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Abstract: In  this  paper,  we  present  some  results  on  the  behavior  of  the  total  cross  section  and ρ-parameter  at
asymptotic energies in proton–proton ( ) and antiproton–proton ( ) collisions. Hence, we consider three of the
main theoretical results in high energy physics: the crossing property, derivative dispersion relation, and optical the-
orem. The use of such machinery facilitates the derivation of analytic formulas for a wide set of the measured global
scattering parameters and some important relations between them. The suggested parameterizations approximate the
energy dependence for the total cross section and ρ-parameter for  and  with a statistically acceptable quality in
the multi-TeV region. Additionally, the qualitative description is obtained for important interrelations, namely differ-
ence, sum, and ratio of the antiparticle–particle and particle–particle total cross sections. Despite the reduced num-
ber of experimental data for the total cross section and ρ-parameter at the TeV-scale, which complicates any predic-
tion for the beginning of the asymptotic domain, the fitting procedures indicates that asymptotia occur in the energy
range 25.5–130 TeV. Moreover, in the asymptotic regime, we obtain . A detailed quantitative study of the en-
ergy behavior of the measured scattering parameters and their combinations in the ultra–high energy domain indic-
ates that the scenario with the generalized formulation of the Pomeranchuk theorem is more favorable with respect to
the original formulation of this theorem.
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I.  INTRODUCTION

The absence of a rigorous formalism to predict elast-
ic  and  diffractive  processes,  the  so-called  soft  scattering
states,  makes soft  interactions a significant  challenge for
quantum  chromodynamics  (QCD).  As  a  complementary
difficulty, the use of asymptotic theorems in high energy
physics are also complicated as no indication exists when
they must begin to be applied, i.e., where the asymptotia
should begin. Furthermore, they also emerge in different
contexts in the S-matrix, a pre-QCD formalism.

σtot

A few of the rigorous theorems are crucially import-
ant for high energy physics, particularly for the asymptot-
ic  energy  domain.  In  this  paper,  we  analyze  two  of  the
most outstanding among them, namely the Froissart–Mar-
tin  bound  and  Pomeranchuk  theorem,  both  concerning
particle–particle and antiparticle–particle total  cross sec-
tions  ( ), which  are  forward  quantities  (zero  trans-

ferred momentum).

σtot

The Froissart–Martin  bound [1–4], as  well  as  its  re-
cent  modification  [5],  is  probably  the  most  relevant
asymptotic bound in forward high energy scattering as it
imposes  a  form  of  physical  limit  on  the  increase  in  the
total cross section as the collision energy increases. This
theoretical result is the effect of the analyticity of elastic
scattering  amplitude  and  rigorous  consequence  of  the
most  general  properties  of  quantum  field  theory  (QFT),
namely, causality,  unitarity,  and  the  polynomial  bound-
ness [2, 3]. This asymptotic bound is pre-QCD and func-
tions  as  a  general  parameterization  for  several  models
concerning  the  increase  in .  In  the  QCD framework,
no  formal  derivation  of  this  bound  exists  from  the  first
principles  but  from  the  functional  integral  approach  [6].
However, the absence of a non-perturbative QCD corrob-
oration does not  contradict  the robustness  of  such an in-
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equality.
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Another interesting  forward  asymptotic  result  is  giv-
en  by  the  Pomeranchuk  theorem [7],  and  it  involves  the
difference  between  for particle –particle  and  anti-
particle–particle interactions. As is well known, this the-
orem is the consequence of the crossing property and an
effect  of  the  analyticity  of  the  scattering  amplitude.  The
Pomeranchuk theorem predicts  that,  for  sufficiently high
energies, the  difference  between  these  total  cross  sec-
tions  should  vanish.  The  general  belief  about  this  result
imposes the necessity for a particle exchange as being re-
sponsible for the vanishing difference as the collision en-
ergy  increases.  This  particle  is  called  the  leading  Regge
pole [8], or Pomeron for short, and it does not differenti-
ate a particle from an antiparticle because it has the vacu-
um  quantum  numbers.  The  usual  picture  in  which  the
Pomeron  is  considered  a  pair  of  gluons  is  attributed  to
Low  and  Nussinov  [9, 10].  Despite  the  large  amount  of
experimental data, no evidence exists for the Pomeron up
to the present-day energies.

σtot

In the phenomenological  context,  the  above two the-
orems remain fundamental to imposing constraints on the
increase  in  as  the  collision  energy  increases.
However, they are not isolated when we discuss forward
quantities.  The  optical  theorem  is  a  remarkable  result
connecting  the  total  cross  section  and  imaginary  part  of
the forward scattering amplitude [11]. Moreover,  the de-
rivative dispersion  relations  (DDR)  can  be  used  to  con-
nect the  imaginary  part  of  the  forward  scattering  amp-
litude with the real part [12]. Thus, at least in the forward
collision  context,  a  entire  scattering  amplitude  can  be
constructed based on a few theoretical results.

Note  that  if  we  assume  that  the  crossing  property  is
valid despite its lack of theoretical and experimental evid-
ence,  we  can  obtain  the  forward  scattering  amplitude  of
particle–particle events from the forward scattering amp-
litude of antiparticle–particle scattering (and vice–versa).

σtot
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In this paper, we use the crossing property, the DDR,
and the optical theorem to obtain some theoretical results
on the increase in . In particular,  based on these res-
ults, we present a simple fitting model for the proton–pro-
ton ( ) and antiproton–proton ( ) total cross sections.
Our results indicate that, asymptotically, a Pomeron inter-
cept .  Moreover,  we  estimate  the  energy  range  in
which the asymptotic regime should begin.

The  remainder  of  this  paper  is  organized  as  follows.
In section II,  some considerations on the total  cross sec-
tion are discussed. Section III provides a detailed descrip-
tion  of  experimental  databases  considered  in  the  paper
and corresponding  procedures  for  approximation.  Sec-
tion  IV  presents  the  parameters  obtained  in  the  fitting
procedure.  Discussion  and  projections  for  some  global
scattering parameters are presented in Section V. Section
VI provides conclusions and final remarks. 

II.  ASYMPTOTIC BEHAVIOR OF TOTAL CROSS
SECTION AND ρ-PARAMETER

As  is  well  known,  the  crossing  property  has  never
been proven (see, for instance, [13]), but generally, based
on it,  we can postulate  that  scattering amplitudes  can be
analytically  continued  between  the  different  channels  of
the  collision  process.  Subsequently,  we  assume  that  the
scattering  amplitude  in  terms  of  auxiliary  even  (+)  and
odd (–) amplitudes can be expressed as 

2 f±(s, t) = Fpp(s, t)±F p̄p(s, t), (1)

f±(s, t) = Re f±(s, t)+ iIm f±(s, t)
Fpp(s, t) F p̄p(s, t)

pp p̄p
−t

where  are  the  crossing
amplitudes,  and  and  are  the  complex-
valued scattering amplitudes  for  and  processes; s
is the square of the collision energy and  is the square
of  transferred  momentum,  both  in  the  center –of –mass
system.

t = 0

Based  on  the  above  definition,  the  DDR  up  to  the
first-order approximation  for  the  odd  and  even  amp-
litudes  (1)  in  the  forward  direction  ( ) can  be  ex-
pressed as [12, 14] 

Re f+(s)
s

=
k
s
+

[
π

2
d

dln s

]
Im f+(s)

s
, (2a)

 

Re f−(s)
s

=

[
π

2

(
1+

d
dln s

)]
Im f−(s)

s
, (2b)

f±(s,0) ≡ f±(s)
k = 0

where ,  and k is  the  subtraction  constant.
Without loss of generality, we adopt  since the influ-
ence of such parameter is restricted to the low energy do-
main  [8].  Notice  the  addition  of  high-order  derivative
terms in Equation (2) may make this representation more
sensitive to describe high-energy experimental data. Con-
sidering the  representation (1)  and DDR (2),  the  follow-
ing  simple  scheme  summarizes  the  use  of  such  odd  and
even amplitudes: 

ImFxp(s) −→ Im f±(s) −→ Re f±(s) −→ ReFxp(s),

x = p, p̄where .  This  scheme  reveals  the  importance  of
phenomenological information (the input) about the ima-
ginary part  of  the  forward  scattering  amplitude.  Further-
more, through  the  optical  theorem,  the  forward  imagin-
ary  part  can  be  used  to  define  the  behavior  of  the  total
cross section. As is well known, the optical theorem is in
the core of high energy physics, and it  was proved to be
valid for all energies and scattering angles [11], being ex-
pressed as 

σ
xp
tot(s) = ImFxp(s)/s. (3)
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The optical theorem (3) and DDR (2), can be used to
obtain the two following results concerning the behavior
of  as s increases: 

d∆tot(s)
d ln s

=
2
s

{
1
π

[
ReF p̄p(s)−ReFpp(s)

]
+ Im f−(s)

}
, (4a)

 

dΣtot(s)
d ln s

=
2
πs

[
ReF p̄p(s)+ReFpp(s)

]
, (4b)

pp p̄pwhere  the  difference  and  sum  of  the  and  total
cross sections are expressed, respectively, as 

∆tot(s) ≡ σ p̄p
tot (s)−σpp

tot (s), (5a)
 

Σtot(s) ≡ σp̄p
tot (s)+σpp

tot (s). (5b)

∆tot(s) Im f−(s)

∆tot(s) Σtot(s)
σ

xp
tot

One can  note  the  relation  (4a)  implies  the  independence
of  and  on each  other  for  further  calcula-
tions  which  in  turn  is  based  on  the  above  definitions  of
the  parameters  and  via  only  measuring
quantities ( ) without possible consequent transition to
the imaginary parts of amplitudes.

pp p̄pThe  experimentally  measured  and  total  cross
sections can be expressed using the above results  as fol-
lows: 

2σ p̄p
tot (s) = Σtot(s)+∆tot(s), (6a)

 

2σpp
tot (s) = Σtot(s)−∆tot(s). (6b)

ImFxp(s)
ReFxp(s)

Equations (4a) and (4b) can be analyzed by consider-
ing  some  expected  particularities  for  and

. First,  at  very  high  energies,  from  the  phe-
nomenological perspective, we expect that 

ReFxp(s)≪ ImFxp(s), (7)

almost
pp

p̄p

which  means  an  complete  absorptive  scattering.
However,  the  Froissart –Martin  bound  states  that  for 
and  forward  collisions,  the  total  cross  section  obeys
the inequality 

σtot(s)|s→∞ ≤C ln2 ε, (8)

ε ≡ s/s0 s0

s0 = 1
s0

C = π/m2
π ≈ 62.8

where C is  a  constant, ,  and  is  a  fixed  scale
that is generally unspecified. The scale can be selected to
hadronic particles as the reasonable one  GeV2 [15].
At  this  choice  of ,  the  axiomatic  quantum field  theory
(AQFT)  resulted  in  mb  [3, 4],  whereas

π/2m2
π ≈ 31.4

mπ
the twice smaller value  mb was recently de-
rived [5] with  being the charged pion mass [16]. It is
well  known  that  bound  (8)  cannot  be  improved  using
only analyticity in the momentum transfer, unitarity, and
boundedness  by  a  polynomial  in s,  even  if  oscillations
were permitted [17].

