the other poles are shifted
toward the lower thresholds. In the case without the -
term, the poles labeled with  and 
appear  in  the  RS  connected  to  the  physical  real  energy
axis  at  the  positions  of  and

,  respectively.  The  other  poles  are
also slightly shifted toward the lower threshold.

D+sΞc

D+sΞc

D(∗)Λc D(∗)Σ(∗)
c K(∗)

Note that in the above calculations,  is the low-
est channel; therefore, the pole below its threshold is loc-
ated on the real axis and is stable against the strong inter-
action.  In  fact, ,  as  well  as  other  higher  channels,
can  transit  into  or  via  exchange,

 

D+s Ξc D+s Ξ
′
c D∗+s Ξc D+s Ξ

∗
c D∗+s Ξ

′
c

D∗+s Ξ
∗
c Λ = 1.5 △

· · · Γi

Table  2.    Pole  positions  and  partial  decay  widths  of  the  states  in  the  coupled-channel  system  of - - - - -
 when  GeV with S-D-wave mixing. The poles labeled with the superscript " " are "virtual-state-like" poles emerging on

the RSs far from the physical real axis. Each entry labeled with " " in the column  indicates that the decay is not allowed.

JP Nearby channel Threshold/MeV Epole /MeV Γi D+s Ξc/D+s Ξ
′
c/D

∗+
s Ξc/D+s Ξ

∗
c/D

∗+
s Ξc/D∗+s Ξ

∗
c( )/MeV

1/2−

D+s Ξc 4437.76 4437.71 · · ·

D+s Ξ
′
c 4547.14 4547.04− i0.01△ · · ·

D∗+s Ξc 4581.62 4564.26− i1.00 0.18/1.81/ · · ·/ · · ·/ · · ·/ · · ·

D∗+s Ξ
′
c 4691.00 4687.07− i3.97△ · · ·

D∗+s Ξ
∗
c 4758.17 4754.05− i4.27△ · · ·

3/2−

D∗+s Ξc 4581.62 4569.56− i0.02 0.01/0.04/ · · ·/ · · ·/ · · ·/ · · ·

D+s Ξ
∗
c 4614.31 4614.29− i0.05 0.00/0.02/0.10/ · · ·/ · · ·/ · · ·

D∗+s Ξ
′
c 4691.00 4689.01− i2.58 3.36/0.06/1.9/0.36/ · · ·/ · · ·

D∗+s Ξ
∗
c 4758.17 4769.34− i9.95△ · · ·

5/2− D∗+s Ξ
∗
c 4758.17 4727.40− i13.37 7.82/0.19/19.27/0.33/0.02/ · · ·

D(∗)+
s Ξ
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D+sΞc

D(∗)Λc

1/2−(D+sΞc) D(∗)Λc

D(∗)+
s Ξ

(∗,′)
c

1/2−(D+sΞc)

1/2−(D+sΞc) D(∗)Λc

O(1 MeV)
D(∗)Λc

D(∗)Λc

D+sΞc D+sΞ
′

c D∗+s Ξc

D+sΞ
∗
c D∗+s Ξ

′

c D∗+s Ξ
∗
c

which will lead to a finite width of the  bound state.
Because we  are  not  aiming  at  a  precise  result,  we  intro-
duce only the  channels  into  the  previous coupled
channels  to  roughly  estimate  the  decay  width  of  the

 bound  state.1) The  potentials  for  the 
channels  coupled  to  the  channels  are  listed  in
Appendix C. The  bound state now moves in-
to the complex energy plane, and the pole positions along
with their partial decay widths are shown in Table 4. We
find  that  the  sum  of  the  partial  decay  widths  of  the

 bound  state  to  the  final  states  is
. For the poles related to other higher channels,

we  expect  similar  or  larger  contributions  of  the 
channels to their decay widths owing to the larger phase
space.  Therefore,  we consider  as  a  good place  to
search for the predicted states in the - - -

- -  coupled-channel system. 

