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I. INTRODUCTION

The internal structure and interaction mechanism of
microscopic particles is one of the main issues in the field
of particle physics. However, due to the extremely short
reaction time, the intermediate states of reaction pro-
cesses can not be measured directly so far. Nevertheless,
the distributions of final states, which can reflect the in-
ternal structure as well as the interaction mechanism, are
measurable. Through these distributions, physicists are
able to explore the nature of the various particles and
their internal structures. For instance, in 1911, Ernest
Rutherford revealed the internal structure of the atom by
analyzing the angular distribution of outgoing particles in
the well-known gold foil experiment. Therefore, the dif-
ferential cross-section and the differential decay width
play an important role in studying particle physics.

From the Review of Particle Physics (RPP) [1], the
differential cross-section for the 2 — n scattering process
and the differential decay width of a particle into » bod-
ies can be written as follows, respectively:
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where g; and m;(i = 1,2) are the four-momentum and mass
of i-th initial particle in the scattering process, respectively,
and m is the mass of the parent particle in the decay pro-
cess. M, which depends on the dynamic mechanisms, is
the Lorentz invariant amplitude and d®, named as phase
space is a purely kinematic factor which is conventionally
defined in the following Lorentz-invariant form:

n
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where P is the summation of the four-momenta of all ini-
tial states, and p; = (E;, p;) is the four-momentum of the i-
th particle in the final states. The phase space makes a
bridge between the theoretical calculation for M and the
experimental observation for do- or dI'. The computation
of the phase space is of great significance for experiment-
al physicists to analyze distribution data and extract the-
oretical variables.

One of the most important tasks for particle physicists
is to extract the resonance from the invariant mass spec-
trum of the final states. Generally, besides the invariant
amplitude M, the phase space factor also plays an import-
ant role in do and dI' in the invariant mass spectrum.
Therefore, it is necessary to express the phase space factor
in terms of the various invariant mass variables. For ex-
ample, in the chapter of Kinematics in the RPP, the three-
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body phase space is expressed in two forms. One contains
one invariant mass variable and the other two independent
invariant masses which can be visualized by the well-
known Dalitz plot. There have been some work on the
phase space of n-body final states with n> 3. Some sys-
tematic methods have been introduced in textbooks and
articles, for example, Refs. [2— 6]. All of these works
provide various formulas to calculate three-, four- and »n-
body phase space distributions and integrations. Recently,
in Ref. [7], a new systematic graphic method to decom-
pose an arbitrary n-body phase space has been introduced.

On the experimental side, more and more new
particles have been discovered from three- and four-body
final states. If the invariant mass variables are properly
chosen, the resonance can be extracted much more effi-
ciently. Otherwise, the signal is not obvious and some-
times may even be buried in the background. Therefore,
in this paper, we focus on the three- and four-body final
states and present the expressions of d®; and d®, dir-
ectly in terms of all possible sets of invariant mass vari-
ables, using a new formulation, which can serve as a
handbook which may be convenient as well as helpful for
experimental data analysis.

For n-body final states, there are 3n kinematic vari-
ables but only 3n—4 of these are independent because of
the law of energy -momentum conservation. Therefore,
there are 8 independent kinematic variables (IKVs) for
four-body final states. Particularly, if the system is rota-
tion-invariant, such as a decay process of a non-polarized
parent particle, three kinematic variables describing the
absolute direction of the three-momenta of the final
particles can be trivially integrated out. Even so, there are
still 5 IKVs for four-body final states. In this paper, all
cases for choosing IKVs within invariant mass variables
are listed. Then the phase space factor is calculated for
each case and furthermore, the four-momenta of the four
final states are expressed as functions of IKVs. Once this
is complete, the amplitude M of any interaction mechan-
ism can be expressed quite straightforwardly.

This paper is organized as follows. After the introduc-
tion, the notation of this paper is defined in Section II. In
Sections III and IV, formulae of the phase spaces of
three- and four-body final states are enumerated, respect-
ively. Then by using the formulae given in Section III,
two possible mechanisms are distinguished for the reac-
tion e+p—e+J/y+p at the Electron —Ion collider at
China (EicC), which will be helpful to search P, reson-
ance states. The related results are shown in Section V.
Furthermore, we also give an example of a four-body
case in Section VI. Finally, a brief summary is given in
Section VII.