ReFxp(s)

√
sa

ReFxp(s) = 0 ReFxp(s)/s = cx , 0
ReFxp(s)/s = c , 0

The theoretical  results  (3)  and  (8)  facilitate  the  con-
struction of  a  wide  scope  to  accommodate  several  func-
tional forms of , which satisfies the phenomeno-
logical  condition  (7).  The  simplest  suggestion  among
them is to select a sufficiently small constant (which is al-
ways  possible)  to  satisfy  relation  (7)  at  asymptotically
high  energies.  Subsequently,  from  an  energy ,  and
considering  the  onset  of  the  asymptotic  region  in  the
elastic  scattering  case,  we  can  assume  that  (i)

, (ii)  is a small real num-
ber depending on x, or (iii) , where c is
a small real number.

Considering  the  assumption  (i)  in  (2b),  we  obtain  a
simple expression for the odd auxiliary function 

Im f−(s)/s = a1/ε, (9)

a1
s0

where  is an integration constant. For simplicity, here-
after we adopt the lower limit of integration as . Using
result (9) and assumption (i), from (4a) we obtain 

∆tot(s) = −2a1/ε. (10)

a1

a1 < 0 σ
p̄p
tot (s) ≳ σpp

tot (s)

Notice that the sign of  determines which of either
total cross section increases faster as s increases. For ex-
ample, if , we obtain  for asymptot-
ic energies.

pp

σ
pp
tot (s)

At  the  end  of  the  1950s,  the  general  belief  was  that
the total cross section decreases with increasing collision
energy,  as  shown  by  experimental  data.  As  is  well
known, this conviction was only modified with the Inter-
secting Storage Rings (ISR) measurement of the  total
cross  section conducted in  1973 showing the increase in

 with energy.

p̄p pp
s→∞

Possibly, the  first  theoretical  result  using  the  asymp-
totic  condition  to  obtain  useful  ground  in  high  energy
physics  is  the  Pomeranchuk  theorem  [7].  The  original
version  assumes  that  if  the  forward  elastic  scattering
amplitude  increases  slower  than s,  then  the  difference
between  and  total  cross  sections  tends  to  zero  as
 

∆tot(s)→ 0, if |F(s)| < s. (11)

The Pomeranchuk proof uses dispersion relations and
other  additional  intuitive  assumptions,  removed  in  other
versions  of  the  Pomeranchuk  result,  often  expressed  as
[18–20] 
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Rp̄/p
tot (s) ≡ σ p̄p

tot (s)/σpp
tot (s)→ 1, if s→∞, (12)

which is not the same result expressed by (11).
s→∞Under the present assumption (i),  when  result

(10) vanishes asymptotically, corroborating the Pomeran-
chuk  theorem.  In  contrast,  if  we  use  assumption  (ii),  it
implies the following result: 

[
ReF p̄p(s)−ReFpp(s)

]
/s = cp̄− cp. (13)

In this case, from (2b), we obtain 

Im f−(s)/s = (cp̄− cp)/π+a2/ε. (14)

a2 , 0where  is  an  integration constant.  Using the  above
result,  the  difference  between  the  total  cross  sections  is
expressed as 

∆tot(s) =
[
4(c p̄− cp)/π

]
lnε−2a2/ε, (15)

cp̄ = cp cp̄ = cp = c
which does not corroborate the Pomeranchuk theorem un-
less . The last assumption (iii) implies ;
thus, in this case, the difference is null: 

ReF p̄p(s)−ReFpp(s) = 0. (16)

ReFxp(s) = 0
ReFxp(s)/s = c

The  above  result  implies  an  asymptotic  behavior  for
the  total  cross  section  similar  to  (10).  From  this  simple
analysis,  we  can  conclude  that  or

 at high energies since both results corrob-
orate with the Pomeranchuk theorem.

Σtot(s)
sa

Equation  (4b)  can  also  provide  physical  information
on  the  behavior  of .  Considering  assumption  (i),
from certain  values, we obtain 

Σtot(s) = a0, (17)

a0

σtot(s)

where  is  a  real  constant.  Not  that  this  result  does  not
violate any  theorem  in  high  energy  physics,  and  it  ap-
pears  to  indicate  the  existence  of  a  taming  mechanism
(for  example,  the mini-jet  [21])  to the increase in 
as s increases.

In contrast, for a non-null real part given by assump-
tion (ii), we obtain 

Σtot(s) =
[
2(cp̄+ cp)/π

]
lnε, (18)

αP = 1

which  notably  reveals  that,  in  the  asymptotic  limit,  the
sum of the cross sections follows the logarithm of the col-
lision energy, i.e., with a Pomeron intercept . Con-
sidering assumption (iii), we can derive a similar result: 

Σtot(s) = (4c/π) lnε. (19)

We can observe that results (18) and (19) do not viol-
ate the Froissart–Martin theorem (8) even in its modified
version [5].

∆tot(s) Σtot(s)

∆tot(s)
cp̄ = cp

αP = 1

For  clarity,  all  the  above  results  are  summarized  in
Table 1. From this table, we observe that for (i), although

 obeys  the  Pomeranchuk  theorem,  the  sum 
does  not  appear  to  correspond  to  the  behavior  exhibited
by the experimental data, at least at present-day energies.
However,  for  the  results  expressed  by  (ii),  we  observe
that  does not obey the Pomeranchuk theorem, un-
less . The results  given by (iii)  appear to be reas-
onable  in  terms  of  the  experimental  data,  representing  a
Pomeron intercept  [8].

pp p̄p

√
sa

Σtot(s)

σ
p̄p
tot (s) σ

pp
tot (s)

Therefore, we may conclude that the  and  real
parts  of  the  forward  elastic  amplitude  are  null  above  a
certian  energy  or that  they  are  equal.  Both  conclu-
sions  preserve  the  Pomeranchuk  theorem  and
Froissart–Martin  bound.  However,  they  result  in  differ-
ent  asymptotic  behaviors  for ,  which  represents  a
puzzle that apparently cannot be solved at present-day en-
ergies.  It  is  important  to  emphasize  that  considering  the
results shown in Table 1 and in (6), we can obtain analyt-
ic  expressions  for  experimentally  measured  quantities

 and  at asymptotically high energies.
Now, we can apply the above procedure to study the

behavior  of  the ρ-parameter as  the  collision  energy  in-
creases. This parameter is defined as 

ρxp(s) = ReFxp(s)/ ImFxp(s), (20)

which measures the increase in the absorptive part of the
forward scattering amplitude (relative to the real part) as s
increases.

sa
ρxp(sa < s) = 0

If condition (i) is used, for certain  values, the only
possible  result  is , which  does  not  contra-
dict any theorem but has no predictive capability for non-
asymptotic  energies.  In  contrast,  adopting,  assumption
(iii) for instance, we obtain 

s→∞Table 1.    Summary of the theoretical results obtained assuming the asymptotic condition .

Assumption ReFxp(s)/s Im f−(s)/s ∆tot(s) Σtot(s)

(i) 0 a1/ε −2a1/ε a0

(ii) cx (cp̄ − cp)/π+a2/ε [4(cp̄ − cp)/π] lnε−2a2/ε [2(cp̄ + cp)/π] lnε

(iii) c a1/ε −2a1/ε (4c/π) lnε
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ρxp(s) = c/
[±a1/ε+ (2c/π) lnε

]
, (21)

+/− pp/ p̄p
a1/ε
ρpp(s) = ρ p̄p(s)

ρa

where the sign  is for , respectively. For a suf-
ficient high energy, the term  can be disregarded, res-
ulting  in  the  prediction  that  and  the ρ-
parameter approaches its asymptotic value ( ) 

ρxp(s)
∣∣∣
s→∞→ ρ

xp
a (s) ≡ (π/2) ln−1 ε. (22)

ImFxp(s)/s
ReFxp(s)/s

f−(s)
f+(s)

ρ ∝ ln−1 ε

It  is  important  to  emphasize  that  (22)  is  independent
of  any  external  parameter,  as  the  collision  energy  is  the
only variable of interest. It appears to be reasonable since
we  expect  the  same  parameters  that  drive 
should  also  control , at  least  for  the  high  en-
ergy  regime.  Furthermore,  the  asymptotic  result  (22)
agrees  well  with  the  "standard"  picture  of  high  energy
elastic diffraction in which amplitude  becomes neg-
ligible  compared  with  the  crossing-even  amplitude 
as s increases.  The  property  of  analyticity  implies

 [22].

p̄p pp

ρ(s)

ρ(s) σtot

The results  obtained for  measured forward scattering
parameters for  and  within assumptions under con-
sideration are summarized in Table 2.  It  is  interesting to
note that  if  we assume  as  given by assumptions (i),
(ii), or (iii), then the use of DDR tends to become similar
to  those  obtained  in  [17].  In  particular,  assumptions  (ii)
and  (iii)  for  result  in  as  given  by  the
Froissart –Martin  bound,  which  means  that  it  cannot  be
improved using the methods employed here.

pp p̄p

∀ x = p, p̄ : σxp
tot(s) ∝ lnε ρxp ∝ ln−1 ε

In  the  framework  of  the  present  approach  based  on
the crossing property, DDR (2), and optical theorem (3),
both  and  elastic  collisions  are  characterized  by
similar  energy  dependencies  for  the  total  cross  section
and ρ-parameter at asymptotically high energies, namely,

,  within  more  realistic
assumptions  (ii)  and  (iii),  which  are  considered  in  the
paragraph below.

σ
xp
tot(s) x = p, p̄

σ
pp
tot (s)

∀ x = p, p̄ : σxp
tot(s)

It  seems  the  dependence  for  from
Table  2 in the  collision  energy  domain  under  considera-
tion  appears  to  be  functionally  close  to  the  increase  in

 deduced within the Regge–Eikonal approach [23].
However,  note  that  exhibits  a  weaker

σtot(s)
O

∀ x = p, p̄ : ρxp(s)|s→∞ ∝
ln−1 ε

ρ(s) pp p̄p

increase with s than that within the AQFT and semiclas-
sical color  glass  condensate  (CGC) approach,  which im-
plies  that  is  functionally  close  to  the  Froissart –
Martin limit (8) in the region of at least (100 TeV) ener-
gies [24]. The asymptotic behavior 

 is  qualitatively  similar  in  functional  sense  to  the
corresponding  AQFT  dependencies  for  and 
considering the values of fit parameters [25, 26]. 

III.  EXPERIMENTAL DATABASE AND FITTING
PROCEDURE

G1 ≡
{Gi

1}4i=1 = {σ
pp
tot ,σ

p̄p
tot ,ρ

pp,ρ p̄p}

G2 ≡ {Gi
2}3i=1 = {∆tot,Σtot,R

p̄/p
tot }

G2
G1

G j j = 1,2
G = G1

∪ G2

The  set  of  the  global  scattering  parameters 
 contains  only  observables

that  are  independent  of  each  other  as  well  as  directly
measured  in  experiments.  In  contrast,  the  set

 is  formed  strictly  by  the
parameters  that  depend  on  experimentally  measurable
quantities; moreover, terms of  are independent of each
other and the terms of . In this paper, the sets of scat-
tering parameters  and their  combinations ,  are
studied. Additionally, the joined ensemble  is
considered for completeness of information1).

