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Expanding proton dripline by employing a number of muons®
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Abstract: Through mean-field calculations, we demonstrate that, in a large Z nucleus binding multiple muons,

these heavy leptons localize within a few dozen femtometers of the nucleus. The mutual Coulomb interactions

between the muons and protons can lead to a substantial decrease in proton chemical potential, surpassing 1 MeV.

These findings imply that, in principle, the proton-dripline can be expanded on the nuclear chart, suggesting the pos-

sible production of nuclei with Z around 120.
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I. INTRODUCTION

Interestingly, the dimensionless value of the electro-
2

magnetic interaction strength, given by %, is approxim-
ately the reciprocal of 137, while the highest observed
elemental number is 118. The proximity of these funda-
mental numbers is not coincidental; it arises from the in-
terplay between nuclear and Coulomb interactions in nuc-
lei. While the short-ranged nuclear interaction strength
has a dimensionless value of 1, the long-ranged Coulomb
repulsive interaction between protons, with a strength of
1/137, can collectively exceed the nuclear interaction and
make it impossible to bind more protons to a nucleus with
Z close to 120. A rough estimate can be made in terms of
the energy per proton. The Coulomb energy between two
unit charges separated by one fm is 1.44 MeV. However,
for a large nuclear system with Z ~ 100, the average dis-
tance between two protons is approximately 8 fm, and the
Coulomb energy is 0.18 MeV. With 100 protons, the
Coulomb energy per proton becomes 0.18 MeV *100/2 =
9 MeV (accounting for double counting), which corres-
ponds to a typical nuclear binding energy per nucleon.
This indicates that the chemical potential of protons is
close to a sign reversal, and the system is approaching the
limit of the largest Z.

In atoms, the Coulomb interaction between protons
and electrons is attractive and may mitigate the repulsive
Coulomb energy among protons. However, the Coulomb
energy contribution from electrons is negligible because

their average distance from the nucleus is several orders
of magnitude greater than the typical nuclear distance.
The pronounced discrepancy in size between atoms and
nuclei is intrinsically associated to the fact that the mass
of an electron is approximately one two-thousandth the
mass of a nucleon. If electrons were to be confined with-
in dimensions comparable to the size of a nucleus, their
kinetic energies would be prone to escalating up to 100
MeV or even higher, given their diminutive mass. The in-
troduction of muons, as heavier variants of electrons in
nature, could potentially reshape the scenario assuming
coupling with a nucleus. Muons, which possess a mass
that is one-ninth that of nucleons, can be positioned much
closer to protons, leading to the emergence of mutual at-
tractive Coulomb energies that approach energy scales
characteristic of nuclear interactions. This rather in-
triguing possibility could expand the scope of nuclear sta-
bility studies and enhance the understanding of the funda-
mental forces governing these systems.

The system of a nucleus bound to a muon has been
extensively studied in the past. It is well established that a
muon does not participate in strong interactions and inter-
acts with other particles through its charge, magnetic mo-
ment, and weak and neutral currents [1]. When a muon
enters a substance, it is slowed down by collisions and is
captured by an atom, forming a muonic atom. By study-
ing the hyperfine structure of the spectrum of a muonic
atom, knowledge about the nucleus can be obtained, en-
abling the determination of the nuclear ground state spin
and measurement of the magnetic dipole moment and
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electric quadrupole moment of the nucleus [2—5]. Extens-
ive theoretical work encompassing nuclear physics, atom-
ic physics, and quantum electrodynamics has also been
developed and applied to study muonic atoms and ions
[6-9].