II. FORMALISM

In this section, the notation used in this paper is intro-

duced. The main task of this paper is to present all pos-
sible phase space factors in terms of different IKVs for
three- and four-body final states. The key problem is how
to find all sets of IKVs. In principle, IKVs can be di-
vided into two parts: angular variables and the others
which can be expressed as functions of several invariant
mass variables, such as energies of particles. As dis-
cussed above, since the invariant mass spectrum plays an
important role in extracting resonances, invariant mass
and angular variables are chosen as the IKVs in this pa-
per for further application.

There are two rules which are useful for classifying
different sets of IKVs. Firstly, the number of invariant
mass variables appearing in the set of IKVs is counted for
the preliminary classification. For example, in the three-
body final states, there are only three cases: two, one, and
zero invariant mass variables in the set of IKVs.
Secondly, we consider the different patterns of the set of
IKVs but do not distinguish the order of particles. For ex-
ample, if only two invariant mass variables are in the set
of IKVs for the three-body final states, there are three
choices as (mj2, m13), (mi2, my3), and (my3, my3), which
are all equivalent. By following the above two rules, there
are only three different sets of IKVs in the three-body fi-
nal states as shown in the next section. However, with re-
gard to the four-body system, it is much more complic-
ated and a new concept of distribution number (DN) will
be introduced in detail in Section I'V.

On the other hand, all the angular variables can be
distinguished in three classes: three Euler angles for the
whole reaction system, the polar angles in the sub-sys-
tem, and various angles between the three-momenta of a
certain two particles. Firstly, Euler angles «,8,y describe
the absolute direction in the fixed frame Op,p,p. or equi-
valently Oxyz. Euler angles here are defined in the y-con-
vention. Assuming that at the beginning, the direction of
p1 is along e; and p, lies in the p,Op, plane with
Dp2-ex >0 and rotating the configuration of momenta
around the axis of e;, e, and p; in succession by a, § and
y respectively, one can obtain the direction of the mo-
menta of the final states. The overall effect of the suc-
cessive rotations defined above can be described by the
matrix as

cose —sina 0
R=| sine cosa O
0 0 1
cosf 0 sing
0 1 0
—sin 0 cosf
cosy -—siny O
siny cosy O |. 4
0 0 1

Secondly, when it comes to the rest frame of the compos-
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ite particle iji...i,, with three-momentum p = p; + p;,+
..+pi,, its coordinate axes Opypyp; are built according
to the following procedure. Firstly, the pX axis is chosen
to be along the opposite direction to p. Secondly, the py
axis is defined by e} = e, xe. Thirdly, the p} axis is nat-
urally determined since Op}p;yp; is right-handed. Then,
the polar angle of the particle in the coordinates
Opy py py in this paper can be defined unambiguously.

After all IKVs are fixed, the phase space can be ex-
pressed as

dd, = Adm,dmy,---dadas - - &)

where (mg, mp,--+) and (ay, as,---) indicate invariant
mass and angular variables, respectively. The value of 4,
which is the phase space factor with the (m,, mp, -+, @1,
as, ), needs to be derived. Writing down the amplitude
M as a function of IKVs is also helpful. Since M is actu-
ally a function of the three-momenta of final states, it can
be obtained quite straightforwardly once the three-mo-
menta can be expressed exactly in terms of IKVs. There-
fore, another task of this paper is to provide explicit for-
mulae with the IKVs. Such expressions can be quite com-
plicated, so several intermediate variables will be used for
the sake of simplification.

In summary, all cases of IKVs with the invariant mass
and angular variables for three- and four-body systems
will be listed. Not only the phase space factor 4 defined
in Eq. (5) but also the explicit expressions of the three-
momenta of final states are to be given.

III. PHASE SPACE FOR THREE-BODY
FINAL STATES

There are three distinct sets of IKVs for three-body fi-
nal states, which contain two, one, and zero invariant
mass variables, respectively. In Tables 1-3, the IKVs, the
phase space factor A defined in Eq. (5) and the three-mo-
menta of the final states are listed for these three sets. The
three-momentum of the third particle can be obtained by
—p1 — p> and hence will not be shown in the tables. For
the last set, shown in Table 3, there are no invariant mass
variables and 6;; is the angle between the three-momenta
of the i-th and the j-th particles. Furthermore, |p;| satis-
fies an equation as shown in the last row of Table 3.
Though the analytical solution exists, the explicit expres-
sion is so complicated that we will not show it there.