G1
σ

xp
tot ρ

xp

σ
pp
tot

√
s = 0.20

ρpp √
s = 13

ρ
pp
1

∣∣∣√
s=13TeV = 0.09±0.01 ρ

pp
2

∣∣∣√
s=13TeV =

0.10±0.01

ρpp

ρpp

ρpp √
s = 13

The experimental  database  for  containing the  en-
sembles  for ,  from  [16]  is  denoted  as  DB20,
whereas the database considering the above samples and
results  from  STAR  for  at  TeV  [27]  and
from TOTEM for  at  TeV [28] is denoted as
DB20+. The last  paper leads to some uncertainty,  which
results  in  two  perspectives  for  database  creation.  Two
values  and 

 were  obtained  in  [28]  for  one  quantity  and
collision energy without  any preference for  one value of

 over the other. However, the one result should be in-
cluded in the corresponding data sample because  was
measured  under  the  same  experimental  conditions  (de-
tector,  kinematic  parameters,  etc.).  It  should  be  stressed
that such request is fully within the rules were applied for
creation  of  experimental  databases  in  various  analyzes,
for instance, for elastic slope [29] as well as in jet phys-
ics [30] and femtoscopy [31]. The weighted average [16]
can  be  used  as  an  estimation  for  at  TeV:

s→∞Table 2.    Summary of the results for measured forward parameters assuming the asymptotic condition .

Assumption σ
p̄p
tot (s) σ

pp
tot (s) ρp̄p(s) ρpp(s)

(i) a0/2−a1/ε a0/2+a1/ε 0 0

(ii) 3cp̄ − cp

π
lnε− a2

ε

3cp − c p̄

π
lnε+

a2

ε

cp̄

[(3cp̄ − cp)/π] lnε−a2/ε

cp

[(3cp − cp̄)/π] lnε+a2/ε

(iii) 2c
π

lnε− a1

ε

2c
π

lnε+
a1

ε

c
(2c/π) lnε−a1/ε

c
(2c/π) lnε+a1/ε

Optical theorem, crossing property and derivative dispersion relations: implications... Chin. Phys. C 46, 083105 (2022)

1) In the paper total errors are used for experimental points unless otherwise specified. The total error is calculated as systematic error added in quadrature to statist-
ical one.
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⟨ρpp⟩|√s=13TeV = 0.095±0.007

⟨ρpp⟩|√s=13TeV
ρ

pp
1 ρ

pp
2√

s = 13

G1

.  Therefore,  two  versions
of  the  DB20+ are  considered  here,  namely,  the  database
with  one  value  is  denoted  as  DB201+,
whereas the database containing both results ( , ) at

 TeV is denoted as DB202+. Table 3 summarizes
the main features of the databases of experimental results
used in this paper for the set of the scattering parameters

.

{Gi
2}3i=1

σ
pp
tot σ

p̄p
tot

G2
G1

{Gi
2}3i=1

xp
G2

σ
pp
tot σ

p̄p
tot

σ
pp
tot σ

p̄p
tot

P∆ ≡ |P1−P2| ≤ 0.02 P1 P2
Pi

Gi
1 i = 1,2

P1 P2

σ
pp
tot σ

p̄p
tot

P∆√
s < 3.63

⟨P⟩
Gi

2 i = 1−3
⟨P⟩ ⟨P⟩ = 0.5(P1+P2)

∆⟨P⟩ = 0.5|P1−P2| ∃ i : ∆Pi = 0 ⟨P⟩

σ
pp
tot σ

p̄p
tot

G2
G2 G1

G2

√
s < 0.5√

s ≈ 0.06√
s = (0.47±0.08)

Within  the  main  objectives  of  this  paper,  the  values
for  each  term  are  calculated  using  relations  (5)
and  (12)  and  measured  values  of  and  for com-
pleteness of analysis. In the following, these ensembles of
calculated values are called data samples for  similar to
the  set  only  in  the  sense  that  the  value  of  each  term

 at certain s values is only defined by experiment-
al results for  cross sections. The data sample for each
term of  is  based  on  the  corresponding  subensembles
for  and  at  identical  or,  at  least,  close  energies.
The energy values for the measured  and  are con-
sidered  close  if  GeV  or  and 
coincide  within  errors,  where  is the  laboratory  mo-
mentum for the term , . On can note that the first
condition for the closeness of  and  was previously
used in [32]. The relative fraction of the pairs ( , )
with finite  is 64.8% and almost  all  of  such measure-
ments  are  at  GeV.  In  these  cases  the  average
momentum  is assigned for the initial energy for cor-
responding  estimation  of  the  each  term ,  and

 is  calculated  as  simple  average 
with  if  or  and its  un-
certainty is estimated with the help of the weighted aver-
age  technique  [16]  on  the  contrary  case.  As  shown  in
Table 3, the subensembles for  and  from [16] are
only used to calculate each term of  and, consequently,
one database for  corresponds to DB20 for . As ex-
pected  from  definitions  (5)  and  (12),  the  energy  range
covered by experiments is identical for all terms of . A
detailed  analysis  shows  that  this  range  is  limited  to

 TeV with  a  wide  gap  between  the  highest  ISR
energy  TeV  and  the  high  energy  boundary

 TeV for the energy domain under dis-
cussion. √

saNo  prediction  exists  for  the  asymptotic  energy 
from  the  first  principles  of  QCD  (for  instance),  and  the

√
sa ≈ 2

sa

√
sa O

σ
pp
tot (s)

σ
pp
tot (s) pp

search for the onset of the asymptotic energy domain re-
mains a non-trivial task. Thus, no consensus exists for the
beginning  of  the  so-called  asymptotia.  For  example,  the
asymptotic  regime  may  be  defined  by  using  the  first
change in the sign of the curvature parameter C in the im-
pact  parameter  representation  [33].  For  the  Chou –Yang
model  [34],  for  instance,  the  asymptotia  begins  at

 TeV, where C changes its sign. However, recent
studies  have  shown model-dependent  estimations  for ,
and  these  values  lie  in  a  very  wide  energy  range.  From
the experimental perspective, the most optimistic estima-
tion for  appears to be (100 TeV) in order of mag-
nitude, and it was qualitatively obtained from a study on
the  functional  behavior  of  within  the  AQFT  and
CGC  approach  at  ultra-high  energies  [24].  This  result
agrees with the conclusion from the Regge–Eikonal mod-
el for  and forward slope for  interaction [23].

pp p̄p

√
sa ∼ 5−10

sa

√
sa ≳ 1012−1013

Detailed  analyes  of  the  ratio  of  the  elastic –to –total
cross sections for  and  collisions [32] as well as the
approach of the partonic disks [35] permit only the indic-
ation  PeV. Consideration of some other sig-
natures  of  the  "truly  asymptotic  regime"  within  the
Regge–Eikonal  model  [23] results  in  a  much  more  con-
servative estimation for . In particular, the onset of the
asymptotic regime can be expected in grand unified the-
ory  (GUT)  energy  domain  in  order  of  magnitude,  i.e.

 GeV.
σ

pp
tot

√
sa

G

G s ≥ smin smin

smin

Thus,  there  are  only  1  –  2  measurements  for  in
ultra-high energy cosmic rays even for lowest estimation
for .  Therefore,  a  phenomenological  approximation
will be a priori at collision energies smaller than the pos-
sible  onset  of  the  asymptotic  region.  Consequently,  the
request for  the  validity  of  the  Pomeranchuk theorem ap-
pears to be redundant for the energy range under fit, and
we can consider hypotheses (ii) and (iii) for the function-
al  forms  of  the  terms  of  within  the  fitting  procedure.
As  previously  investigated  [25, 26], the  parameteriza-
tions shown in Tables 1 and 2 for hypotheses (ii) and (iii)
will be applied to approximate the energy dependence of
different  terms  of  only  for ,  where  is  an
empirical  low  boundary.  During  the  analysis  procedure,
the  value  will  be  decreased  as  much  as  possible  to
describe  the  wider  energy  domain  with  a  statistically
reasonable fit quality. 

IV.  RESULTS OF SIMULTANEOUS FITS

Gi i = 1,2
This section presents a detailed description of the res-

ults  of  simultaneous  fits  for  the  sets ,  and  the
corresponding discussion. 

G1A.    Simultaneous Fits for the Set 
G1√

smin = 0.03,0.04,0.05,0.06,0.1,0.5,1,5
The energy dependence of the terms of  is approx-

imated at , and 10
TeV using the corresponding formulas in Table 2 within

G1

Table 3.    Databases for the set of global scattering paramet-
ers .

Database
G1Parameter from the set 

σ
pp
tot σ

p̄p
tot ρpp ρp̄p

DB20 [16] [16] [16] [16]

DB201+ [16, 27] –//– ⟨ρpp⟩|√s=13TeV[16] and –//–

DB202+ –//– –//– [16, 28] –//–
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smin
χ2/n.d.f. ≈ 26

√
smin ≥ 0.06

G1
smin

pp p̄p

√
smin ≥ 0.06

hypotheses  (ii)  and  (iii).  At  the  lowest  considered
here, the fit quality  with a rapid decrease in
the growth of the low boundary of fitted range for hypo-
theses  (ii)  and  (iii).  For  both  hypotheses  considered,  the
statistically reasonable fit  qualities are only observed for

 TeV. This approach facilitates a reasonable
description of  within narrower energy ranges than that
of AQFT equations [25, 26] as  shifts towards larger
values.  In  general,  this  result  is  expected  because  the
asymptotic  behavior  of  the  total  cross  sections  and
ρ–parameter  is  studied  here  for  and  collisions.
Thus,  the  discussion  below  is  focused  on  the  results  for

 TeV.

smin

G1

smin

smin

As  shown  in Table  3,  the  databases  considered  here
differ  from  each  other  very  slightly;  more  precisely,  the
maximum difference between DB20 and DB202+ occurs
on three points. Furthermore, all the experimental results
that  are  added with respect  to  the DB20 agree well  with
the general trends in the energy dependence of the corres-
ponding observable.  Therefore,  according  to  the  hypo-
thesis  confirmed  in  [26], we  can  expect  a  negligible  ef-
fect of the additional points on the values of fit paramet-
ers for various databases at  fixed  values.  A detailed
analysis fully confirms the correctness of this suggestion
for the results of simultaneous fits for  with databases
DB201+  and  DB202+  differing  from  each  other  only  on
one point (Table 3). The values of all fit parameters agree
within errors for DB201+ and DB202+ for each  and
hypotheses  (ii)  and  (iii)  considered  here.  Moreover,  the
identity is  observed between the numerical  values of  the
fit parameters and their uncertainties for DB201+ and the
values of the corresponding quantities for DB202+ for the
noticeable part of low boundaries , particularly with-

χ2/n.d.f.

smin

in hypothesis (iii). The approximation quality  is
very  close  for  the  simultaneous  fits  of  DB201+  and
DB202+  with  a  subtle  improvement  for  the  last  case  at
any fixed . All these enable us to consider the fit res-
ults obtained for DB20 and DB201+ in the following.