In this paper, Skyrme-Hartree-Fock (SHF) was em-
ployed to study nuclei with a number of muons. SHF is a
highly successful self-consistent microscopic model ex-
tensively used to study nucleus properties [10—12]. Giv-
en that muons do not participate in strong interactions, we
only need to consider Coulomb interactions between
muons and protons, as well as between muons when mul-
tiple muons exist. We demonstrate that when a large-Z
nucleus is bound to a number of muons, the chemical po-
tential of protons can be lowered by more than 1 MeV,
indicating that the system can accommodate more pro-
tons. This allows for the expansion of the proton drip line
on the nuclear chart and the production of a nucleus with
a Z around 120. Given that a muon has a lifetime of 2 mi-
croseconds, it is technically challenging to generate a
nucleus with a number of muons in the lab. However,
compared to the typical nuclear timescale of 10722
seconds, such a lifetime is sufficiently long, and these in-
triguing systems may be experimentally investigated in
the future.

II. THEORETICAL FRAMEWORK

We consider a system comprising a nucleus with a
specific number of muons. The total Hamiltonian of the
nucleus-muons system can be expressed as follows:

e?pp()pu(r)

drdr’, 1
r_p|  ordr M

HN#sZHN-i-H#S—/

where Hy represents the nuclear Hamiltonian and H
denotes the Hamiltonian of the muons alone; p,(r) and
pu(r) correspond to the proton density and muon density,
respectively; and e represents the charge of a proton.

H, can be written as follows:

N g2 N2
Hy=-Y —Vi+ , 2
s ZZmﬂl eri_m ©)
i=1 i<j .

where 7 is the Plank constant, N, corresponds the total
number of muons, and m,, denotes the mass of an muon.
The nuclear interaction is modeled as a Skyrme's
density-dependent interaction presented in Ref. [11].
Here, we only describe the general framework. The

Skyrme interaction can be written as a potential:

V=30 . ©)

i<j i<j<k

with a two-body part v;; and three-body part v;j. To sim-
plify calculations, Skyrme used a short-range expansion
for the two-body interaction and a zero-range force for
the three-body force.

Concerning the Skyrme interaction, there exists a
straightforward manner to obtain the Hartree-Fock equa-
tions. Consider a nucleus whose ground state is represen-
ted by a Slater determinant ¢ of single-particle states ¢;:

1
O (x1,X2,...,X4) = Wdet}qﬁi (xj)|, 4

where x denotes the set r, o, ¢ of space, spin, and isospin

. 1 1
coordinates (q =+ for a proton, -3 for a neutron). The

expectation value of the total energy is expressed as fol-
lows:

E=(¢[(T+V)l¢)

X

= / H(r)dr,

m
where ¥ denotes an antisymmetrized matrix element. For
the Skyrme interaction, the energy density H(r) is an al-
gebraic function of the nucleon densities p, (o,), kinetic
energy 7, (7,), and spin densities J, (J,). These quantit-
ies depend in turn on the single-particle states ¢; defining
the Slater-determinant wave function ¢ as follows:

1 T | .
D+5 %:<’]|V12| i)+ ¢ D (ijklPioslijk)

ijk

)

peX) = _1gi(r,0. ),
(1) = Y IVgi(r, 0,9,

J,0) = (=) Y 6/(r,0,9) [Vei (r.0”.q) x(clerla”)] . (6)

i,0,0"

The sums in above equations are taken over all occupied
single-particle states. The exact expression for H(r) is as
follows [11]:

h 1 1 1 1
H(x) = 57(0)+ S1o[(1+ 5 x0)p” = (X0 + )(op +pp) + 3 (1 +12)pT

2
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1 1 1
+ 5 (= 1)PaTn+ppTp)+ 1 (2 =310pVp+ 25 Bt1 +2)(PaVpn + 9y Vo)

1 1 1
+ 1 =)+ 30 + 1130uppp + He() = SwopV - J+puV - Ju+0,V - J), (7

where p=p,+p,, T=7,+7, and J=J,+J,; xo fo,
t1, ty, 13, wog describe the parameterization of the nuclear
force. The direct part of Coulomb interaction in H¢(r) is

1
3 Ve(r)p,(r), where

2

Ve(r) = / pp(t)———dr'. (®)