IV. PHASE SPACE FOR FOUR-BODY
FINAL STATES

A. Invariant mass variables and distribution number
For the four-body final states, there are six and four

invariant masses variables for systems with two
(m;j,i < j) and three (m;j,i < j < k) particles respectively.
However, only five of these are independent because of
the following five equations,

4 4
2 _ 2 2

Z m;;=m +ZZmJ-, (6)

ji=l =1

PSSR S S SR S S

Mp3 = My + M3 + M3 =My =1y = 13 )
PSR S S S S S

Mpq = My + My + Moy — My =1y =1y (®)
oI S S S S S

My3q = My + 1My + My =My =3 =1y, ©)
oS S S S S S

M3y = My + 1My + M3y — 1My = M3 =1y (10)

Therefore, up to 5 invariant masses can be chosen as
IK'Vs.

In principle, there are Y, Ci, =462 (Cy=b!/
(al(b—a)!) is the combination number) different sets of
the invariant masses. However, many of them are equi-

Table 1. Set of IKVs containing two invariant mass vari-
ables. A4 is the phase space factor and here
d®3 = Adm?,dm3,dad(cos)dy which is consistent with Eq. (5).
In the last row, expressions for some intermediate variables
defined to simplify the expressions of the three-momenta are
given. The Kéllén triangle function A(x,y,z) is applied here as
A@®, b2,y = (a® = (b+c)")(@* - (b—c)?). The distribution under
these IKVs is known as the Dalitz plot and its domain is giv-
en in the Kinematics chapter of Review of Particle Physics
(RPP) [1].

IKVs m3s,m3,, a0, cosB,y
4 1
8(2m)° 4m?
Pix 0 Pax |p2|sin@
P12 py [=R] 0 || py |=R 0
Plz 1Pl P2z |p2|cos 6
L a2 2 2
oy = A2 (m ,ml,m23)
p1l= 71 m
A2 (mz,m%,m%g)
|p2| = 27
m
cosd 2E\E> —(m2 +m§ —m%3 —m§3)

2|p1lip2l
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Table 2. Set of IKVs containing one invariant mass vari-
able. Q3 =(cosf3,¢3) and QF = (cos6},¢7) are the solid angles
of particle 3 in the rest frame of mass and particle 1 in the rest
frame of composite particle 1-2, respectively. A is the phase
space factor and here d®; = Adm|2dQ3dQ} which is consistent
with Eq. (5). In the last row, expressions for some intermedi-
ate parameters defined to simplify the expressions of the
three-momenta are given. The domain of the IKVs is
my+my <mpy Sm—m3, —1 <cosbs,cos6; < 1, and 0 < ¢3,¢} < 27.

IKVs my2,Q3 = (cos63,¢3), Q7 = (cosb},¢7)
A |p;“p3|
n)°8m

Dix = |p;‘|(hcos¢3 —singsk) + 51 sin63 cos g3

Ply = |pf|(hsin¢3 +cos¢3k) + 51 sinfs singh3

Diz = —|p;‘|sin93 sinf} cos ¢} + 51 cos 6
P12 . .
P2x = |pf | (—hcos @3 +sin¢gzk) + 52 sin63 cos p3
D2y = |pf | (—hsings —cos ¢3k) + s, sin 63 sin g3
P2z = |pf | sind3 sin6} cos ¢} + 2 cos b3
h = cosfssin 6{‘ cos q)f,
k = sin6} sing}
/ 2
s1=—yB m%+|pi‘| +y|pi‘|c0s6?
2
s2= =B \m3 + |pi[ - v|p}|cose}
1
1 (o3, 03)
|p;| = 2myy
1
A2 rrzz,m27,m2
|I73| = ( 2m1_ 3)
_ Jor o el
Y= ANy -1=00
Table 3. Set of IKVs not containing any invariant mass vari-

ables. A is the phase space factor and here
d®; = Aded(cosB)dydd;»dfr3 which is consistent with Eq. (5).
The domain of the IKVs is O<a<2r, -1<cosf<l,
0<y<2m,0<61p<m, and m1—61, <013 <.