IV.  SUMMARY

Pc

D+(∗)
s Ξ

(′,∗)
c

D+sΞc D+sΞ
′

c D∗+s Ξc D+sΞ
∗
c D∗+s Ξ

′

c
D∗+s Ξ

∗
c

In  this  study,  as  partners  of  pentaquarks,  double-
charm hidden-strangeness pentaquarks near the 
thresholds are systematically investigated in the hadronic
molecular picture.  Possible  near-threshold  states  are  ex-
plored  as  their  molecular  candidates  within  the  OBE
model.  First,  the  possible  bound  or  virtual  states  in  six
single  channels, , , , , ,  and

, are  calculated  by  solving  the  Schrödinger  equa-

1.0−2.5
δ(r) JP = 1/2−

JP = 3/2− JP = 5/2−

Λ > 1

δ(r)
D+sΞc D+sΞ

′

c
D∗+s Ξc D+sΞ

∗
c D∗+s Ξ

′

c D∗+s Ξ
∗
c

δ(r)

D∗+s Ξ
′

c D∗+s Ξ
∗
c

JP = 1/2− D+sΞc

D(∗)Λc D(∗)Σ(∗)
c

JP = 1/2− 3/2−

D∗+s Ξc

δ(r)

D(∗)Λc

tion with OBE potentials including S-D-wave mixing. By
varying the cutoff in the range  GeV and includ-
ing  the -term,  five  states  with ,  four  states
with ,  and  one  state  with  can  form
virtual states if  GeV, which turn into bound states
when Λ  becomes  sufficiently  large.  In  addition,  the  res-
ults  after  removing  the -term  are  also  presented.
Second,  the  coupled-channel  dynamics  of - -

- - -  are  further  investigated,  and
the  masses  and  widths  of  ten  possible  resonances  and
bound  states  as  molecular  candidates  for  double-charm
hidden-strangeness  pentaquarks  are  calculated.  For  the
ten molecular states in our coupled-channel analysis,  the
role  of  the -term in  the  OBE  potentials  is  also  ex-
amined.  Its  influence on the poles near  the thresholds of
the  and  channels  is  most  significant.  Our
study indicates that among these ten poles, the pole with

 below  the  threshold  is  a  bound  state,
which becomes  a  resonance  after  introducing  the  coup-
ling to the lower  and  channels, two poles
with  and  below  the  threshold  of  the

 channel  are  physical  resonances,  and  the  other
seven  poles  are  resonances  or  "virtual-state-like"  poles,
depending  on  the  contribution  of  the -term  in  the
OBE model.  Further  experimental  investigations  are  re-
quired  to  verify  these  results.  These  poles  may  lead  to
near-threshold structures in the  final states and can
be searched for in the future. 

APPENDIX
 

D(∗)
s Ξ

(′,∗)
cA.    POTENTIALS RELATED TO THE 

CHANNELS
D(∗)

s Ξ
(′,∗)
cThe  potentials  related  to  the  channels  are

shown below. 

 

δ(r)Table 3.    Same as Table 2, but without the -term.

JP Nearby channel Threshold/MeV Epole /MeV Γi D+s Ξc/D+s Ξ
′
c/D

∗+
s Ξc/D+s Ξ

∗
c/D

∗+
s Ξc/D∗+s Ξ

∗
c( )/MeV

1/2−

D+s Ξc 4437.76 4437.73 · · ·

D+s Ξ
′
c 4547.14 4547.14− i0.00△ · · ·

D∗+s Ξc 4581.62 4565.34− i2.68 0.18/4.98/ · · ·/ · · ·/ · · ·/ · · ·

D∗+s Ξ
′
c 4691.00 4686.30− i4.49 1.20/6.41/2.02/0.01/ · · ·/ · · ·

D∗+s Ξ
∗
c 4758.17 4742.51− i6.44 2.81/2.57/6.26/0.05/1.46/ · · ·

3/2−

D∗+s Ξc 4581.62 4570.09− i0.02 0.00/0.04/ · · ·/ · · ·/ · · ·/ · · ·

D+s Ξ
∗
c 4614.31 4614.26− i0.22△ · · ·

D∗+s Ξ
′
c 4691.00 4689.71− i6.38△ · · ·

D∗+s Ξ
∗
c 4758.17 4747.06− i16.76 2.29/0.02/24.51/7.32/3.89/ · · ·

5/2− D∗+s Ξ
∗
c 4758.17 4763.39− i11.20△ · · ·

 

1/2−(D+s Ξc) D(∗)Λc

δ(r)

Table  4.    Pole  positions  and  partial  decay  widths  of  the
 bound state after including the lower  chan-

nels. The -term and S-D mixing are considered.

