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Abstract: A new approach for tree-level amplitudes with multiple fermion lines is presented. It primarily focuses

on the simplification of fermion lines. By calculating two vectors recursively without any matrix multiplications, the

result of a fermion line is reduced to a very compact form depending only on the two vectors. Comparisons with oth-

er packages are presented, and the results show that our package FDC provides a very good performance in the pro-

cesses of multiple fermion lines with this new approach and some other improvements. A further comparison with
WHIZARD shows that this new approach has a competitive efficiency in computing pure amplitude squares without

phase space integration.
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I. INTRODUCTION

As high energy physics continues to develop, the
sensitivity of detectors has been improving and a large
number of data samples are accumulated, which makes
experimental measurements increasingly precise. There-
fore, the predictions from the theoretical side must be suf-
ficiently precise to match the measurements, which de-
mands the calculation of higher order perturbative correc-
tions. Fortunately, the technology of Feynman amplitude
calculations has also been significantly improved in re-
cent years. Today, automatic one-loop calculations are
already available, provided by many different packages
(see e.g., [1-5]). Automatic multi-loop calculations are
still under process, but significant progress has already
been achieved (see e.g., [6—10]).

Meanwhile, multi-particle processes are becoming in-
creasingly important in this procedure. For example, it is
well known that in future e*e™ colliders such as the Inter-
national Linear Collider (ILC) and the Compact Linear
Collider (CLIC), the pair production of the top quark
ete™ — tt will be very important [11-15]. In this process,
the top pair will decay, resulting in a series of subpro-
cesses with six final states.

On one hand, owing to the high luminosity, such sub-
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processes can be directly measured and studied. On the
other hand, their contributions are comparable with cer-
tain higher order corrections; thus, they should not be
neglected even in perturbative calculations.

The calculation of such processes is straightforward
but cumbersome, even at the tree level. This is because
the number of Feynman diagrams increases very rapidly
as external particles increase such that the expression of
total scattering amplitude becomes very complicated.
Despite some special cases, such calculations can only be
performed numerically.

This becomes even more complicated if fermions ex-
ist in the external particles. The scattering amplitude of a
process with external fermions can be crudely expressed
as

M~ FiFy-Fy. (1)

We have used ~ in the expression since the coeffi-
cients have been dropped. Here, F; denotes a fermion
line, which contains a string of Dirac y-matrices and two
spinors, i.e.,

Fr=UV,--V,,Us. (2
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Here, U,, are the two spinors, and V..., are several
vectors, which can be external momenta, polarization
vectors, and their combinations. We use a hat () over a
vector to denote its contraction with the Dirac matrices,
ie.,

V = guvvyyv’ (3)

with g,,=diag{1,-1,-1,-1} and y*=(°,y',%%,9?).

Since physical results are described by the square of
the amplitude, the conventional method to evaluate Eq.
(1) is squaring it with its Hermitian conjugation and sum-
ming over the fermion polarizations using Dirac equation.
Thus, the square of the amplitude can be expressed as

IMP ~ > Tes " Tes ) Tes 0, @
J

where § E"') denotes a string with n; Dirac matrices. Each
of them is obtained from at least two fermion lines such
that it is apparent that numerous matrix multiplications
will be present in the calculation, which is time-consum-
ing. Furthermore, in multi-particle processes, the number
of total terms in Eq. (1) increases very rapidly, which res-
ults in a significantly large number of terms after the
squaring. Therefore, this conventional method is not ap-
plicable in multi-particle processes.

An alternative method is to calculate the amplitude
directly before squaring it. A fermion line F; can be con-
verted into a trace by moving the second spinor to the
front, i.e.,

Fk = Tr(UzUlvl . Vm) (5)

With specific polarizations, U,U, is only a 4 x4 matrix;
therefore, it can be expanded over y-matrices. Many dif-
ferent forms of the expansion result in different ap-
proaches (see e.g., [16-20]).

Another popular approach is the helicity amplitude
method [21-27]. For a certain helicity configuration of
external particles, the amplitude can be simplified since
many of the terms do not contribute. Meanwhile, amp-
litudes with different helicity configurations do not inter-
fere with each other; hence, the square of the total amp-
litude becomes straightforward.