IKVs a, cosp, y, 013, 013

Ip1 p2f sin® 61
8(271')9 (E2E3 Sin2 013+ EE3 Sin2 (912 +6013)+E1E> Sil’l2 912)

Plx 0 Dax |p2|sinf12
P12 piy |=Rl O || py |=R 0

Pl |p1l P2z |p2|cosbin

| |_ sin013 | |

Pl = sin012 p3

Sin(912 +913)

|p2l = —————1Ipsl
sinf;;

where \/|p1|2 +m% + \/lpzlz +m§ + \/|p3|2 +m% =m

valent. In order to classify all possible unique sets, a new
concept of distribution number (DN) denoted by
(n;m;abed) is introduced here. Numbers in the bracket
have the following meanings: » denotes the number of in-
variant masses and obviously satisfies the restriction
0<n<35; abcd denotes the times that the particle index

appears in the subscripts with a > b > ¢ > d; m denotes the
summation a+b+c+d. For instance, for the set
{m%z,mé,m%zy some angles}, n=73, m="7 and
abcd = 3220. Here a = 3 for particle index 2 appears three
times in the subscripts of three invariant mass variables,
and b=2, ¢c=2 and d =0 are for particle 1, 3 and 4, re-
spectively. Because of the restriction of a>b>c>d,
cases that only differ by the order of the particle indices
wilkorrespondadhesameDNForexamplethesets(mys, moq, my2,
m34,m123) and (mlz,m13,m14,m23,m124) both correspond to
DN = (5;11;4322), which means they can be transformed
into each other by changing the particle indexes from
(1234) to (2341). Therefore, the number of inequivalent
sets of the invariant mass reduces from 462 to about 30.
Typically, one DN may contains 2 different sets of IKVs.
Fortunately, this only happens with DN = (4;9;3321) and
(3;7;2221). Furthermore, some cases corresponding to
different DNs are of the same kinematic structure be-
cause of Eqs. (12) — (16). For instance, if any m;j is in
the set containing five invariant masses, then it can be
easily transformed into the set containing five m;; whose
DN = (5;10;3322). Table 4 shows such conversions and a
representative of each case is picked. In the end, 22 dis-
tinct cases survived.

Table 4.
formed into the case in the "Representative" column. There
are two distinct cases with DN = (4;9;3321) as well as
(3;7;2221), where the particle corresponding to d =1 can ap-

Cases in the "others" column can be easily trans-

pear in m;; or m;ji.

Others Representative Example (ij is short for m;;)
(5;m;abed) (5;11;4322) 12,13,14,23,24 — 12,13,14,23,124
(4;9;3222) (4;8;3221) 12,13,34,124 — 12,13,23,34

(4;10;4321) 12,13,23,124 — 12,13,123,124
(4;9;3321)

(4;8;3221) 12,13,24,123 — 12,13,23,24
(4;10;3331) (4;8;3221) 12,13,123,234 — 12,13,14,23
(4;11;3332) (4;11;4322) 12,124,134,234 — 12,124,123,134
(3;6;2220) (3;7;3220) 12,14,24 — 12,14,124
(3;7;2221) (3;6;3111) 12,13,234 — 12,13,14
(3;8;2222) (3;7;2222) 12,134,234 — 12,34,234

B. Simplification of expressions for three-momenta of
final particles

In our notation, if |p;| and 6;; for each particle are all
known, general expressions for components of three-mo-
menta in terms of Euler angles can be calculated as

Pix 0
P1y =R 0 5 (11)
Piz |p1l
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D2x |p2|sinf;2
Py |=R 0 (12)
D2 |p2lcosb,
c0s 63 —cosfi3cosb;

|pal -
P3x sinfy;
Py =R £lpsl ——— (13)
D3z P Agsinfyp

|p3lcos i3

Pax —P2x — P3x
Py [=R —D3y (14)
P4z —Plz — P2z — P3;

where R is defined in Eq. (4), and A, is defined as

1
Ag= .
V14205613 cos 01 cos a3 —cos? B, —cos? 13 —cos? 623

(15)

It is clear that we only need six variables, including
Ip1l, |p2l, |p3l, 612, 623 and 63, to compute all three-mo-
menta of the final states. Note that there are two choices
with different sign for ps,. These corresponds to the two
allowed patterns if just 6;; and |p;| are fixed, as shown in
Fig. 1 where Euler angles have been chosen as («a,8,y) =
(0,0,0). Actually, the two configurations in Fig. 1 are in-
distinguishable with respect to the IKVs we have chosen.
To avoid this arbitrariness, some more variables denoting
the sign of (p; X p»)- p3 are needed. However, this is un-
necessary because the phase space factors 4 for these two
configurations are exactly the same. Thus, one set of IK-
Vs will give at least two sets of three-momenta for the fi-
nal states, and then the amplitudes of these two three-mo-
menta could be different. We should rewrite Eq. (5) as
follows:

Px
Fig. 1.