G1

smin

Gi
1

i = 1−4
√

smin =√
smin = 1

The  numerical  results  of  the  simultaneous  fits  of 
in various energy ranges are shown in Tables 4 for hypo-
theses  (ii)  and  (iii).  At  a  fixed ,  the  first  and  second
lines  show  results  for  DB20  and  DB201+,  respectively.
Experimental  data  from  DB201+  for  the  terms ,

 and  fit  curves  are  shown  in Fig.  1 for 
0.06  TeV  (solid  lines)  and  for  TeV  (dashed
lines).  The  thick  curves  are  obtained  within  hypothesis
(ii), whereas the two remaining lines correspond to hypo-
thesis (iii). √

smin

G1
pp {σpp

tot ,ρ
pp}√

smin = 5 σ
pp
tot√

smin = 10

(3cp− cp̄) √
s ≥ 10

cp cp̄

p̄p
σ

p̄p
tot (s) ρp̄p(s) √

s ≥ 5(10) √
smin = 5(10)

The  use  of  the  multi-TeV  values  of  and  the
available experimental data within a certain database stip-
ulates  that  the  approximation  procedure  consequently
transits from the simultaneous fit of the full set  to the
simultaneous fit  of  the  observables  only at

 TeV and even to the individual fit of the  at
the  highest  TeV  for  DB20.  In  the  last  case,
hypothesis  (ii)  reduces  to  hypothesis  (iii)  because  the
available  experimental  data  permit  the  fix  only  with  the
combination .  No  fitting  function  for  which
there would be at least one experimental point at 
TeV, and this function would contain parameter  or 
in  the  separate  term.  Moreover,  we  expect  the  smooth
joining  for  the  energy-dependent  global  observables,

 and ,  in  the experimentally measured range
and  in  the  domain  TeV  described  by  the
curve  calculated  from  the  fit  results  at 
TeV. This expectation is established by the absence of the

G1(s)Table  4.    Parameters  for  simultaneous  fitting  of  within  various  hypotheses  at  different  stages  of  DB:  DB20  (first  line)  and
DB201+ (second line).

√
smin , TeV

hypothesis (ii) hypothesis (iii)

cp , mbarn cp̄ , mbarn a2 , mbarn χ2/n.d.f. c, mbarn a1 , mbarn χ2/n.d.f.

0.06 8.484±0.029 8.12±0.04 (−9.0±0.9)×103 97.7/45 8.342±0.024 (−1.9±0.6)×103 170/46

8.468±0.029 8.12±0.04 (−8.5±0.9)×103 108/47 8.339±0.024 (−1.8±0.6)×103 174/48

0.1 8.35±0.04 7.91±0.06 (−1.0±0.4)×105 39.6/34 8.31±0.04 (2.8±1.5)×105 124/35

8.35±0.04 7.91±0.06 (−1.2±0.5)×105 43.7/36 8.28±0.04 (2.2±0.9)×104 134/37

0.5 8.38±0.05 8.00±0.11 (3.1±1.4)×105 37.1/30 8.48±0.05 (2.04±0.25)×106 62.3/31

8.39±0.05 8.01±0.11 (3.5±1.2)×105 41.0/31 8.48±0.05 (2.0±0.4)×106 65.2/32

1 8.28±0.17 7.6±0.6 (−1.9±0.5)×107 33.0/23 8.54±0.05 (1.8±0.4)×107 34.9/24

8.4±0.3 8.0±1.1 (−2.4±0.8)×106 37.3/24 8.54±0.05 (1.9±0.4)×107 37.9/25

5 9.3±0.4 9.9±2.6 (−3.1±0.6)×108 20.3/17 9.03±0.21 (−3.1±0.8)×108 20.5/18

9.35±0.15 10.0±1.9 (−3.1±0.6)×108 21.4/18 9.06±0.22 (−3.3±0.9)×108 22.8/19

10 9.4±1.7 10.1±2.7 (6.5±0.5)×107 1.08/6 9.1±1.0 (6.5±0.7)×107 1.08/7

9.8±0.5 10.0±2.6 (−1.3±0.9)×109 2.16/7 9.9±0.6 (−1.7±0.8)×109 2.26/8

Optical theorem, crossing property and derivative dispersion relations: implications... Chin. Phys. C 46, 083105 (2022)
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pp/ p̄p

any signature for new physics beyond the Standard Mod-
el (SM) that could result in the sudden change in the en-
ergy  dependence  of  any  global  scattering  parameter  in

 collisions.
ρxp(s)

ρxp ∼ 10−2
√

s > 1
ρxp(s)

cx

∝ ln−1 ε

ρ p̄p(s)
√

smin = 5
ρ p̄p(s)

∣∣∣√
s≈2TeV

σ
p̄p
tot (s)√

smin = 10

σ
p̄p
tot (s)

cp = (10.5±0.8) cp̄ = (13.2±
2.8) a2 = (6.0±0.6)×107 χ2/n.d.f. =
1.08/7

Only  few  points  for  exist  in  the  TeV-energy
domain; moreover,  the experimental values  at

 TeV; the  consideration  mentioned  in  Sec.  II  im-
plies that the smooth behavior of the curves for  is
dominated by the values of  / c parameters within hypo-
theses (ii) and (iii). Furthermore, changes in these curves
are slow ( ) at sufficiently high s. All of these evid-
ences result in the relatively robust behavior of the curve
for  at , 10  TeV and  a  reasonable  agree-
ment between experimental  value of  and
analytic  approximation  in  multi-TeV  energy  domain
without any additional request  for the smooth joining. A
detailed  analysis  indicates  an  influence  of  the  request  of
the smooth joining for  on the fit results within hy-
pothesis (ii) for DB201+ at  TeV. For this case,
the numerical  values  of  the  fit  parameters  obtained  con-
sidering  the  necessity  of  smooth  joining  for  are
shown in Table 4, while the results without additional re-
quest  are  as  follows:  mbarn, 

 mbarn,  mbarn,  and 
.

σ
p̄p
tot (s) a2

a2

χ2/n.d.f.
a2 χ2/n.d.f.

χ2/n.d.f.

smin

σ
p̄p
tot (s)

As  observed,  the  request  of  the  smooth  joining  for
 influences  the  value  of  parameter  and  the  fit

quality. If one releases the need under consideration, then
we provide the agreement between values of  for vari-
ous  databases  within  hypothesis  (ii)  at  almost  identical

 Such an  exception  results  in  the  expected  dis-
crepancy between values of  and  obtained us-
ing simultaneous fits within various hypotheses for data-
base  DB201+.  Note  that  the  change  in  the  fit  quality  for
the last two cases is noticeable but not at a first glance. It
is important to emphasize that  remains statistic-
ally acceptable for simultaneous fit of DB201+ within hy-
pothesis (ii) at the highest , independent of additional
requests of the smooth joining for .

G1√
smin ≥ 0.06√

smin ≥ 0.1
cp > cp̄ √

smin = 0.5
cp cp̄√
smin ≥ 1

χ2/n.d.f.

As  observed  in Table  4,  hypothesis  (ii)  enables  the
simultaneous approximation of all terms of  with reas-
onable quality at  TeV and with statistically
acceptable  quality  at  TeV  for  any  databases
considered. The relation  is valid for the simultan-
eous fit  versions within hypothesis (ii)  up to 
TeV. In contrast, the values of  and  coincide within
errors for approximations at  TeV. These state-
ments are valid for both databases DB20 and DB201+. It
is important to note that for hypothesis (iii), in contrast to
(ii),  a reasonable value of  can be obtained only

G1√
smin = 0.06

√
smin = 1

Fig. 1.    Energy dependence of the measurements for the terms of  and results of simultaneous fits of all these terms. Experimental
results  are from DB201+. The solid lines correspond to the fit  at  TeV, the dashed lines are at  TeV. The thick
lines show the fit curves for hypothesis (ii) and the other lines correspond to hypothesis (iii).
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√
smin ≥ 0.5 χ2/n.d.f.√

smin ≥ 1

cp cp̄ smin
cp cp̄

G1

σ
xp
tot

√
smin = 0.06

ρxp √
s < 0.1

ρxp
√

s < 0.1
χ2/n.d.f.

√
smin = 0.03,0.04

at  TeV and a statistically acceptable 
only at  TeV. This characteristic is in full agree-
ment with Table 4: as consequence of the considered rela-
tions  between  and  at  various ,  we  can  expect
that reducing the parameters  and  to c would be pos-
sible to start, at least, at similar collision energies1). Thus,
hypothesis  (iii)  reasonably  describes  the  experimental
data for  at significantly higher s values than hypothes-
is  (ii)  owing to the "extremely" asymptotic  nature of  the
corresponding  relations  in Table  2.  Hypotheses  (ii)  and
(iii)  already  qualitatively  describe  the  energy-dependent
behavior  of  at  TeV  (Fig.  1a,  b).
However, they provide overestimates for  at 
TeV  (Fig.  1c, d),  which  enables  the  qualitative  assump-
tion that the discrepancy between experimental values of

 and smooth curves within hypotheses (ii) and (iii)  at
 TeV is  the  main  reason  for  the  large  values  of
 for simultaneous fits  at  small  values of the low

boundary  of  the  fitted  range  considered  here
( , and 0.05 TeV).

χ2/n.d.f. smin

cp cp̄
smin

a2/a1

A comparative analysis of the fit parameters obtained
for  databases  DB20  and  DB201+  and  shown  in Table  4
results  in  the  following  conclusions:  (a)  close  values  of

 are for both databases at any fixed ; (b) val-
ues  of  and  within hypothesis  (ii)  agree  within  er-
rors for various databases at the corresponding  value
and  values  of c in for  hypothesis  (iii);  (c)  the  last  state-
ment  is  also  mostly  valid  for  parameter  for hypo-
thesis (ii)/(iii).

G1

√
smin = 0.06

In general, the versions (ii) and (iii) of the asymptotic
model suggested  within  this  paper  describe  the  experi-
mental  data  for  the  set  at  higher  energies  than  the
AQFT [25, 26], particularly for hypothesis (iii). The com-
parison between the asymptotic model and AQFT is pos-
sible only at  TeV, and the fit  quality is no-
ticeably worse in the first case than that for AQFT. Such
a  relationship  between  the  phenomenological  models  is
expected,  since  the  approach  considered  here  is a  priori
asymptotic, i.e., as reasonably expected, the model based
on the suggestions for the asymptotic energy domain will
describe the experimental  data  well  at  higher  asymptotic
energies.

G1√
smin =

The  ensemble  of  experimental  results  that  includes
only  accelerator  data  is  also  considered  for  databases
DB20,  DB201+,  and  DB202+. These  ensembles  are  de-
noted as DBac20, DBac201+, and DBac202+, respectively.
The energy dependence of  the  terms of  is approxim-
ated at  0.03,  0.04,  0.05,  0.06,  0.1,  0.5,  1,  5  and
10  TeV  by  the  corresponding  formulas  from Table  2
within  hypotheses  (ii)  and  (iii)  for  ensembles  DBac20,
DBac201+, and DBac202+ and for the full databases above.
The statement made for DB20, DB201+ and DB202+ re-

√
smin ≥ 0.06

garding  the  fit  qualities  is  valid  for  this  case.  Therefore,
the discussion below for samples DBac20, DBac201+ and
DBac202+ focuses on the results for  TeV.

smin
χ2/n.d.f.

smin √
smin = 10

The  values  of  all  fit  parameters  agree  considerably
well  within  the  errors  for  DBac201+  and  DBac202+  for
each  and  hypotheses  (ii)  and  (iii)  considered  here.
The approximation quality  is  very close for the
simultaneous fits of accelerator data ensembles DBac201+
and DBac202+ with  subtle  improvement  for  the  last  case
at any fixed . These statements are valid with excep-
tion of the highest  TeV, which is analyzed be-
low in  more  detail.  As  well  as  for  the  full  databases,  all
these enables us to consider the fit results for DBac20 and
DBac201+.