In recent years, a new approach, based on on-shell re-
cursion relations, has become popular in the calculation
of the scattering amplitude. In this approach, the amp-
litude of multi-particle processes is constructed with
blocks from on-shell amplitudes of fewer legs, which is
much simpler than the original one. The most famous on-
shell recursion relations are the "BCFW recursion rela-
tions" proposed by Britto, Cachazo, Feng, and Witten in
the calculation of gluon scattering [28, 29]. The recur-

sion relations are derived using complex deformations of
the external momenta and calculating the residue of the
deformed amplitude in the complex plane. Combined
with the spinor helicity formalism, this approach has
demonstrated significant advantages in the scattering of
massless particles. This approach cannot be directly ap-
plied to processes with massive particles since the mo-
menta of massive particles cannot be expressed as a dir-
ect product of two spinors. Many efforts have been con-
ducted on this [30-39].

In this paper, we introduce a new numerical al-
gorithm for calculating fermion lines at the tree level. By
avoiding most time-consuming matrix multiplications,
this new approach can reduce the time used in the calcu-
lation of amplitudes and hence increases the efficiency of
phase space integration and event generation, partiuc-
larly in the processes with many fermion lines.

The remainder of this paper is organized as follows:
In Section II, we introduce our new algorithm, including
the calculation of y-matrix strings, the calculation of fer-
mion lines, and the calculation of the amplitudes with fer-
mion lines. In Section III, a comparison with other pro-
grams is presented to demonstrate the advantage of the
new algorithm that is implemented in our FDC package
[40]. The summary is given in the final section.

II. NEW APPROACH
A. Notations and conventions
First, our approach is limited to the tree level; hence,
the dimension of space-time is always 4. Additionally, for

the y-matrices, the Dirac (standard) representation is used,
ie.,

1 0 ; 0 of 0 1
0 _ i_ 5
Y _( 0 -1 )’7 _( _O_i 0 ),7 _( 1 0 )7 (6)

with i = 1,2,3. o; are the Pauli matrices:

S I ol PR Kl R A

The contraction of a four-dimensional vector p* = (p°, )
with the y-matrices takes the form of

0 -
— N p —-po
p=p°7°—p-7=[ ) o J (®)
The string with n y-matrices is defined as

S Dy Pu-ts++ s P1) = PnDut = D1 )
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The order of superscripts in the vectors has been re-
versed for convenience.

The Dirac spinors for a fermion and anti-fermion are
defined as

u(k. s) =U(+.k.5) = %mt 5,
vk, s) =U(=k, 5) = \_/%uo(—,s), (10)
with
— XS — 0 11
u0(+’ S) = 0 s MO(_’ S) = Xs > ( )
and

X1=((1)), Xz=(?)~ (12)

Here, the symbols + in U and u are used to distinguish
the fermion and anti-fermion, and s is the polarization of
the particle.

B. Calculation of S™

In this subsection, we introduce the recursive calcula-
tion of S™, the string with n y-matrices. In the calcula-
tion of the amplitude, > might be present among other y-
matrices. Owing to its anti-commutativity with all the y-
matrices, all the > matrices can be moved outside of § ™
by adding a possible factor —1. Meanwhile, we assume
that all the Lorentz indices have been summed over in the
string; therefore, all the y-matrices in S™ are now con-
tracted with certain vectors, i.e., it assumes exactly the
form of Eq. (9).

1. n=2

We will show later that the cases of n =0, 1 are not re-
quired. Here, we simply skip them and begin from n =2.
According to Eq. (8), S® can be rewritten as

SP(pa, p1)

0 = F - -
:( P, —P2:0 )( p? —p1:0 )
P 2

[=}

( PSpY = (P2 NP1~ pY(P2-3) =Py - ) ] o)
PYB2 ) =3B+ ) pIp) = (B2 NP1 )
Using the identity of Pauli matrices

olol =i ok + 67, (14)

we easily determine

(P2 @) P - @) = pho'plo!

= phpl (e " +6'7)
= isijkpép‘{a'k + P2 P (15)
Hence,
SO(pa, p1) = P2'P1—isijkpépfo'k (P?ﬁz—pgﬁl)-(?'
2,P1) = S
(P?ﬁz_l’gﬁl)'& Pz'pl—is”kplzp{o-k

(16)

On the other hand, by introducing two new vectors p,
and p, as

2), — - -
P (D2, p1) = (2 1= + DY),

P (2, p1) = (0,67 php)), (17)

S$®@ in Eq. (16) can be further expressed as

2 . 2
SP(p2.p1) = Do =1V P (18)

Here, the superscript (2) in p, and p, denotes that the
vector contains two arguments, which is the same as S ™.
Additionally, we have used the abbreviation to compact
the expression

() ()]
pa(b),{i,,,i,,,w",i.} = Pa(;,)(Pi,,,Pi,,,l >0 Diy )- (19)

2. n=3

The calculation of S® is straightforward using Eq.