IMPdDy = AIMTP + M) dmadmy, - --dadas -+, (16)

where M* are for the amplitudes with different sign of
P3y-

Furthermore, the six variables |p1|, |pal, |psl, 812, 623
and 6,3 can be computed by the three energies E| » 3 and
three invariant masses mj», m3, my3 as

pil = \JE} —m}, (17

. 2 2_ 2
2E,E]+mi+mj ms;

L. (18)

6:; =
oSt 2ipilp)|

Therefore, it is found that if the three energies Ej ;3
and three invariant masses mjy, m3, my3 are given, all
components of the three-momenta of the final states can
be computed. In the last subsection, the relationship
between these six physical quantities and the IKVs will
be given.

Also, for DN = (3;6;3111) and (2;5;2111), there are
two possible solutions for the E;. In these two sets, mys,
cosf; and E; can be fixed by IKVs. Then, E, can be
solved from Egs. (17) and (18),

2 \JE2 —m? \[E} — i} cos b1y = 2B, Ey +m? +m3—nity. (19)

Clearly, there are two possible solutions for Ej,
labeled as EJ and E7, for which can be found explicit ex-
pressions in Tables 13 and 23. In those cases, the phase
space factor should be redefined as

IMPdd, =[AED (M (EDE +IMHEDP)
+AE) (IMCE;)P +IMF(E)P)|
xdm,dmy ---dajdasy --- . (20)

Two patterns are allowed if just 6;; and |p;| are fixed. For the left plot, (p; X p2)- p3 is negative while for the right plot it is pos-

itive. Euler angles here have been chosen as (a.,8,y) =(0,0,0). psy=—(p1+p2+p3) is not shown here. The two configurations can be

transformed by the mirror reflection with respect to the p;Op, plane.
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C. Domain of integration

To complete the integration of the phase space, the
domains of the IKVs are also needed. The domain of
Euler angles are trivial, namely 0 <@ <27, 0 <8 <, and
0 <y <2n. As for the other IKVs, things become much
more complicated. Among the cases given in this paper,
some cases with four or five invariant masses chosen as
IK Vs are relatively simple since the calculation can be re-
duced to the three-body final states. Two examples are
given here and similar discussion can be found in Ref.
[3]. For the set (m124,m12,m%4,m%3,m23) one can com-
plete the integration as

(m—ms)* (myp4=my)? Cr C, (%
2 2 2
dmip, f dmi, dml4fdm 3fdm23,
(m,+m,+m,)? (m,+m,)? Ccy Cc; Cy

where

Cf =B+ (B -mis B2 -m), @)

=B+ B - (JER-mix JER-m2).  @3)

Ct = B+ By (B —n2 e \JE2-mY, 24

with
E} = (mj, —mj +m3)/(2my), (25)
Ej = (mjy, —my, —m3)/(2my2), (26)
E} = (mfyy —m3, +m3)/(2mi24), 27)
Ej = (m* —miyy —m3)/(2ming), (28)
Ey = (m3, —mj +m3)/(2may), (29)
E3 = (m3y, —m3, —m3)/(2mas), (30)
m%4 :m%24+m%+m%+mi—m%2—m%4, (31)
4
M3y = m’ 4 mi + Zmlz —miy —miy =i, (32)

i=1

2

2 .2 2
As another example, for the set (m12’m23’m24’m234’

cos 0;), one can complete the integration as

1 (m—m,)?

fdcow;

-1 (my+my+my,)?

(Mo, —m4) C1 C;

2 2 2
drmys, dm3; | dm3, | dmi,,

(my+ms)? Cy (&

(33)

where

Ct =3+ B (e -mx JE2-m). G4)

Cs = B3+ B (VR -« JEP-mi). G9)
with

E} = (myy —mj3 +m3)/(2ma3), (36)

E} = (m3y, —myy —m3)/(2ma3), (37)
o _ 2 2 2

E; = (miz —miy +m3)[(2ma3a), (38)
E} = (m* —myyy —m7)/(2ma3s), (39)
m§4 =m%34+m%+m§+mi—m§3—m§4. (40)

However, it is found that the explicit domain func-
tions of the IKVs here would become much complicated
if the order of the IKVs changed. For example, it is really
not easy to obtain the explicit domain functions of m%3 if
only m?,, is fixed. For the other sets of IKVs, especially
those that cannot be reduced into three-body final states,
the domain cannot be obtained without tedious calcula-
tion. Fortunately, in the numerical calculation, we do not
need such explicit domain functions of each IKV, and
here another numerical method is introduced as follows.
It is more practical to do the integration under the follow-
ing restrictions that completely determine the boundary of
the phase space. The rough ranges of the angles except
Euler angles are,

0<6;<m, (41)
0<6r <. (42)

The invariant mass variables are supposed to satisfy
the following restrictions at least:
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2
(mi +mj)2 < mlzl < [m - Z mk] , (43)

k#ij

2
2
(m,-+mk+m/)2$(mj+mk;) Sm?kls(m— Z m,-] ,
!