G1

smin

Gi
1 i = 1−4√

smin = 0.06√
smin = 1

√
s ≥ 0.06

smin

The  numerical  results  of  the  simultaneous  fits  of 
in various energy ranges are shown in Table 5 for hypo-
theses (ii)  and (iii)  considering the accelerator data only.
At  fixed ,  the first  and second lines  show results  for
DBac20  and  DBac201+,  respectively.  Experimental  data
from DBac201+ for the terms ,  along the with
fit curves are shown in Fig. 2 for  TeV (sol-
id  lines)  and  at  TeV (dashed lines).  The  thick
curves  are  obtained  within  hypothesis  (ii)  and  the  two
other lines correspond to hypothesis (iii). The energy do-
main  TeV is considered in Fig. 2 in contrast to
Fig. 1 to show fit curves clearer for different  values
and hypotheses.

smin

smin √
smin = 0.5

smin
G1

Numerical  values  for  the  fit  parameters  agree  within
errors  for Tables  4 and 5 at  a  fixed  and hypothesis.
Therefore, most  of  conclusions  above  for  the  full  data-
bases DB20, DB201+, and DB202+ are valid for the cor-
responding  ensembles  of  the  accelerator  experimental
results  with  the  following  features  and  interpretations.
Agreements, within errors, are observed between the nu-
merical values of the corresponded fit parameters for en-
sembles  DBac20  and  DBac201+  for  a  certain  hypothesis
and fixed .  Furthermore, values are identical for free
parameters  at  and  1  TeV  within  hypothesis
(iii). Consequencetly,  the  fit  curves  for  various  hypo-
theses  are  close  to  each  other  at  any  fixed  con-
sidered in Fig. 2 for each observable from the set .

√
smin = 1 cp̄

√
smin ≥ 1

a2
√

smin = 0.5

√
smin = 0.1

√
smin = 10

Table  5 shows  a  noticeable  decrease  in  the  relative
uncertainties for c at  TeV, for  at 
TeV,  for  at ,  and  1  TeV  at  the  transition
from the ensemble DBac20 to the ensemble DBac201+ for
hypothesis  (ii).  The  similar  effect  is  absent  for  pairs  of
any  other  ensembles  within  a  certain  hypothesis.  The
datasets  for  approximation  are  identical  for 
and 0.5 TeV for the sample DBac20; therefore, the fit res-
ults are only shown for the last  case in Table 5.  The fits
are  impossible  at  the  highest  TeV  owing  to
lack of the required number of data points with the excep-

Optical theorem, crossing property and derivative dispersion relations: implications... Chin. Phys. C 46, 083105 (2022)

√
smin = 1 a1 a2

1) Strictly speaking, the possible reduction of the number of fit parameters does not mean the transition from the hypothesis (ii) to the (iii) one because the corres-
ponding fit parameters obtained within these hypotheses disagree for DB20 at  TeV and similar statement is for  and  parameters in the case of DB201+.
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√
smin = 10

cp = (10.00±0.13) cp̄ = (10.0±1.7)

tion of the cases of DBac201+ for hypothesis (iii),  shown
in Table  5 and  ensemble  DBac202+  for  both  hypotheses
under study. In the last case, the following results are ob-
tained using the simultaneous fit at the highest 
TeV:  mbarn,  mbarn,

a2 = (−1.8±1.0)×109 χ2/n.d.f. = 0.88/1
c = (10.5±0.7) a1 = (−2.7±

0.7)×109 χ2/n.d.f. = 0.55/2

 mbarn,  for  the
hypothesis  (ii),  and  mbarn, 

 mbarn,  for hypothesis (iii).
These data confirm all the above conclusions regard-

ing  the  agreement  between  the  fitting  results  for

G1√
s ≥ 0.06

Fig. 2.    Comparison of the data from accelerator experiments for the terms of  and approximating curves from simultaneous fits of
all these terms at  TeV. The experimental results are from the subsample DBac201+. The notations for the curves and experi-
mental data base are identical to that in Fig. 1.

 

G1(s)Table 5.    Parameters for simultaneous fitting of  within teh two hypotheses at different stages of the accelerator subsample of
DB: DBac20 (first line) and DBac201+ (second line).

√
smin ,TeV

hypothesis (ii) hypothesis (iii)

cp , mbarn cp̄ , mbarn a2 , mbarn χ2/n.d.f. c, mbarn a1 , mbarn χ2/n.d.f.

0.06 8.49±0.03 8.12±0.04 (−9.1±0.9)×103 92.1/31 8.343±0.024 (−1.9±0.6)×103 165/32

8.471±0.029 8.12±0.04 (−8.6±0.9)×103 103/33 8.339±0.024 (−1.8±0.6)×103 169/34

0.1 – –

8.35±0.04 7.91±0.06 (−1.2±0.6)×105 40.2/23 8.28±0.04 (4.4±0.8)×104 129/24

0.5 8.38±0.05 8.00±0.11 (3.1±1.4)×105 35.0/21 8.48±0.05 (2.03±0.25)×106 59.9/22

8.38±0.05 8.01±0.11 (3.5±0.9)×105 39.0/22 8.48±0.05 (2.03±0.25)×106 62.9/23

1 8.29±0.16 7.7±0.5 (−1.7±0.8)×107 31.0/14 8.54±0.05 (1.9±0.4)×107 32.8/15

8.39±0.05 8.02±0.11 (−2.4±0.5)×106 35.3/15 8.54±0.05 (1.9±0.4)×107 35.8/16

5 9.34±0.16 10.0±2.7 (−2.9±0.7)×108 19.0/8 9.01±0.23 (−3.0±0.9)×108 19.2/9

9.33±0.16 10.0±1.9 (−2.9±0.8)×108 20.1/9 9.04±0.23 (−3.2±0.7)×108 21.5/10

10
– –

– 10.5±0.7 (−2.7±0.7)×109 0.05/1

S. D. Campos, V. A. Okorokov Chin. Phys. C 46, 083105 (2022)
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√
smin = 10

DBac201+ (Table 5) and DBac202+ for hypothesis (iii) and
between the full  databases DB201+ and DB202+ and the
corresponding ensembles of accelerator experimental res-
ults for hypothesis (ii) at  TeV considering the
closeness  of  the  results  of  approximation  established
above for DB201+ and DB202+.

σ
p̄p
tot (s) ρ p̄p(s)

√
s ≥ 5(10)

√
smin = 5

√
smin = 5

χ2/n.d.f. √
smin ≥ 0.06

G1

G1 smin

smin

Note that  the  fitting  results  are  obtained  with  the  re-
quest  for  the  smooth  joining  of  and  in  the
experimentally  measured  range  and  in  the  domain

 TeV within hypothesis  (ii)  at  TeV
for the ensembles DBac20 and DBac201+ (Table 5) and at

 and 10 TeV for DBac202+. As shown in Tables
4 and 5, the  exception  of  the  cosmic  ray  (CR)  measure-
ments result  in the deterioration in the quality of the ap-
proximation for the ensembles DBac20 and DBac201+ re-
garding the corresponding full databases1). Only statistic-
ally  reasonable  values  of  are obtained  for  en-
sembles  of  accelerator  results  for  any  TeV
in contrast  to  the  full  databases.  Consequently,  hypo-
theses (ii) and (iii) facilitate the qualitative description of
energy dependence of  only. Figure 2 depicts the qual-
itative agreement of the curves from simultaneous fits of
the  terms of  with  data  points  at  any considered .
The main features of the behavior of these fit curves with
respect to the experimental results are similar to those ob-
served in Fig. 1 at corresponding  values.

√
s = 95+5

−8
√

s = 13

In general, we can conclude that the exclusion of the
CR data  from the  fitted  samples  results  in  to  significant
narrowing of the experimentally available energy domain
owing  to  the  decrease  in  the  maximal  energy  boundary
from  TeV  [36]  to  TeV  at  the  LHC
and  the  noticeable  deterioration  in  the  approximation
quality  in  most  cases.  Therefore,  the  full  databases  from
Table 3 and corresponding fitting results from Table 4 are
considered below, unless otherwise stated.

√
smin = 1

√
smin = 1

s ≥ smin

√
s ≈ 1

√
smin = 1

Note  that  the  curves  obtained  within  hypothesis  (iii)
at  TeV exhibit a peculiar behavior close to the
lower  boundary  of  the  fitted  range  (Figs.  1 and 2).  This
behavior  is  dominated  by  the  standard-fit  procedure,
namely,  by  the  request  to  obtain  a  better  fit  quality  and
the  absence  of  experimental  points  close  to 
TeV. Therefore,  this  peculiar  behavior  is  an artificial  ef-
fect  owing  to  the  data  analysis  procedure.  Furthermore,
the fit at  does not consider data points at lower s
values; consequently,  the  behavior  under  consideration
does  not  contradict  any  physical  results  and  it  has  no
physical  meaning.  Hypothesis  (ii)  is  less  sensitive  to  the
absence/presence of the data points closer to  TeV
than  hypothesis  (iii).  Accordingly,  the  curves  obtained
within hypothesis (ii) at  TeV has a smooth be-
havior without any features at the low energy edge (thick
dashed  lines  in Figs.  1 and 2) whereas  the  curves  ob-

√
smin = 1tained  using  hypothesis  (iii)  at TeV  exhibits  a

peculiar  behavior  at  the  low  energy  edge  (thin  dashed
lines in Figs. 1 and 2) owing to the aforementioned reas-
ons.

smin

√
smin ≥ 0.06

In summary, for this subsection, simultaneous fit res-
ults  obtained  for  the  full  databases  DB20,  DB201+,  and
DB202+ and for the corresponding ensembles of acceler-
ator  data  DBac20,  DBac201+,  and  DBac202+  generally
demonstrate the robustness of the fit  results for each hy-
pothesis  under  consideration  for  fixed ,  and  on  the
value  of  the  lower  boundary  of  fitted  range  for

 TeV  within  certain  hypotheses  (Tables  4
and 5). Consequently, the corresponding curves are closer
to each other in Figs. 1 and 2. 

G2B.    Simultaneous Fits for the Set 
G2

∆tot Σtot Rp̄/p
tot

Σtot(s)
G1

2 G2
2

G2

Gi
2 i = 1−3

√
s ≲ 10√

s < 3
∆tot Rp̄/p

tot

Σtot√
s ≳ 20

Figure  3 shows  the  energy  dependence  for ,
namely  (a),  (b), and  (c), with the values of
points  multiplied  by  0.1  in Fig.  3b  for  to  use  the
one  scale  for  the Y–axis  for  the  terms  and .  The
plots for the terms of  indicate that values of any term

,  decrease  at  GeV, particularly  rap-
idly at  GeV. For higher energies, the slowdown is
observed in  the  decrease  of  (Fig.  3a)  and  (Fig.
3c), and is paticularly noticeable in the last case; a broad
minimum occurs for  (Fig. 3b), followed by a moder-
ate increase at  GeV.

∆tot Rp̄/p
tot

∆tot Rp̄/p
tot

√
s > 62

∆tot ≥ 1−2 Rp̄/p
tot > 1

∆tot(s)
Rp̄/p

tot (s)

Note  that  the  values  of  and at  the  highest
available energy  are  larger  than  the  previous  measure-
ments, particularly in the first case. However, since this is
the  only  point  for  each  parameter  and , this  in-
crease can be  only  considered as  an  indication of  a  pos-
sible  transition  to  growth  at  GeV, i.e.,  at  ener-
gies larger than the maximum energy of ISR, in the cor-
responding  energy  dependence.  Except  for  three  points
with large errors  mb;  although it ap-
proaches  the  asymptotic  value  (12)  from  above  with  an
accuracy level better than 2% at ISR energies. However,
indications  of  the  change  in  the  behavior  of  and

 at higher energies, the absence of an exact reach-
ing of the asymptotic levels and continuation of this trend
at any higher energies, as well as other numerous studies,
make  it  possible  to  exclude  the  reach  of  the  asymptotic
regime at ISR energies.