(18)

SO (p3,p2,p1) =p3S P(p2, p1)

oy (42) 0

5, 52,17°)

Popyy — iy Py

2 1 2
=S (3,00 )Y+’ S (P30 )Y
(20)

The two S@ on the r.h.s. of Eq. (20) can be obtained by
using Eq. (18) again:

@ @) _=2) @ 0
S (p3’pa<b>,{2,1:)‘pa (p3’1’a<b>,{2,1})7

352 (@) 0
—wp, (p37pa(b),{2,1})7 . (21)
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Inserting them into Eq. (20), we obtain

SOps.p2p0) =[B2 (p3.0% ) + B2 (P30
—iy [ﬁ(bZ) (173’17(2)2 1}) ﬁﬁzZ) (173 17;,2)2 1})]
(22
By introducing two new vectors as
P (p3.p2.p1) P(z)(P%P(Z)z1})+P22)<P*’P;2)21 )

2 2 2 2
Py 3. p2.p0) =Py (P2 Vo)) = P (P3-Piy)- (23)

§® can be expressed as

.53
Sp3,pa.p1) = 321 1752’{17,{)3,2,1}' 24

3. n=4 and general formula of S™

The calculation for the case of n =4 is similar to that
of n=3. Using Eq. (24), S™ is expressed by two other
S as

5—~(3)
1Py, 11]

—qc®2 s bl
=S (P4,Pa,{3,2,1})+175 <p4’ph32(12%)

— (3
S (pa. 3. p2.p1) =Pa|Potsa

These S are then obtained using Eq. (18) as

s (1’4’1’a<b> 32,1 )Zpa (1’4’1’2(;) 321})70

5-+2) 0
_17 Py (p4’pa(b) 3.2, 1})7 . (26)

Inserting them into Eq. (25) yields
S pasp3.02.p1) =[P (P25 01 ) + By (o P30y )| Y

—iy [ﬁf) (P4,PS¢)3,2,U)

- 27\212) (P4’P§,3)3 2, 1])]70

_—4 0 —~4) 0
=PauazonY -y’ Ppazan? >

27)

where the two new vectors are defined as

4 3 2 3
P (Pas 03,0200 =P (P41 35 1y) + P (P4 Py a0 )

4 2 3 2 3
P8 (a3, P2, p1) =03 (P4 P s 2y) — P (P4 P s ay)-
(28)

We can observe that S® in Eq. (27) has the same
form as S®@; therefore, §© will have the same form as
S® . Generalizing this to even larger n, we arrive at the
general formula of §™ (n > 2):

S(n)(pnspn—l,"' 9p1)

:{if:{;n,nl, 7 lf '[;)(,,n)” L 1})/0 for even n

n 5~n

pa,{n,n—l7 _ly pb {(n,n—1,,1} for odd n
(29)

which can be further rewritten as

S(n)(p}’I’pn—l’.“ ’pl)

_ (4:1) 5—n)

= (P ) =1 Py ) PO (30)

Meanwhile, from Egs. (23) and (28), we observe that
p and p(b") (n>3) always have the same form whether

n is odd or even. It can be obtained recursively as

2 1
p(an)([’mpn—la ,Pl) P( )(Pn’p(n )1,...,]})
(2) (n—1)
+pb (pn,pb{n 1, ])
1
P(bn)(Pn,[)n—l,"' 7[71) Ep (pmp(n )1’,_,’1})

- (pwpinl ), GD

while p(5) is defined in Eq. (17).

Let us further investigate the structure of S™. Eq.
(30) can be considered as another definition of S™, in
which the arguments are no longer p;, but p, and p,. For
a fixed queue of p;, p, and p, can be obtained using Eq.