(44)

where my; > mj > mj is assumed. Then, to obtain the ex-
act range of variables, we are supposed to check step by
step whether the values of some physical quantities ex-
pressed by the IKVs are physical or not. Firstly, the en-
ergy and the mass of any particle should satisfy

E;>m;. (45)

Secondly, another natural restriction on the angle
between two final particles 6;; is

|2E,'Ej+ml.2 +m§ —mizj
[cosb;;| = <l (46)

2lpil|p;|

Thirdly, the factor A, in the expression of ps3, in Eq.
(13) should satisfy the following restriction to ensure the
reality of psy,:

1 42086308012 cO86h3 — OS> O12 — cos> 013 — cos” bh3 > 0.
(47)

For all IKVs listed in this paper for the four-body fi-
nal states, the restrictions above are sufficient to control
the integration ranges of IKVs. In the numerical calcula-
tion, one can first sample within the rough region of Egs.
(41)—(44) for the IKVs and then only sum the contribu-
tions of the samples which satisfy the physical conditions
of Egs. (45)—(47). Typically, it is worth noting that the
variables in the restrictions can be easily calculated from
the three momenta of the final states, which are explicitly
expressed by IKVs.

D. Formulae

In this section, the formulae for all cases of IKVs for
four-body final states are listed in Tables 5-26. In each
table, the expressions for three energies Ej 3 and three
invariant masses mj, 1323 are shown as discussed before.
Furthermore, some other intermediate variables which are
defined to simplify the expressions of E; 53 and m,13.23
are given in the last rows of the corresponding tables.
Euler angles are not included in the IK'Vs since they are
supposed to appear in all cases. For some cases with
DN= (2;m;abcd), an equation is given in the last row of

Table 5. Set of IKVs containing five invariant mass vari-
ables. The corresponding DN is (5;11;4322). 4 is the phase
space factor and here d®4 = Adad(cosB)dydm?,dm?,dm?,dm3,

dm?

1,4 Which is consistent with Eq. (16).

IKVs
DN=(5;11;4322)

2 .2 2 2 9
L RO T R PR  SULTP Y
Ag

! @0 Pudlpipalp
4
Br= 5 iy e - S)
Ey g 3andmyy 13 0 Ex= ﬁ(m§3+mf24—m%4—m§)
E3 = ﬁ (m2 - m% - m%24)

mi,13,23 are IKVs directly

Table 6. Set of IKVs containing four invariant mass vari-
ables with corresponding DN (4;8;3221). A4 is the phase space
factor and here  dd4 = Adad(cosB)dydm?, dm?, dm3, dm3,
d(cos#}) which is consistent with Eq. (16). Quantities with su-
perscripts x are defined in the rest frame of the composite
particle 3-4
IKVs
DN=(4;8;3221)

2 02 o 2w
M, 3,1y ;134 ,C08 0

AgniBL|p}
(2m)'228m2 |p 2l |psl

A

4
1 2
Ey = — m2 +m2, +m2, — my;
m |2 13 14 i

=
1 R
— 2 2 2 2 2
E2—2m{m _’"13_’”|4_m34+Z1 mi]
Ex = *|2 2 _ * o*
3=7L |P3| +m3 YLAL |p3|cos 3

4
2 _ 2 2 2
mss = 2mkE3 —Zmi —myy—m3y
i=1

E) yzandmypy 1353

mya 23 are IKVs directly

I 1
npL= ‘/ﬁ - 2mmszy 4 (mz’m%Z’m§4)

11
P3| = Mﬂi (34,3, m3)

the corresponding table. Though an analytical solution
exists, the expression is so complicated that it will not be
given. For those cases, ;) denotes the angle between p;
and p; + px and E;; is short for E; + E;.

In these tables, the phase space factors and the three-
momenta of the final states are shown explicitly. Then,
once we have the formulae of amplitudes, the differential
cross-section and differential decay can be calculated by
using Eq. (1) and Eq. (2), respectively.