Ir—r’|

We refer to V¢(r) as the Coulomb potential generated by
protons, and one obtains the Coulomb potential of muons
by replacing p, with p,. The Hartree-Fock equations for
the Skyrme interaction are obtained by assuming that the
total energy E is stationary with respect to individual
variations of the single-particle states ¢;, with the subsidi-
ary condition that ¢; are normalized:

5%1, (E‘ zj:ei/kﬁi(r”z d3r> =0. )

It can be shown ¢; satisfy the following set of equations,

n? , ~
{—V : WV + Uy(r) + Wo(r)- ()Y X 0) | ¢; = eid;.
(10)

Equation (10) involves an effective mass m;(r) which de-
pends on the density as follows:

7 —h—2+l(z +t)+1(t 1) (11)
2mi(r)  2my 4o TRPT T IP

The potential U,(r) is expressed as follows:

1 1 1
Uyg(x) =to[(1 + S x0)p = (X0 + gl + 313(0° = pg)
1 1
1 V204 — V2
8(311 1)Vp+ 16(3t1 +1)Vop,
1 1
+ Z([] +1)T+ g([z —ll)Tq
1
- EWO(V~J+V~Jq)+5q,+%VC(r). (12)

The form factor W, (r) of the spin-orbit potential is ex-
pressed as follows:

1 1
W) = 5 Wo(Vp+Vpg) + o (0= 1)Jy(0). (13)

We employed the force Il parameterization from Ref.
[11] for the Skyrme force in the numerical code de-
veloped. Specifically, we used the following parameter
values: xp = 0.34, o= —1169.9 MeV fm3, #;= 585.6 MeV
fm®, = —27.1 MeV fm>, 13 = 9331.1 MeV fm°, and
Wo= 105 MeV fm>. By successfully reproducing the out-
comes reported in the aforementioned reference for vari-
ous nuclei, we validated the reliability of the code.

When binding a specific number of muons to the nuc-
lei, it becomes imperative to incorporate the Coulomb po-
tential contributed by the muons into the self-consistent
mean field calculation for determining the single-particle
orbit of protons. The mean field that governs the single-
particle orbits of muons comprises the Coulomb poten-
tial generated by the protons and the Coulomb potential
generated by the muons themselves; specifically, the
single-particle states denoted as ¢;(r,o) satisfy the fol-
lowing equations,

2 2 /N ,
(_2}:[71V2 - / Wdr,) @i(r,o) = gipi(r,0).
7

(14)

To obtain self-consistent results, we performed a
series of numerical iterations until convergence was
achieved. During each iteration, the updated potentials
derived from the previous iteraction were employed to
compute the single-particle orbits. From these orbits, the
new single-particle densities were calculated and utilized
to construct the updated potentials for the next iteration.
This iterative process continued until the desired conver-
gence was attained.

In the numerical implementation, we assumed spher-
ical symmetry of the system so that the computation was
reduced essentially to integrating the system along the ra-
dial direction. We used a lattice system to model the radi-
al dimension; the lattice constant can be smaller than 0.08
fm while the radial size of the system can reach up to 60
fm.

Given our objective of numerically estimating the
shift in proton chemical potentials resulting from the
presence of muons, the simplifications made in our mod-
el can be justified. These simplifications include the as-
sumption of spherical symmetry, preclusion of nuclear
pairing interactions, and non-relativistic treament of
muons.
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1. RESULTS AND DISCUSSION