G2√
smin =

√
smin

The energy dependence of the terms of  is approx-
imated at  3, 5, 10, 15, 20, 25, 30, 40, 50, 60, and
100 GeV using the corresponding formulas from Table 1
within hypotheses (ii) and (iii). It should be noted that the
fitted  samples  and,  as  consequence,  numerical  values  of
the fit parameters are identical for the pairs (25, 30) GeV
and (40, 50) GeV of the values of . Through a de-

Optical theorem, crossing property and derivative dispersion relations: implications... Chin. Phys. C 46, 083105 (2022)

√
smin = 101) The case of the  TeV is special one because there only are 1 or 2 n.d.f. if any for DBac201+ and DBac202+ respectively. Thus the results obtained for so

small n.d.f. can not be considered as representative.
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G2
√

smin

χ2/n.d.f.

Σtot(s) χ2/n.d.f.

√
smin ≥ 25√

smin ≥ 40
G1

G2√
s < 0.5

G1

√
smin ≥ 0.03√

smin = 25

tailed  analysis,  we  observe  that  analytic  formulas  from
Table  1 quite  poorly  decribe  the  energy  dependence  of
the  terms  of  at  most  of  values  of  for hypo-
theses (ii) amd (iii). The qualitative analysis indicates that
large  values  of  are  mostly  dominated  by  the
large  discrepancy  between  fit  curves  and  data  points  for

.  For  both  hypotheses,  the  value  of  de-
creases rapidly at the growth of the low boundary of the
fitted range, and the qualitative agreement is achieved for
fitted curves and data points at  GeV. Reason-
able  fit  qualities  are  only  observed  for  GeV.
As  well  as  for ,  such  a  relation  between  fits  and  data
can  be  considered  as  expected  because  the  formulas  in
Table  1 are  asymptotic,  particularly  for  hypothesis  (iii).
In  contrast,  experimental  data  for  are  only  available
for  TeV. This energy range is significantly nar-
rower  even than that  for ,  and such collision energies
are far from any estimation for the onset of the asymptot-
ic  region.  Thus,  the  discussion  below  is  focused  on  the
results  for  TeV  considering  the  identity  of
data samples for  and 30 GeV noted above.

√
smin = 0.03

Figure 3 shows the results of the simultaneous fits of
corresponding  data  samples  using  (5)  and  (12)  as  solid
(dashed)  lines  for  (0.06)  TeV.  The  thick
lines  show the  fit  curves  for  hypothesis  (ii)  and  the  two

Σtot(s) √
smin ≥ 0.03

√
smin = 0.10

other lines correspond to hypothesis (iii).  The curves are
also  multiplied  by  0.1  in Fig.  3b  to  correspond  to  the
scaled data points for . The numerical values of fit
parameters  are  shown  in Table  6 for  TeV.
For  hypothesis  (ii),  the  fit  is  impossible  at  the  highest

 TeV considered in this section owing to the
lack of the required number of data points.

cp cp̄

√
smin ≥ 0.03

cp cp̄√
smin

cp̄
√

smin = 0.06 √
smin = 0.05

As shown in Table 6, the values of  and a agree
with each other within a 1.25 standard deviation or better
at  TeV,  i.e.,  for  the  fits  described  data
points, at least, qualitatively. The values of  and  de-
crease continuously with the increase in , except for

 at the highest available  TeV, which coin-
cides  with  the  value  of  the  parameter  at 
TeV. A similar scenario is observed in Table 6 for para-
meter c under hypothesis (iii).

a1 smin

a1

√
smin = 0.10

smin

∆tot(s) Rp̄/p
tot (s)

It is not possible to identify any trend in the behavior
of  depending on  because of the small  number of
obtained values of the free parameter for hypothesis (ii).
For  the  other  hypothesis  studied  here,  is almost  con-
stant  within  uncertainties  except  for  the  value  at  the
highest  available  TeV.  A  detailed  analysis
shows that the fit results are not sufficiently stable at the
highest  available  for both  hypotheses.  The  corres-
ponding approximated curves  for  and  can

G2

Σtot√
smin = 0.03

√
smin = 0.06

Fig. 3.    Energy dependence of the measurements for the terms of  and results of simultaneous fits of all these terms. Points are cal-
culated using the experimental results from DB20. The point values and fit curves are multiplied by 0.1 for  (b). The solid lines cor-
respond to the fit at  TeV, and the dashed lines are at  TeV. The thick lines show the fit curves for hypothesis
(ii) and two other lines correspond to hypothesis (iii).
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∆tot Rp̄/p
tot
G1

G1

√
smin = 0.06

exhibit  very  sharp  behavior  with  clear  contradictions  to
both the data points and the general trends in the energy
dependence  of  and .  This  scenario  is  similar  to
that  observed  for  the  set  and  is  discussed  in  Subsec.
IV.A. Therefore, by analogy with the study of , Table 6
shows the  values  of  fitted  parameters  obtained  account-
ing  for  the  additional  request  of  smooth  behavior  of
curves  and  their  qualitative  agreement  with  nearest  data
points at smaller collision energies for  / 0.10
TeV for hypotheses (ii) and (iii).

∆tot√
smin = 0.03

∆tot(s)
√

s ≲ 60

χ2/n.d.f.
∆tot(s) Σtot(s)

∝ ε−1 ∝ lnε

G2
∆tot(s) Σtot

Rp̄/p
tot√

smin = 0.03
smin

Figure 3a shows that the curve for  obtained from
the  simultaneous  fit  at  TeV within  hypo-
thesis (ii) corresponds at qualitative level to the main fea-
tures  of  the  energy  dependence  of  data  points,  namely,
the  decrease  in  at  GeV  and  the  possible
increase  of  this  parameter  at  higher  collision  energies,
despite  the  large  In  contrast,  the  formulas  in
Table  1 for  and  within hypothesis  (iii)  in-
dicate only a smooth decrease ( ) or increase ( ),
respectively, without  any  dependence  on  the  fitted  en-
ergy range and, as consequence, it is difficult to describe
the  change  in  behavior  of  the s–dependence  of  terms  of
the set  within hypothesis (iii) as observed most clearly
in Fig.  3a  for .  The fitted  curves  for  (Fig.  3b)
and  (Fig.  3c)  are  (very)  close  to  each  other  at

 and 0.06 TeV within a particular hypothesis
and for various hypotheses at fixed .

G2

{Gi
2}3i=1 √

smin ≥ 40 ∆tot(s)
G2

smin

Σtot Rp̄/p
tot

smin
smin

In summary,  the  detailed  analysis  of  the  energy  de-
pendence of terms of set  excludes the possibility of an
asymptotic regime at ISR energies, which agrees with nu-
merous  studies.  The  analytic  functions  deduced  within
hypotheses  (ii)  and  (iii)  for  the  energy  dependence  of
terms  describe the experimental data at a qualitat-
ive level for  GeV only. The curves for 
obtained with the aid of  the simultaneous fits  for  are
sensitive  to  both  hypotheses  and  the  value  of  (Fig.
3a).  In  contrast,  simultaneous  fit  results  result  in  the
curves for  (Fig. 3b) and  (Fig. 3c), which are al-
most independent on the hypothesis type for a fixed 
and the value of  for certain hypotheses. 

GC.    Consideration for the Joined Ensemble 
GThe simultaneous fit of the terms of  is not possible

because,  as  emphasized in Sec.  III,  the databases for  the

G2
G1

σ
xp
tot x = p, p̄

σtot σel
σinel

σinel
{σtot,σel,σinel

G

G1 G2

G1 smin
G2

smin

terms of  are  calculated from the  experimental  values
of some parameters of ,  namely, the measurements of

, . One can note this  situation principally dif-
fers from the situation for databases for , elastic ( )
and  inelastic  ( )  cross  sections  which  are  related  by
the  optical  theorem.  There  are  number  of  experiments
measured  directly,  for  instance,  [37].  Therefore  the
databases for the set } can be considered as,
at least, particularly independent. In contrast, all terms of
the joined ensemble  are defined by one set of the free
parameters within hypothesis  (ii)  or  (iii)  suggested with-
in  this  paper.  Therefore,  the  energy  dependence  for  the
terms of one set from  and  can be calculated using
the values of free parameters obtained from the simultan-
eous fit of the terms of the another set called the "adjoint
set," i.e., the curves for smooth energy dependence of the
terms of  at  fixed  can be calculated with the free
parameter values obtained for  using the simultaneous
fit at the same , and vice versa.

G √
smin = 0.06
G1

Gi

i = 1
Gi i = 1

G j j , i √
smin = 0.06

G1
G2

∆tot(s)
Σtot

√
s ≥ 0.2

Rp̄/p
tot (s)

Figure  4 shows the  energy dependence  for  the  terms
of  derived within hypothesis (ii)  at  TeV.
Database DB201+ is used for the terms of .  The thick
curves are from the simultaneous fits for the terms of ,

, 2, whereas the thin lines correspond to the results of
the calculations for some terms from , , 2 using the
values  of  free  parameters  obtained  for  the  adjoined  set

,  using  the  simultaneous  fit,  and  is  shown  in
Tables  4 and  6  for  TeV. The  lines  corres-
ponding  to  the  fit  results  and  calculations  are  close  to
each other for  (Figs. 4a – d), but the results are differ-
ent  for  most  terms of . A dramatic  discrepancy is  ob-
tained between the fitted and calculated curves for 
in Fig.  4e,  whereas  the  parameter  is  not  sensitive  to
the  technique  of  the  creation  of  smooth  curve  (Fig.  4f);
two  curves  exhibit  a  similar  behavior  in  the  functional
sense at  TeV, but a quantitative difference is ob-
served between them for  in Fig. 4g.

G2
G2

√
smin = 0.06

G2

G√
smin = 0.06

These  features  for  the  terms  of  are  driven  by  the
unstable behavior of the fit results for  at 
TeV within hypothesis  (ii)  as  well  as  the special  request
added for the simultaneous fit for  described in Subsec.
IV.B.  This  suggestion  is  confirmed  in Fig.  5,  which
shows the energy dependence for the terms of  derived
within hypothesis  (iii)  at  TeV. In this  case,

G2(s)Table 6.    Parameters for simultaneous fitting of  within various hypotheses.

√
smin ,TeV

hypothesis (ii) hypothesis (iii)

cp , mbarn cp̄ , mbarn a2 , mbarn χ2/n.d.f. c, mbarn a1 , mbarn χ2/n.d.f.

0.03 8.72±0.03 8.78±0.03 −900±200 398/12 8.750±0.024 (−1.27±0.12)×103 404/13

0.05 8.49±0.06 8.46±0.06 (−2.7±0.5)×103 31.3/9 8.475±0.028 (−2.1±0.4)×103 31.4/10

0.06 8.34±0.04 8.44±0.04 −0.15±0.07 7.64/6 8.39±0.03 (−1.9±0.5)×103 8.17/7

0.10 – 7.7±0.7 (−4.5±0.6)×104 2.17/1

Optical theorem, crossing property and derivative dispersion relations: implications... Chin. Phys. C 46, 083105 (2022)
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G2

G
√

smin = 0.06

the fit results for  are stable and additional requests are
not  used  for  the  fit  procedure. Figure  5 shows  the  full
identity of  the fitted and calculated curves for  each term
of the joined ensemble  owing to the agreement of  the
values  of  free  parameters  within  errors  in Table  4 and 6
for hypothesis (iii) at  TeV.