V. APPLICATION FOR THE REACTION
e+p—oe+J/Yy+p

The Monte-Carlo method has been widely used in the
numerical calculation of n-body final states process.
However, once the extremely sharp peak structure ap-
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Table 7.
ables with corresponding DN (4;8;2222). 4 is the phase space
d®4 = Adad(cosB)dy dm?, dm?, dm3, dm3,
d(cos6}) which is consistent with Eq. (16). Quantities with su-

Set of IKVs containing four invariant mass vari-
factor and  here

perscripts « are defined in the rest frame of the composite

Table 9. Set of IKVs contains four invariant mass variables
with corresponding DN (4;10;4222). A is the phase space
factor and here it is d®, = Adad(cosB)dydm?,dm?, dm3,,
dm?,,d(cos@}) which is consistent with Eq. (16). Quantities

with superscripts x are defined in the rest frame of the com-

particle 1-2. posite particle 1-2-4.
IKVs s s IKVs
* 2 2 2 2 *
DN=(4;8;2222) MMy 51 351M545113,,,C08 6] DN=(4;10;4222) 1My 13554 5134 ,COS O]
P AgnBLlp} ) AnBLlp}]
(2n)'228m2 |y lp2l1ps| (2m)'228m? |p1||p2lIp3l
2 Ei=m—-(Ey+E3+E
Ey =y y|pi|" +m? —yiB |p}|cos o} 1 =m= (B +Es + Ea)
L S S S
Ey=yL+ |171*|2 +m2 +yLBL|p} |cos0F E2= g (m? 3 =)
1
E and E3 = — (m?+m? —m?
E| ,yandmyy 1303 /l(mz,m%,mi‘) ) 1,2,3 mi2,13,23 3= 5 ( 3 124)
T T E; = 74"12 +m|3—E1 4
4 m%3 :m2+2m1.2—m%2—m%3—2mE4
2 2_ 2 2 L
=2mE, — “— - i=1
M3 = 2mLa ;m[ My ~ 1My mi,13 are IKVs directly
IK irectl 1
mip 23 are IKVs directly YLfL = ,712‘ 1= /l% (mz,m%,mfm)
> 1 Lo s 5 4 2mm24 :
YBL= 1= Az (m *’"12*’"34) VU g2 2 o
2mm |p:| =——22 (m ,ms,,m )
1 2o 1242 M2y
P}1= 5, — A2 (miymi.n) I R
M2 Eq=yL |p4 | +my —YLBL |P4 |COS 94
Table 8.  Set of IKVs containing four invariant mass vari- Table 10. Set of IKVs containing four invariant mass vari-

ables with corresponding DN is (4;9;4221). A is the phase
space factor and here d®4 = Adad(cosB)dydm?, dm3, dm3, dm?,,
d(cos6y) which is consistent with Eq. (16). Quantities with su-
perscripts « are defined in the rest frame of the composite
particle 2-3-4.
IKVs
DN=(4;9;4221)

2 2 9 2 *
1My 5135y T3, ,COS 03

AgyLBL |p%]
(2m)'2 28m2 |py||p2| Ip3

A4

i=1
E and m 2
L2aandme s gy — gy psf 42 -y pL|p3|coser
4
2 2 2
me:2m(E1+E2+E3)—m2+z“mi—mlz—m23

i=1
mya 23 are IKVs directly

1 1
— 2 — 5 2 2 2
YBL=Jrp—1= 2mm234/]2 (m ,ml,m234)

1 1
*| — M(mz 2 ’mz)
|1’3| Dy 2342 M4 1113

pears in the amplitude, the efficiency of the Monte-Carlo
method decreases, since significance of the sample points
is required to guarantee the precision. Nevertheless, the
explicit formulae listed here will avoid this problem. For
example, if the photon is an intermediate state and the in-
variant mass can be very close to zero, there will be a
sharp structure because of the photon's propagator. At
that time, the Monte-Carlo method needs to be improved,

ables with corresponding DN (4;10;4321). A is the phase
space factor and here d®, = Adad(cosp)dydm?,dm?, dm?,,
dm?,,d(cos#3) which is consistent with Eq. (16). Quantities
with superscripts x are defined in the rest frame of the com-
posite particle 1-2-3.