Λ/MeV Epole /MeV Γi(DΛc/D∗Λc)/MeV

1500 4437.62− i0.37 0.88/0.02

1600 4435.92− i1.12 2.04/0.06

Nijiati Yalikun, Xiang-Kun Dong, Bing-Song Zou Chin. Phys. C 47, 123101 (2023)

D(∗)Σ(∗)
c D(∗)Λc1) Compared to ,  has a larger phase space and it is also easier to be detected in experiments.
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λλS g2

V

2
√

3

(iχ†3×σχ1× q) · (ϵ∗4 × q)
q2+µ2

ϕ

, (A8)

 

V33 = 2lBgS
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σ
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χ†3χ1ϵ
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4 · ϵ2
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V36 =− gg4√
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V

(χ†3× qχ1) · (iϵ2× ϵ∗4 · q)
q2+µ2

ϕ

, (A12)

 

V44 = −lS gS
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, (A13)
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ϵ2 ϵ∗4where  and  are the polarization vectors for charmed
mesons in the initial and final states.
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B.    VARIATIONS IN POLE POSITIONS WITH
S-D-WAVE MIXING

JP = 1/2−

1.45 2.6

EI
pole

EII
pole

EIII
pole EI

pole

EVI
pole EV

pole

In this section, we show the pole behavior with S-D-
wave  mixing  when  varying  Λ.  In  the  coupled-channel
system with , five poles are found as the cutoff
varies from  to  GeV, and their positions are giv-
en  in Table  B1,  where  the  sign  of  the  imaginary  part  of
each channel momentum is shown in the parenthesis. The
pole labeled with  is located on the real energy axis
of RS-I and is a bound state. The poles labeled with 
and  together with  emerge with relatively smal-
ler  cutoffs  compared to  the other  two poles  labeled with

 and . Moreover, the latter two are considerably
broader.

δ(r)
JP = 1/2−

δ(r)
EIII

pole EV
pole EVI

pole
δ(r)

EIII
pole

EV
pole EVI

pole

With the -term in the potentials removed, the pos-
itions  of  the  five  poles  in  the  system  as  the
cutoff  increases  are  shown  in Table  B2.  In  this  sector,
considerable  effects  of  the -term  can  be  observed
from the last three poles labeled as , , and .
For instance, after removing the -term, the third pole
labeled with  becomes broad, and the fourth and fifth
poles labeled with  and  emerge in the region of
the  RSs  connected  to  the  physical  real  energy  axis  with
relatively smaller  cutoffs  because  these  poles  are  relev-
ant  to  the  bound  states  in  the  single  channel  analysis

shown in Fig. 2.
JP = 3/2

1.4 1.55
EIII

pole EIV
pole EV

pole
D∗+s Ξc D+sΞ

∗
c D∗+s Ξ

′

c

EVI
pole

D+sΞ
∗
c

δ(r) EIII
pole

For the  system, as shown in Table B3, four
poles  are  found  as  the  cutoff  increases  from  to 
GeV. Three of them, labeled with , ,  and ,
are below the thresholds of the , , and 
channels,  whereas  the  last  one,  labeled  with ,  is
above the threshold of the  channel. After removing
the -term,  the  pole  stays  almost  the  same,  and
the  cutoff  dependence  of  the  other  poles  in  this  sector
changes, as shown in Table B5.