G1
G2

G1

G2
√

s ≲ 0.5
σ

xp
tot(s) x = p, p̄

G1

It should be noted from Figs. 4 and 5 that, in general,
we  can  obtain  the  smooth  energy  dependence  for  the
terms  of  in  the  multi-TeV range  using  the  fit  results
for  at  significantly  smaller  collision  energies.
Moreover,  the calculated curves for  agree reasonably
with both the experimental  points  and corresponding fit-
ted  curves.  Thus,  the  trends  in  the s–dependence  of  the
terms of  observed at  TeV and driven by the
behavior  of  the ,  enable  us  to  obtain  the
correct energy dependence for the terms of  in a much
wider energy domain up to the highest s available in ex-
periments.

Summarizing  this  subsection,  the  energy dependence

G

Gi i = 1

Gi i = 1

for each term of the joined set  can be calculated using
the  free  parameter  values  obtained  for  any  separate  set

, ,  2 using the simultaneous fit  within the validity
of the additional request of stability for the results of that
simultaneous fit for , , 2. 

V.  DISCUSSION AND PROJECTIONS FOR
GLOBAL SCATTERING PARAMETERS

sa cp cp̄

a2 a1√
smin ≥ 5

√
s ≳ 5

First, the results shown in Table 4 facilitate the qualit-
ative estimation of the onset of the asymptotic energy do-
main .  As discussed in the text, and  agree with c
within  errors  as  well  as  with  for  simultaneous  fits
within  hypotheses  (ii)  and  (iii)  at  TeV.  Thus,
the fitting results can be considered as evidence for pos-
sible transition from hypothesis (ii) to (iii) at  TeV.
Thus,  this  transition imposes  a  small  energy-dependence
on  the  parameters  involved  in  the  fitting  procedures,

G
√

s ≥ 0.06 ∆tot√
s = 62.5 Σtot

G1 G2

Gi i = 1
G1 G2√

smin = 0.06

Fig.  4.    Energy  dependence  for  the  terms  of  the  joined  set  and  curves  obtained  using  the  results  shown in Table  4 for  database
DB201+ and in Table 6 within hypothesis (ii). The experimental results and curves are shown at  TeV. The inner panel for 
(e) shows the narrow energy range close to  GeV. The point values and curves are multiplied by 0.1 for  (f). The solid lines
correspond to the curves for the terms of , and the dashed lines are for . The thick curves are from the simultaneous fit results of
the corresponding , , 2; the thin lines are calculated using the values of free parameters obtained from the simultaneous fit of the
terms of the adjoint set, i.e., the curves for the terms of  are calculated with the free parameter values obtained for  using the sim-
ultaneous fit at  TeV and vice versa.
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which are not considered here.
∝ ε−1

σ
xp
tot(s) x = p, p̄

Furthermore,  the  term  should  be  negligibly
small in the parameterization of ,  (Table 2)
to  obtain  the  validation  of  the  Pomeranchuk  theorem  in
both the classical (11) and generalized formulation (12).

a/ε ≲ δ
s ≥ sa

sa a ≡ |a1| =
|a2| √

smin ≥ 5 δ≪ 1

a ∼ (6.5×107−1.7×109)
δ = 0.1

√
sa ∼ 25.5−130√

sa

Considering  the  condition  for  the  energy
range  as, at least, one of the possible signatures of
the onset  of  the  asymptotic  energy  region,  we  can  as-
sume that the model under consideration enables us to es-
timate  in  order  of  magnitude.  Here, 

 within  uncertainties  for  certain  databases,  DB20  or
DB201+,  at  fixed  values  of  TeV  and 
mbarn  is  the  empirical  boundary.  Considering  the  range

 mbarn, which represents  a  vari-
ation  in  two orders  in  magnitude,  and the  choice 
mbarn, a small contribution resulting from the non-logar-
ithmic term,  we can estimate  TeV. The
lower  value  of  the  range  of  is  close  to  the  nominal
energy  of  the  high–energy  LHC (HE–LHC)  mode  [38],

whereas the upper one agrees reasonably well with the es-
timation  deduced  within  the  approaches  mentioned  in
Sec. II and III [23, 24]. Hopefully, this upper value can be
achieved within the newest option of the Future Circular
Collider (FCC) project [39] with a proton beam energy of
75 TeV. √

sa

a1,2

√
smin ≥ 5

pp√
smin ≥ 5

The above estimates for  are rather crude, consid-
ering  the  wide  range  of  the  absolute  values  of  ob-
tained  using  simultaneous  fits  in  the  multi-TeV  region

 TeV  (Table  4).  Moreover,  as  stressed  earlier,
only  experimental  data  for  are  approximated  at

 TeV. All these enable only a preliminary state-
ments  at  a  qualitative  level  to  be  made  regarding  of  the
onset of the asymptotic energy domain.

G
O

The analytic  functions  deduced within  various  hypo-
theses (Tables 1, 2) and numerical fit results (Tables 4, 6)
enable the phenomenological projections for the terms of
the  wide  set  of  global  scattering  parameters  and  their
derivative  quantities,  in  particular  for  energies (100

G
√

s ≥ 0.06

∆tot
√

s = 62.5 Σtot

G1 G2

Gi i = 1
G1 G2√

smin = 0.06

Fig.  5.    Energy  dependence  for  the  terms  of  the  joined  set  and  curves  obtained  using  the  results  shown in Table  4 for  database
DB201+ and in Table 6 within hypothesis (iii). The experimental results and curves are shown at  TeV. The inner panel for

 (e) shows the narrow energy range close to the  GeV. The point values and curves are multiplied by 0.1 for  (f). The
solid lines correspond to the curves for the terms of , and dashed lines are for . The thick curves are from the simultaneous fit res-
ults of the corresponding , , 2; the thin lines are calculated using the values of free parameters obtained from the simultaneous fit
of the terms of the adjoint set, i.e., the curves for the terms of  are calculated with the free parameter values obtained for  using the
simultaneous fit at  TeV and vice versa.
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G

smin ≥ 1
G√

smin = 1
pp, p̄p√

s ≥ 14

TeV) and higher.  The main features for such predictions
are  described  in  detail  in  [26, 32]. Simultaneous  fit  res-
ults  obtained for  database DB201+ (Table 4) enable  pre-
dictions  of  the  joined  set  since  DB201+  is  one  of  the
most  complete  databases  considered  here;  however,  this
database  satisfies  the  general  requirements  used  in  the
formation  of  databases.  To  obtain  estimates  at
(ultra–)high energies, it may be reasonable to use the fit-
ted  results  for  TeV2.  Therefore,  predictions  for
the  joined  set  are  calculated  and  analyzed  below  for

, 5, and 10 TeV. Calculations are performed for
both  collisions  considered  in  the  paper  ( )  at

 TeV.
σ
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tot ρxp
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ρxp
√
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σ
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√
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ρ (s) √
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smin√
smin = 10√

s ≳ 50

smin pp δ
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ρ (s)√

s ≥ 14
√

smin = 1
smin√

smin = 10 δ
pp
ρ (s)

√
s = 14√
s ≥ 20

√
smin = 5 δ

p̄p
ρ (s)

0.078
√

s ≥ 14

Within hypothesis (ii), the values of both  and 
do  not  depend  on  the  type  of  collision  for  a  given ,
nor  indicated  above  for  a  fixed  type  of  interaction
within  errors.  The  reaches  the  asymptotic  level  (22)
within  uncertainty  at  the  smallest  TeV  under
consideration  at  any .  Relative  uncertainties  for  the
estimations  of  ( )  are  almost  constant  for  all 
values, except for the highest  TeV, for which,
after a  certain  decrease  (increase),  a  fairly  rapid  trans-
ition to a constant level is observed at  (50) TeV
for  ( ) collisions. The accuracy of estimates for 
is noticeably better than that for , deteriorating for both
collision  types  with  an  increase  in ,  particularly  for
the  transition  from  lower  values  of  to  the  highest

 TeV  under  consideration.  For  ( ),  the
values of  are at  the level  of 0.09 (0.22) at 
TeV, slightly increasing to 0.11 (0.27) at  TeV.
The  decrease  in  is  observed  from  0.17  to  0.15  at

 TeV,  whereas  a  smooth  increase  in  occurs
from 0.36  to  a  constant  level  of  0.38  at  TeV at

 TeV. For , in general, a similar scenario is
observed for  in the functional sense as well as for :
for , the  quantity is approximately constant for all

 except  for  TeV,  for  which  the  approach
to  the  constant  level  is  observed  at  TeV after  a
certain decrease in ;  for ,  agrees with the
constant  reasonably  well  at  the  lowest  value 
TeV under discussion, and relative uncertainty  exhib-
its an increase for other , which is particularly notice-
able at highest  TeV reaching a constant level
at  TeV. The relative uncertainties in projections
of  the ρ-parameter  are  smaller  than  those  for  the  total
cross  section  for  any  of  the  collision  types  considered
here at any fixed . For , the  quantity agrees
well with a constant 0.068 for  TeV at 
TeV, whereas a decrease is observed for higher , par-
ticularly  for  the  highest  TeV.  The  de-
creases  with  the  increase  in s from  0.106  (0.151)  at

 TeV  to  the  constant  level  of  0.105  (0.133)  at
 (200) TeV for  (10) TeV.  is ap-

proximately equal to the constant level  for 

√
smin = 1 δ

p̄p
ρ √

s ≳ 30√
smin = 5

σ
xp
tot

√
smin > 1

TeV  at  TeV  and  increases  from  0.082
(0.112)  to  a  constant  of  0.085  (0.127)  at  (150)
TeV for  (10)  TeV.  Thus,  for  the ρ-parameter,
the inverse energy dependence of the relative uncertainty
is  observed  compared  with  that  of  the  at 
TeV.

G1

smin

Estimates for each term of the set , calculated with-
in hypothesis (iii),  are characterized by significantly bet-
ter  accuracy  than  those  for  hypothesis  (ii)  for  each 
used for the derivation of numerical estimates.