As shown in Fig. 1, we calculated the single-particle
levels of muons for N=106 isotones (Z from 82 to 92).
The red, blue, green, and purple lines represent lsi,
1p3j2 (1p172), 25172, and 3ds;, (3ds;2) orbitals of muons,
respectively. The 1p3,» and 1p;,, orbitals are degenerate
given that the deformation is ignored, as are the 3ds;, and
3ds, orbitals. We found that, for each nucleus, the muon
single-particle energy level increases with the number of
muons because more muons also lead to stronger repul-
sion among themselves. For example, the energy of the
Lsyy, orbital for Z =82 goes from —10.39 MeV at N, =1
to —9.10 MeV at N, = 20. For a certain number of muons,
for instance, at N, = 1, the single-particle energy of 1si,,
decreases monotonically with the increase in Z, that is,
from -10.39 MeV at Z=82 to —12.14 MeV at Z=92.
For another example, at N, =10, the energy level of
muons 1s;, decreases gradually from —9.54 MeV at
Z=82 to —11.21 MeV at Z=92. The energy level of
1p3j» decreases from —3.78 MeV to —4.79 MeV. The
25172 energy level drops from —2.92 MeV to —3.60 MeV.
This decreasing trend in energy levels holds true for oth-
er numbers of muons as well. Overall, as the number of
protons increases, the single-particle energy levels of
muons become slightly more negative. This can be attrib-
uted to the fact that more protons exert a stronger attract-
ive force on the muons. There exists a large energy gap of
approximately 6 MeV between the 1s;,; orbital and the
1p3;2 (1p1)2) orbital for the whole isotones.

We also calculated the single-particle levels of pro-
tons for different numbers of muons. Figure 2 shows the

energy of the last single-particle level of protons as a
function of the proton number for N = 106 isotones. The
solid black, dashed red, dotted blue, dash-dot green, dash-
dot-dot purple, and long dashed orange lines represent the
numbers of muons 0, 1, 5, 10, 15, and 20, respectively.
There is a clear energy gap between Z = 82 and 83. Addi-
tionally, as the number of protons increases, the energy of
the proton level becomes larger. Beyond proton number
87, the energy of the last energy level of the proton is
greater than zero (at N, =0). Interestingly, when muons
are considered, the proton energy level can decrease sig-
nificantly. The magnitude of the decrease enhances with
the increase in the number of muons. Our calculations re-
vealed that adding one muon can reduce the proton en-
ergy level by approximately 0.2 MeV, and 20 muons can
reduce the proton energy level by approximately 1.7
MeV. Therefore, when muons are introduced, for nuclei
with Z =87, the last unbound energy level of the proton
becomes a bound level. More muons mean more bound
proton levels. After introducing 10 muons, the last pro-
ton energy levels for all N =106 isotones become bound
single-particle states. Hence, introducing muons in exper-
iments may enable the extrapolation of the proton drip
line to obtain more proton-rich nuclei.

The density distribution of muons with different num-
bers of them for N = 106 isotones is shown in Fig. 3. The
dashed red, dotted blue, dash-dot green, dash-dot-dot
purple, and long dashed orange lines represent the num-
ber of muons 1, 5, 10, 15, and 20, respectively. Although
the density of muons diffuses to the space beyond 30 fm,
the primary density is still distributed within 10 fm. Thus,
there is considerable overlap with the nucleus. Simultan-
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- == 2812 — = = - E—
o 1p3/2 & 1p1/2 - -
g - | p % % %
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= 12 T s - -
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o0 0 Z=86 B 87 34558 30302 89
) R — — -
= _ == 12 = Z = p— g
g -6 1p%/°&1p17§ - % % -
p—
L _ - R _
% 12 E7 e - - - -
(oF 0 7Z=90 91
q') o _ Mn/?&%_d?/l
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112 _ — R
-12 B 7 -
1 5101520 1 5101520 10 1520

Number of muons

Fig. 1.

(color online) Single-particle levels of muons as a function of the number of muons for N=106 isotones (Z from 82 to 92). The

red, blue, green, and purple lines represent 1si/2, 1p32 (1p172), 2512, and 3ds> (3ds2) orbitals, respectively.
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Fig. 2.
of protons with different numbers of muons as a function of
the proton number for N=106 isotones. The solid black,
dashed red, dotted blue, dash-dot green, dash-dot-dot purple,
and long dashed orange lines represent the number of muons
0,1, 5, 10, 15, and 20, respectively.
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Fig. 3. (color online) Density distribution of muons with dif-

ferent numbers of them for N = 106 isotones. The dashed red,
dotted blue, dash-dot green, dash-dot-dot purple, and long
dashed orange lines represent the number of muons 1, 5, 10,
15, and 20, respectively.

eously, as the number of protons increases, the center
density of muons also enlarges by approximately 10%,
indicating that muons are attracted closer to the nucleus.