JP = 5/2−

δ(r)

D∗+s Ξ
′
c D∗+s Ξ

∗
c

JP = 1/2− 3/2− δ(r)
JP = 5/2−

EI,II,III
pole JP = 1/2−

EIII,IV
pole JP = 3/2− EVI

pole
JP = 5/2− δ(r)

D∗+s Ξ
′
c D∗+s Ξ

∗
c

JP = 1/2−,3/2−

δ(r)
D∗+s Ξ

′
c

D∗+s Ξ
∗
c

For the  system, only one pole is found. The
positions of the pole considering the coupled-channel po-
tential  with  or  without  the -term are  shown in Table
B4.  Compared  to  the  poles  near  the  thresholds  of  the

 and  channels  in  coupled-channel  systems
with  and ,  the  effect  of  the -term  on
the pole in the  sector is not significant. Among
these ten poles, the  poles in the  system,

 poles in the  system, and  pole in the
 system  are  not  sensitive  to  the -term  and

can  appear  with  relativity  smaller  cutoffs,  whereas  the
other  poles  near  the  thresholds  of  the  and 
channels in the  systems have different be-
haviors  in  the  cases  with  and  without  the -term.  In
each case, the poles near the thresholds of the  and

 channels are broad and difficult to observe. 

 

JP = 1/2−

· · · ERS
pole

Table B1.    Pole positions on the RSs close to the physical real axis in the coupled-channel system with .  Each entry with
" " indicates that the pole goes to the other RS far from the physical real axis. Λ and the pole position ( ) are in units of MeV.

Λ EI
pole(++++++) EII

pole(−+++++) EIII
pole(−−++++) Λ EV

pole(−−−−++) EVI
pole(−−−−−+)

1450.0 · · · · · · 4572.86− i0.69 2450.0 4690.37− i2.08 4736.88− i26.43

1500.0 4437.71 · · · 4564.26− i1.00 2500.0 4688.48− i4.84 4731.39− i35.46

1550.0 4436.76 4546.13− i0.05 4552.59− i1.62 2550.0 4684.87− i12.06 4726.27− i46.64

1600.0 4434.43 4545.90− i0.01 4536.67− i0.27 2600.0 4675.30− i24.38 4722.37− i59.79

 

δ(r)Table B2.    Same as Table B1, but the -term is removed.

Λ EI
pole(++++++) EII

pole(−+++++) EIII
pole(−−++++) EV

pole(−−−−++) EVI
pole(−−−−−+)

1400.0 · · · · · · 4579.28− i0.09 4690.86− i0.79 4754.72− i2.14

1500.0 4437.73 · · · 4565.34− i2.68 4686.30− i4.49 4742.51− i6.44

1600.0 4433.68 · · · 4546.50− i7.00 4676.58− i10.59 4722.74− i12.84

1700.0 4419.55 4545.88− i0.01 4490.75− i0.74 4661.41− i18.69 4697.24− i20.24

 

JP = 3/2−Table B3.    Same as Table B1, but with .

Λ EIII
pole(−−++++) EIV

pole(−−−+++) EV
pole(−−−−++) EVI

pole(−−−−−+)

1400.0 4579.95− i0.02 · · · · · · · · ·

1450.0 4576.07− i0.03 · · · 4691.46− i0.79 4767.11− i2.60

1500.0 4569.56− i0.02 4614.29− i0.05 4689.01− i2.58 4769.34− i9.95

1550.0 4560.07− i0.01 4612.57− i0.28 4683.28− i4.09 4771.33− i20.23

Nijiati Yalikun, Xiang-Kun Dong, Bing-Song Zou Chin. Phys. C 47, 123101 (2023)
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D(∗)ΛcC.    POTENTIALS RELATED TO  CHANNELS

D(∗)Λc

D(∗)+
s Ξ

(′,∗)
c

With the  procedure  described in  Sec.  IIB,  the  effect-
ive  potentials  in  the  momentum  space  for  the 
channels  coupled  to  the  channels  are  derived
using the Lagrangian in Eq. (2) and shown below.
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6 f 2

π

(χ†3σχ1 · q)(iϵ2× ϵ∗4) · q
q2+µ2

K

+
2λIλg2

V√
6

(χ†3σχ1× q) · (iϵ2× ϵ∗4 × q)
q2+µ2

K∗
,

(C9)

 

VD∗Λc→D∗+s Ξ
∗
c =− gg4√

2

χ†3 · qχ1(iϵ2× ϵ∗4) · q
q2+µ2

K

−
√

2λλIg2
V

(χ†3× qχ1) · (iϵ2× ϵ∗4 · q)
q2+µ2

K∗
,

(C10)

mω = 782.7
mK = 493.7 mK∗ = 891.7

where the masses of the relevant particles are 
MeV,  MeV, and  MeV.
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