σ
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s = 14
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Within  hypothesis  (iii),  the  values  of  do not  de-
pend on the type of collision within the errors for a given

 as well as for hypothesis (ii). However, in contrast to
hypothesis  (ii),  an  increase  in  the  estimations  of  at
fixed s is  observed  with  an  increase  in ,  particularly
in  the  transition  from  TeV  to  the  highest

 TeV under consideration. The ratios of the es-
timates obtained for a fixed type of collision at a given s
and different  –  – reach
constant  levels  with  an  increase  in s,  and  this  generally
occurs  at  different s values  dependent  on  both  the 
and the collision type. The numerical values of these con-
stant levels are , ,
and  at ,  50,  and 40 (60,  70,  and 140)
TeV in  ( ) interactions for the pairs of lower bound-
ary  values  for  fitted  ranges ,  (1,
10)  and (5,  10)  in  TeV,  respectively.  Thus  the  values  of
these constants with uncertainties do not depend either on
the  type  of  collision  or  the  choice  of  the  specific  pair

.  The  quantity  agrees  reasonably  well
with a constant  at  TeV and does not  depend on
the  type  of  interaction  for  all values,  except  for

 TeV, for which the onset of constant behavi-
or  is  observed  at  TeV  after  a  decrease  from
0.075 (0.065), at the smallest  TeV under consid-
eration for  ( ) collisions. The constant values of 
are  approximately  0.006,  0.024,  and  0.061  at ,
5,  and  10  TeV,  respectively.  The  quantity  does  not
depend on the type of interaction and, owing to the reas-
ons indicated in Sec. II, it becomes small, namely, 
at ,  125,  and  350  TeV  for ,  5,  and  10
TeV,  respectively.  Furthermore,  the  rapidly de-
creases  with  increasing s. Therefore,  within  the  frame-
work of hypothesis (iii),  the  can be considered equal
to  zero  at ,  125,  and  350  TeV  for ,  5,
and 10  TeV,  respectively.  Accounting  for  the  aforemen-
tioned specific  scenario  with  the  uncertainties  for  estim-
ates of the -parameter, only the median values of these
estimates  are  discussed  in  this  paragraph.  The  median
values  of  the ρ-parameter  are  almost  independent  of  the
type  of  collision  and  coincide  with  the  asymptotic  level
(22) with an accuracy of  at  the smallest  considered

 TeV for  TeV. This type of interaction
has  no  dependence  on  the ρ-parameter,  and  the  median
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7×10−4 √
s ≥ 100

(smin,1, smin,2)

values of  coincide with  (22) with an accuracy of
 at  (100) TeV in the case of  (10)

TeV. The scenario for the ratio of estimates of ρ obtained
for  a  fixed  type  of  interaction  at  a  given s and  different

 –  – is generally similar
to  that  observed for .  However,  unlike  on total  cross
sections,  agree with  unity  with  high ac-
curacy better than  at  TeV for any pair

 considered here.

G1

∆tot Rp̄/p
tot G2

√
s ≥ 14

smin ≥ 1 σ
xp
tot

smin

The detailed analysis above for the predictions for the
terms  of  the  set  unambiguously  indicates  that  the
terms  and  of  the  set  coincide  with  their
asymptotic  values  (11)  and  (12)  within  the  uncertainties
at  TeV for  both  hypotheses  (ii)  and  (iii)  at  any

 TeV2.  The  smooth  increase  is  observed  for 
with the increase in s for any . Therefore, we can con-
clude that the realization of the scenario according to the
Pomeranchuk theorem  (12)  appears  to  be  more  prefer-
able at asymptotic energies than the scenario with the for-
mulation (11) for any hypotheses discussed in this paper.

G

O √
sa

a/ε

Furthermore, the aforementioned study of energy be-
havior of  projections  for  the  terms  of  the  joined  en-
semble  shows that,  in  general,  physical  quantities  and
their  uncertainties  reach  corresponding  asymptotic  or
constant levels at energies (100 TeV). This can be con-
sidered as indirect evidence in favor of the range for ,
derived using the condition for .

pp√
s√

s = 10

√
smin = 5

Some  numerical  values  for  the  estimates  of  global
scattering parameters  are  shown in Table 7 for  colli-
sions  in  the  energy  range  from  the  nominal  of  the
LHC up to the high boundary of the PeV domain 
PeV based on the detailed analysis above and the reasons
discussed  in  other  papers  [26, 32].  The  fitted  results  for
DB201+ at  TeV are used to calculate the estim-

G1√
smin = 5

G1 smin

χ2/n.d.f.
smin

√
smin = 10
σ

pp
tot ρpp

smin
σ

pp
tot ρpp

σ
pp
tot

√
s ≥ 5

σ
pp
tot ∝ lnε s→∞

σ
pp
tot

ates  of  terms  of  the  set .  The  choice  of  the  value
 TeV for Table  7 is based on the  detailed  ana-

lysis in subsec. IV.A and in this section. In particular, the
simultaneous fit for  at this  is characterized first by
a  sufficient  number  of  experimental  points  in  fitted
sample and statistically acceptable  in difference
with smaller . Second, it is characterized by the high-
er  robustness  of  fit  results  in  comparison  with  the

 TeV. As shown in Table 7, the predictions for
 and  coincide within the uncertainties for various

hypotheses  under  consideration.  A  direct  comparison  is
impossible  for  the  results  in Table  7 and  the  projections
within  the  AQFT  [26]  because  of  noticeably  different

 values used for simultaneous fits and, consequently,
for  the estimates of  and . Nevertheless,  account-
ing for this characteristic,  we can observe the following:
the estimates obtained within this paper are characterized
with  significantly  better  precision  than  those  within  the
AQFT  [26],  particulary  for  the ρ-parameter; the  estim-
ates mostly  agree  within  uncertainties  for  two  ap-
proaches for  any  global  scattering  parameters  under  dis-
cussion,  except  for  at  ultra –high  energies 
PeV. In  general,  this  discrepancy  can  be  expected  be-
cause the present approach provides  at ,
i.e.,  the slowest  increase in the total  cross section at  (ul-
tra –)high  energies,  and  this  functional  form  for 
should  result  in  the  continuously  increasing  difference
with the results of AQFT with the increase in s. 

VI.  CONCLUSION

G

pp p̄p
αP = 1

The asymptotic behavior of the wide set  of scatter-
ing  parameters  is  studied  with  the  aid  of  the  crossing
property, the DDR, and the optical theorem in , and 
collisions. Note that we obtained an intercept , typ-

pp G1
√

smin = 5Table 7.    Predictions for  based on the simultaneous fit of  for DB201+ at  TeV; the first and second lines in the cell are
for hypotheses (ii) and (iii), respectively.

Parameter

√
s, TeV

(HL–)LHC, HE–LHC, LHC-ultimate SPPC, FCC-hh, VLHC-I, II

14 27 42 40 70.6 100 125 150 175

σ
pp
tot , mbarn 108±12 117±13 122±13 122±13 128±14 132±14 135±14 137±15 139±15

108.5±2.7 117.3±2.8 122.7±2.9 122.1±2.9 129±3 133±3 135±3 138±3 139±3

ρpp ×103 87±9 80±8 77±8 77±8 73±8 71±7 69±7 68±7 67±7

83.6±0.4 77.3±0.1 73.89±0.03 74.24±0.04 70.38±0.01 68.24±0.01 66.93 65.91 65.06

VLHC-II ultra-high energy cosmic rays higher energies

200 110 170 250 500 750 103 5×103 104

σ
pp
tot , mbarn 140±15 133±14 138±15 143±15 151±16 155±17 159±17 172±19 185±20

141±3 134±3 139±3 143±3 151±4 156±4 159±4 178±4 186±4

ρpp ×103 67±7 70±7 68±7 66±7 62±7 60±6 59±6 53±6 51±5

64.35 67.67 65.22 63.19 59.85 58.06 56.85 50.92 48.73
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ReFxp

ReFxp

ical of a soft Pomeron (low momentum transfer). This is a
consequence  of  the  use  of  the  first-order  approximation
for the DDR. In contrast, the introduction of higher deriv-
ative orders to describe the dispersion relation may intro-
duce subleading contributions at high energies, which can
result  in  a  Pomeron  intercept  different  from  1.  The
simplest  functional  form for  the  real  part  of  the  forward
scattering amplitude is used for the asymptotic energy do-
main to deduce the analytic expressions for  and ,

 as  well  as  for  some  combinations  of  total  cross
sections, which are important for verification of the Pom-
eranchuk theorem. Within that  form, for , two hy-
potheses  –  (ii)  and  (iii)  –  are  maintained  with  non-zero
constants for  at asymptotic energies.

pp p̄p

G1
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√
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s ≥ 0.5

√
s ≥ 1

√
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tot σ
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tot G2√

s < 0.5√
s ≲ 0.06
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√
smin ≥ 0.04

G2
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G
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Three  consequent  stages  are  considered  for  the  most
current database for global scattering parameters in elast-
ic  and  scattering,  namely,  the  latest  PDG sample
(DB20)  and  all  available  experimental  results  (DB201+,
DB202+). The analytic parameterizations deduced consid-
ering  both  hypotheses  provide  a  quantitative  description
of  the  energy  dependence  of  measured  global  scattering
parameters  –  set  –  with  mostly  robust  values  of  fit
parameters  for  any  DBs.  The  fit  qualities  are  reasonable
for  the  energy  range  TeV,  and  the  quantity  is
statistically acceptable at the low boundary for the fit do-
main  TeV for  hypothesis  (ii).  The  corres-
ponding ranges are significantly shifted to the higher en-
ergies  and  they  are  TeV  and  TeV  for
statistically reasonable and acceptable quantities, respect-
ively, for hypothesis (iii) owing to its "extremely" asymp-
totic  nature.  A  detailed  analysis  of  accelerator  data  only
shows that hypotheses (ii) and (iii) enable the qualitative
description  for  these  data  up  to  TeV. The  ex-
perimental  database  created  for  some  interrelations
between  and  –  set  – covers  the  energy  do-
main  TeV  only,  and  most  of  the  points  are  at

 TeV.  The  analytic  expressions  deduced  for
terms  of  the  set  within  hypotheses  (ii)  and  (iii)  only
provide a  qualitative  description  of  the  energy  depend-
ence of these terms at  TeV. In general, such
a relation between simultaneous fits and data is expected
since the formulas for the terms of the set , as well as
for the set ,  are asymptotic for both hypotheses under
study. Nevertheless,  the  consideration  of  the  joined  en-
semble  indicates  that,  in  general,  we  can  obtain  the
smooth  energy  dependence  for  the  terms  of  in  the

G2

G1

multi-TeV  range  using  the  fit  results  for  at signific-
antly smaller collision energies, and the calculated curves
for  reasonably agree with both the experimental  data
and the corresponding fitted curves

√
sa ∼ 25.5−130

A  study  of  empirical  conditions  for  the  functional
forms  of  the  analytic  expressions  for  measured  global
scattering parameters enables the following crude estima-
tion of collision energy for the onset of the asymptotic re-
gion  TeV.

pp √
s = 10 √

smin ≥ 1

σ
pp
tot ρpp

G1
√

smin = 5

σ
pp
tot

σ
pp
tot

G

O
√

sa

Based on the simultaneous fit results, the estimations
are calculated for the total cross section and ρ-parameter,
considering the elastic  scattering at different s values,
up  to  an  energy  frontier  of  PeV. These  estima-
tions  with  uncertainties  are  robust  for  various 
TeV and types of collisions. The numerical values of the
estimations for  and  obtained using the simultan-
eous fit of  for DB201+ at  TeV agree for hy-
potheses  (ii)  and  (iii)  within  the  errors.  The  estimations
for  can  be  considered  conservative  owing  to  the
functional  form of  this  quantity  at  (ultra–)high  energies,
which results in a slow increase in  as s increases. A
detailed analysis of the predictions for terms of the joined
ensemble  unambiguously indicates that  the realization
of  the  scenario  with  the  generalized  formulation  of  the
Pomeranchuk theorem may be more suitable at asymptot-
ic energies  than  the  scenario  with  the  original  formula-
tion  of  this  theorem for  any  hypotheses  discussed  in  the
paper.  The  aforementioned  study  shows  that,  in  general,
physical quantities  and  their  uncertainties  reach  corres-
ponding asymptotic  or  constant  levels  at  energies (100
TeV). As commented earlier,  it  can be considered an in-
direct indication to support the range for  obtained by
considering  the  empirical  conditions  described  in  this
work.

As  a  final  comment,  at  very  high  energies,  possible
non-linearities  on  the  elastic  forward  quantities  may  be
considered  by  using  higher-order  derivative  terms  in  the
dispersion relations. This procedure may result in correc-
tions  on  the  results  presented  here.  This  question  is
presently  under  study  and  will  be  published  in  a  future
paper. 
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