(31); thus, the corresponding S ™ is expressed as

S (pas pp) = (Pa =17 P) &Y' =S (par pp) ).
(32)

A tilde is used over S™ to denote the part without y°.
Using Egs. (6) and (8), we easily observe that S can be
expressed using four blocks as

AG)

~mn AG)
S( )(pa:pb):( A(—+) )’ (33)

A
with
A = A = 0 i @,
AGTD =AY =ip) — 5, - & (34)

Only two of them are independent.
Also, from Eq. (32) it is straightforward to derive the
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product of y° and §:

V'S (pa> ) = (¥ Pa—iPp) )"
=(=1) (P + 17" Pu) )"

=—iS™(pp, —pa). (35)

C. Calculation of fermion lines

In this subsection, we introduce the calculation of the
fermion lines using the string S™ we have obtained
above. A fermion line with two external fermions can fre-
quently be expressed as

F(z1,ky1,81520,kp, 5251)
=U(z1,k1,50)S (P> Pt s pDU (22,2, 82).  (36)

In this expression U(z,k,s), which is defined in Eq.
(10), is used as the spinor of the fermion and anti-fermi-
on simultaneously. Here, z can be + or —, which denote
the fermion or anti-fermion, respectively. &k and s are the
momentum and polarization of the particle, respectively.
Note that for a specific process, all the z; values are fixed
according to external particles. n in the arguments of F
denotes a string of n y-matrices, but we have removed the
detailed list of vectors for convenience.

In the calculation of amplitude, y> might be present in
a fermion line. However, owing to its anti-commutativity
with all four y-matrices, it can always be moved in front
of S™_ Furthermore, according to Eq. (35), °S™ can be
obtained by a substitution in the arguments of S,
Hence, there is no particular need to discuss calculating
fermion lines with y°.

1. Trick in the spinors

First, we introduce a trick in the spinors. As shown in
Eq. (10), the relationship between U(z,k,s) and uy(z,s)
can be expressed as

k +
Uk, s) = ——2

———1y(2, 5). (37)
VKO +m
If we introduce a new vector, which is defined as
K+ = ;(ko +m,k) (38)
VKO +m

it is easy to prove
U(z.k.5) = 2K uo(z, ),

Ulz,k, ) = Zto(z, $)K - (39)

This trick is very useful if massive fermions are
present since it prevents the term zk+m from being sep-
arated. In a process with » massive fermions, this trick
can reduce the number of total terms by a factor of 1/2".

Meanwhile, we can observe that in the Dirac present-
ation, ug, defined in Eq. (11), is an eigenstates of y° with
the eigenvalue z, i.e.,

Youo(z,s) = zuo(z,5),  uo(z )"y’ = zup(z,5)".  (40)

2. Calculation of fermion lines without Lorentz indices

Now we return to the calculation of fermion lines.
Here, we still assume that all the Lorentz indices have
been summed over in the string of y-matrices; hence, no
Lorentz indices remain.

Using Egs. (39) and (40), we easily observe that

F(z1,k1,5815220,k2, 523 1)
=U(z1,k1,51)S P (Pu, pu-is++ s p1)U (22, k2, 82)
=212000(21, SDK|S (s puct -+ s PRy 0 (22, 52)

=212200(21,51)S " K, Pus Put, - > P1.KYUO(22, 52). (41)

The momenta are separated from the spinors and
merged to the string of y-matrices S“*?. This procedure
can be conducted for all the fermion lines, which indic-
ates all the S™ we must calculate contain at least two y-
matrices. This is why in Sec. II.B only the cases of n>2
are considered.

The r.h.s. of Eq. (41) can be further evaluated using
Egs. (32) and (33) as

F(z1,k1,51522,k2, 523 1)

=z12210(z1,51) Y S "2 () P ug(z2, 52)

AGH)  AG)

2 _n+d

=leg+ Mo(Zl,Sl)T( ACH A uo(z2, 52)

2! Ay, = AT, @)

where Eq. (40) and z% = z% =1 have been used.

As mentioned earlier, z;, is fixed for a specific pro-
cess; hence, only one of the four blocks in $™*+2 is re-
quired. Since $™*2 is totally decided by p, and p,, the
calculation of the fermion line is now converted into the
calculation of p, and p;, which can be performed recurs-
ively without any matrix multiplications.

Furthermore, four elements of the block A% corres-
ponds to the four different configurations of {sy, s>}, re-
spectively. This means that the results for all possible po-
larization configurations can be obtained via a single cal-
culation, which can significantly increase the efficiency
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of calculation.