Figure 4 shows the density distribution of protons
with different numbers of muons for N =106 isotones.
The solid black, dashed red, dotted blue, dash-dot green,
dash-dot-dot purple, and long dashed orange lines repres-
ent the number of muons 0, 1, 5, 10, 15, and 20, respect-
ively. For the whole isotones, the density of protons is
mainly distributed between 0 and 8 fm; consequently,
there can be a significant overlap with the density of
muons.
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r (fm)
Fig. 4. (color online) Density distribution of protons with
different numbers of muons for N =106 isotones. The solid
black, dashed red, dotted blue, dash-dot green, dash-dot-dot
purple, and long dashed orange lines represent the number of
muons 0, 1, 5, 10, 15, and 20, respectively.

To further study the influence of muons on the pro-
ton density, we zoomed in on the above plots. Figure 5 is
the enlarged version of Fig. 4 in coordinate » from 0 to 5
fm. As discussed above, the proton center density varies
by less than 3% across the isotones. The change in pro-
ton density due to different numbers of muons is minor,
approximately 0.3%.

The density distribution of neutrons with different
numbers of muons for N =106 isotones is presented in
Fig. 6. Figure 7 is a partial enlargement of Fig. 6 from 0
to 5 fm. The solid black, dashed red, dotted blue, dash-
dot green, dash-dot-dot purple, and long dashed orange
lines represent the number of muons 0, 1, 5, 10, 15, and
20, respectively. The calculated neutron density is also
mainly concentrated in the interval 0 ~ 8 fm, which can
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5 muon
0.063 10 muon —-
15 muon -
0.058 . » 20 muon
0123451234512345
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Fig. 5. (color online) Same as Fig. 4 but enlarged in co-

ordinate 7 from 0 to 5 fm.
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Fig. 6. (color online) Density distribution of neutrons with

different numbers of muons for N =106 isotones. The solid
black, dashed red, dotted blue, dash-dot green, dash-dot-dot
purple, and long dashed orange lines represent the number of
muons 0, 1, 5, 10, 15, and 20, respectively.

7=82 / 83 / 84 / 85 A
0.080 \ "\\ il [\
oors f\ 4t N S
a2 \/ \/"/ ’ \ .
§ oo oo b LA L A
5 N oz=86 /B 81/ 88/ 8/
% 0.078 2 /,' "\\ "\\ "\
S 0073 F \ / 3\ 25 1\ /]
= [ R R R
20068—\/
s e T LA [ R —
@) 0.076 ,\\ 7=90 ’;‘”\ 91 j’,,\‘ 92 //7 1 muon -
' \\ '/ \ JE R / 5 muon
\ / \ 1| 10 -
0071 | T\ /¥ \\/ 152323 -
0.066 T L | L 20 muon
0123451234512345
r (fm)
Fig. 7. (color online) Same as Fig. 6 but enlarged in co-

ordinate » from O to 5 fm.

overlap significantly with the muons density. However,
compared to the case of protons, muons have a much
weaker, almost negligible, effect on neutron density.
Figure 8 shows the Coulomb potential generated by
pu with different numbers of muons for N = 106 isotones.
The dashed red, dotted blue, dash-dot green, dash-dot-dot
purple, and long dashed orange lines represent the num-
ber of muons 1, 5, 10, 15, and 20, respectively (the Cou-
lomb potential is calculated from Eq. (8) by substituting
into the muon density). Although the muon is negatively
charged, here we take its absolute value. We found that
the Coulomb potential of the muons increases by approx-
imately 3.5% as the number of protons increases from 82
to 92. However, for a particular nucleus, increasing the
number of muons from 1 to 20 increases the Coulomb po-

o~ 2.0 T T T T T
% R Z=82 §- 83 $- 84§~ 85
Zorof e e b b
8 0.0 ' - e — p
= . L ! I ! ! T I ! ! Lol ! bt
E 2‘0 T T T T T T T T T T T T
“‘5 :\\ Z=86 :\\ X 87 :\\ 88 :\\ 89
=T U S S S S
% — e J ~ 0
2 00 Lo et e N
o
g 2.0 " prm— " prm— " prm—— TP w—
g N Z=90 > ol ~ 92 5 muon
o 10k N = h :\\ R 3 \\\\\ ~=~-4| 10 muon — -
g 3 ~~ ::” =~ \\;*” =23 | 15 muon -
O 00 F 7 opmeeed e TE o0 20 muon
0 20 40 20 40 20 40
r (fm)
Fig. 8.  (color online) Coulomb potential generated by p,

with different numbers of muons for N =106 isotones. The
dashed red, dotted blue, dash-dot green, dash-dot-dot purple,
and long dashed orange lines represent the number of muons
1, 5, 10, 15, and 20, respectively. Here, the absolute value of
the Coulomb potential is taken.

tential of the muons by approximately 1.5 MeV. For ex-
ample, for a nucleus with Z = 87, the Coulomb potential
of muons near the center, corresponding to number of
muons 1, 5, 10, 15, and 20, is 0.2, 0.8, 1.3, 1.5, and 1.7
MeV, which is approximately the same as the change in
energy of the proton Fermi level.

The Coulomb potential generated by p, with differ-
ent numbers of muons for N =106 isotones is shown in
Fig. 9. The inserts are enlarged plots in coordinate » from
0 to 1 fm. The solid black, dashed red, dotted blue, dash-
dot green, dash-dot-dot purple, and long dashed orange
lines represent the number of muons 0, 1, 5, 10, 15, and
20, respectively. We found that as Z increases from 82 to
92, the Coulomb potential of the protons increases by ap-
proximately 8%. However, for a particular nucleus, in-
creasing N, from 1 to 20 changes the Coulomb potential
of the proton by less than 0.1%.

IV. SUMMARY

In this study, we analyzed the properties of the nucle-
us in muon atoms utilizing a spherical mean-field calcula-
tion with Skyrme interaction. Taking N = 106 isotones as
an example, we investigated the influence of the muons
on the nuclear structure. It was found that the single-
particle levels of muons decrease with the increase in the
number of protons and rise with the increase in the num-
ber of muons. More importantly, we found that, although
the proton Fermi level changes from bound to unbound
with the increase in Z, the addition of muons signific-
antly reduces the Fermi level of the proton. Moreover, in-
creasing the muons from 0 to 20 even lowers the proton
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(color online) Coulomb potential generated by p, with different numbers of muons for N =106 isotones. The solid black,

dashed red, dotted blue, dash-dot green, dash-dot-dot purple, and long dashed orange lines represent the number of muons 0, 1, 5, 10,
15, and 20, respectively. Inserts: enlarged subfigure in coordinate » from 0 to 1 fm.

Fermi level by 1.7 MeV. This could allow for the expan-
sion of the proton dripline on the nuclear chart and the
production of a nucleus with a value of Z of approxim-
ately 120. We analyzed the effect of muons on the proton
and neutron density distribution. We found that the neut-
ron density is hardly affected by muons, while the proton
density changes by approximately 0.3% in the range of 0

to 5 fm due to the influence of muons. Additionally, the
Coulomb potential caused by the protons changes by ap-
proximately 0.1% due to the influence of muons.
However, the Coulomb potential generated by muons can
provide energies ranging from 0.2 to 1.7 MeV inside the
nucleus, and this order of magnitude is roughly equival-
ent to the drop in energy of the proton Fermi level.
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