3. Calculation of fermion lines with one Lorentz index

Thus far, we have assumed that all the Lorentz in-
dices are summed over in fermion lines, but that is insuf-
ficient for the calculation of the amplitude. In this section,
we introduce the calculation of fermion lines with one
Lorentz index, which have the form

FH(z1,k1, 81520, k2, 82311, 12)

=U(z1,k1,51)S ™ (pp,s-++ , pr V"
X 8" (gn, g1 U (22, k2, 52). (43)

It is a Lorentz vector with four components. To calcu-
late these four components, we introduce four auxiliary
vectors as follows

’JJO:{I’O’O,O}’ ’Jil:{oa_130’0}7

¥ =1{0,0,-1,0}, 4 ={0,0,0,-1}. (44)
It is clear that
Y =7, =T (45)
Hence,

Fz1 k1, 51320,k 52311,m2)
=U(z1,k1, 508 ™ (-, p1)Y’S "Gy
=U(z1k1,sDS ™ (P, s pOTOS ™ (G,
=U(z1,k1,s)S ™™ (D, P10y Gy

,qU(22,k2, 52)
,q)U(z2,k2, 52)
,qU(22,k2, 52).

This is exactly the result of a fermion line without any
Lorentz indices. Similarly, the other three components are
obtained as

F'(z1,k1, 51320, k2, 52311, 12)

:ﬁ(zlakhSI)S(nI+n2+])(pn,,'" spl,ri9qnzs' o ,QI)U(ZZJQ, S2).
(46)

D. Calculation of scattering amplitudes

The scattering amplitude of a process with n fermion
lines often has the form

M~ FiFi-F, (47)

where the coefficients have been dropped. It is natural to
assume that the summation over Lorentz indices has

already been performed inside each fermion line. There-
after, we can separate the fermion lines into three types:
1) with no Lorentz indices; 2) with one Lorentz index; 3)
with two or more Lorentz indices. To calculate the amp-
litude, we must calculate all these three types of fermion
lines.

We have already presented a detailed introduction on
calculating fermion lines without indices; hence, we need
not to discuss them here. Meanwhile, as mentioned earli-
er, fermion lines with one index are Lorentz vectors,
whose components can be obtained by introducing four
auxiliary vectors. It should be emphasized that when ob-
tained, these vectors can also be contracted into other fer-
mion lines.

Thus far, we have not mentioned how to address fer-
mions lines with two or more indices. Of course, they can
be considered as Lorentz tensors, and all of their compon-
ents can be obtained with the four auxiliary vectors, sim-
ilar to those with one index. However, a better method is
available.

First, we would like to indicate that, at tree level, if
there are n pairs of Lorentz index contractions among m
fermion lines (assuming each fermion line carries at least
one index, since those without Lorentz indices are irrelev-
ant), there should be at least one fermion line with only
one index. The proof of this statement is straightforward:

e Index contraction between two fermion lines can be
considered the connection of the two lines by an internal
line.

e At tree level, there can be at most m — 1 such intern-
al lines, hence n <m-—1.

e If each fermion line carries at least two indices, we
will have 2m < 2n, which is not permitted at tree level.

Based on this, we will not require to calculate fermion
lines with two or more indices if we perform the calcula-
tion as follows:

1. Separate the fermion lines into three groups as de-
scribed earlier.

2. Calculate all the fermion lines without indices.

3. Calculate a fermion line with one index, consider it
as a vector, and contract it into another lines.

4. Return to the top until all the fermion lines are cal-
culated.

Further improvements can be applied in performing
this, such as the order of the lines calculated, but we will
not discuss them here.
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At the end of this section, we introduce another trick
used in the calculation of the amplitude. If a fermion line
F’l‘ is connected with another fermion line F}™ via a
massive vector boson whose propagator is g, — pup,/m*
(other parts dropped), a new vector k= Fi—(Fy - p/m*)p
is introduced. Therefore, the index contraction becomes

P;tpv)

FUFy (g 250 ) = ko (49)

This trick prevents the two terms in the propagator
from being separated; hence, it reduces the total number
of terms in the summation of Eq. (47).

OI. COMPARISON WITH OTHER PACKAGES

We have achieved this new algorithm in our FDC
package [40]. First, we checked its efficiency with the old
version in FDC on the calculation of multiple-fermion-
line amplitudes and find much improvement. Second, we
checked its efficiency on the same calculation by using
both FDC and some other packages, and present the com-
parison of the time used by different packages in the fol-
lowing.

A. Comparison with MadGraph

The first package we compared with was MadGraph
[2], which might be the most famous package for auto-
matic calculation. The version of MadGraph used was
MadGraph5 aMC@NLO. Since the calculation for a
2 — 2 process is exceedingly fast, we selected a 2 —» 4
process e*e” — bbct and a 2 — 6 process ete” — ctctct
as our benchmark processes. To demonstrate the advant-
age of our new algorithm, charm and bottom quarks were
kept massive, and all the polarization configurations were
summed over. For e*e™ — bbct, there were eight Feyn-
man diagrams at the order of o?a? while for
e*e” — ccccee, there were 576 diagrams at the order of
a2a3.

N

The comparison was performed using an Intel 13-4150
dual-core processor, although only one core was used.
Since MadGraph includes many other built-in functions,
obtaining the exact time used in the calculation of amp-
litudes was difficult. Hence, the comparison was conduc-
ted as follows:

e We set the number of points in each iteration to
10000 in MadGraph.

e We obtained the time for each iteration, which is
provided by MadGraph automatically. Since there might
be some optimizations in phase space integration, the
time for later iteration was considered to be most accur-
ate.

e By assuming the efficiency of phase space integra-
tion is 100%, the time taken above was consdiered the es-
timated time used by MadGraph for 10000 points in
phase space integration.

e A similar process was conducted in FDC, but the
efficiency of phase space integration was replaced with
the actual one.

The comparison was conducted with several different
center-of-mass (c.m.) energies, and the results are listed
in Table 1. The table shows that in the calculation of the
2 — 4 process, FDC is at least 3 times faster than Mad-
Graph, while in the calculation of the 2 — 6 process, FDC
is 20 ~ 40 times faster than MadGraph as the c.m. energy
changes.

Table 1. Estimated time for 10000 points in phase space in-
tegration in unit of second.

ete™ — bbce ete” — céctet

Vs/GeV FDC MadGraph FDC MadGraph
20 0.6 226 103.4 4008
50 0.5 2.28 90.4 3936
100 0.5 2.23 111.4 3990
200 0.5 2.24 127.9 4044
500 0.5 2.24 1542 4002

1000 0.5 2.23 172.8 4002

B. Comparison with WHIZARD

Another package we compared with was WHIZARD
[3,41], and the version we used was 2.8.4.

Since WHIZARD cannot provide results at certain or-
der of o and «,, we selected part of the Feynman dia-
grams in each processes for comparison. Hence, the
benchmark processes were changed into

e Four Feynman diagrams of e*e™ — bbcé, in which
bb is produced via a gluon.

e Another four Feynman diagrams of e*e™ — bbce, in
which c¢ is produced via a gluon.

e 12 Feynman diagrams of e*e™ — ccccec, as shown
in Fig. 1.

The comparison was conducted in a similar manner,
and the results are shown in Table 2. Since both FDC and
WHIZARD can provide the expected time for a certain
number of events directly, the time for 10000 events were
used this time. Meanwhile, the first two processes are
marked with g* — bb and g* — c¢, respectively.
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Fig. 1.
a photon or Z boson.
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Selected Feynman diagrams of e*e™ — cécéce in the comparison with WHIZARD. The vector boson coupled with e*e™ can be

Table 2. Expected time to generate 10000 events in unit of seconds.
ete™ — bbct (g° — bb) ete™ — bbct (8" — cT) ete” — ctcect
Vs/Gev FDC WHIZARD FDC WHIZARD FDC WHIZARD
20 0.3 4 0.3 5 7.1 319
50 0.3 5 0.3 7 7.0 760
100 0.3 6 0.3 6 6.8 3935
200 0.2 8 0.3 9 6.8 6999
500 0.2 8 0.3 9 7.1 7905
1000 0.2 11 0.4 10 7.0 6277

The table shows that in the 2 — 4 process, FDC is
more than 13 times faster than WHIZARD, while in the
2 — 6 process, FDC is dozens to hundreds of times faster.

Note added: After this work was submitted, a direct
comparison on the computation of pure amplitude square
with WHIZARD was conducted, with aid from its au-
thors [42]. A slight difference was observed in the time
cost of both packages for this part. The large difference
observed in Table 2 may result from other parts, such as
phase space integrations and event generations.

From both comparisons, we can conclude that with
the new algorithm, FDC provides a very good perform-
ance in the processes with multiple fermion lines.

IV. SUMMARY

In this paper, a new approach for the numerical calcu-
lation of fermion lines at the tree level is introduced. By

calculating two vectors recursively without any matrix
multiplications, the result of a fermion line is reduced to a
very compact form that depends only on these two vec-
tors. Furthermore, the results for all possible polarization
configurations can be obtained simultaneously without
extra cost. As shown in the comparisons, FDC provides a
very good performance in the processes of multiple fer-
mion lines with this new approach and some other im-
provements. A further comparison with WHIZARD
shows that this new approach has a competitive effi-
ciency in computing pure amplitude squares without
phase space integration.
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