IKVs

2 2 2 2
DN=(4;10:4321) Mg M3 153,15y ,€OS 6

AgyLBL |I’2* |

A
2m)"228m2 1|2 |ps|

1 2 2 2 2
E| = m (m|23 +miy, —my—my —2mE2)

Er =71+ |P§'|2 +m3 —yLBL|p}|cos 8}

1
— 2 2 _ 2

E; = m (m +m3 m124)

2 _ 2 2 2 2 .2 2

m23—m1+m2+m3+m123 miy, —miy

Ey o3 and myp 13,23

mi2,13 are IKVs directly

1 1
_ a2 12 2 o
nhL= ¥ -1= mem/L (m?.myq.mr})

1
x| _ Lo o 2
lp3| = A2 (m|23’m13’m2)

2myp3

such as the adaptive Monte-Carlo method. But if we use
the exact equations shown here, the usual numerical
method is sufficient to finish the calculation. Here we
give an example to show how to distinguish the signal of
P, states and the background of Permeron exchange in
the reaction of e+ p — e+J/y+ p. With formulae given
in this paper and Egs. (1) and (3), one can calculate do
straightforwardly.
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Table 11.
ables with corresponding DN (4;10;3322). A4 is the phase space
factor and here d®4 = Adad(cosB)dydm?, dm3, dm3,, dm3,,
d(cos613) which is consistent with Eq. (16).
IKVs
DN=(4;10;3322)

Set of IKVs containing four invariant mass vari-

2 2 2 2
T, 13, 15,15, ,C08 013
#
2m)'228m3 |pa|

A

E| = ﬁ(m2+m%—m§34)

/l(mz,m%z,m§4)

2

E2 = _— +m12—E1
4m?

1
— = (2 2_ .2
E3 = 3 (m +m3 m124)

E1,2,3 and myp 13,23

2 2 2
myy =mjy+m3 +2E1E3—2|p1||p3lcosOy3

2 _.2. 0. o2 2 _ o . 9
My = My + 1y + 0y = 1My =Nz + My,

myp is IKV directly

Table 12. Set of IKVs containing four invariant mass vari-
ables with corresponding DN (4;11;4322). A is the phase
and here  d®4 = Adad(cosp)dydm?,dm3,,
dm?,, dm?,,d(cos613) which is consistent with Eq. (16).

space  factor

IKVs

2 2 9 2
DN=(4;11;4322) My Mo 515351 34,C08 013

Ag

A [
12
(2m)'228m3 |py|
1
_ L (.2 2 2 2 .2 2 2
El_zm(m123+m124+m134 s = = mi = m’)
1
2,2 2
E, = 2m(m +m; = m134)
E d Es= - (m? +m2 =t}
1,2,3and M3 13 23 3= om m=+my—miy,
2 2 .
m13—ml+m3+2E1E3—2|p1||p3|005913

2 _ o2 2,2, 02 2 _ 9
M3 = My + 1y + 0y + M3 —my, =1y

myy is IKV directly

A. Background

There are three P, states identified by analyzing the
J/y — p invariant mass distributions of the decay process
A: — KJ/yp measured by the LHCb Collaboration in
2019 [8]. However, these pentaquark resonance signals
have so far only been observed at LHCb. Thus, it is of
great importance to confirm the pentaquark resonance
with other experiments. These P. states can also be in-
vestigated using the electromagnetic production of J/y
from the nucleon, such as e+ p — e+ J/y + p as studied in
Ref. [9]. As shown in Ref. [10], the GlueX Collaboration
did not find evidence for the P, states, although the stat-
istics were not very high as they only collected around
500 events for J/y inthe whole phase space. As dis-
cussed in Ref. [11], because of the large background of
the Pomeron exchange mechanism, the pure signal of P.
states can only be clear around the forward angle of out-
going J/y. On the other hand, in Ref. [12], the ratio of
the signal to background would increase significantly

Table 13.
ables with corresponding DN (3;6;3111). 4 is the phase space
factor and here d®4 = Adad(cosp)dydm?,dm?, dm?,d(cos6i2)
d(cos#}) which is consistent with Eq. (20). Quantities with su-
perscripts « are defined in the rest frame of the composite

particle 1-3-4. To be precise, when m?, > m?

Set of IK'Vs containing three invariant mass vari-

+m3 +2E1m;, only
the positive sign in the expression of |p,| are allowed, while

when m% +m% +2m +[|p1 sin? 612 +m% < m%z < m%+m§ +2E1my

and 6y, < /2, both signs are allowed.

IKVs

2 2 2 *
DN=(3;6;3111) mlz,m13,m14,cos€12,cos€3

AgyLBL |p%| P2l
2n)'227m|p3| |E1 |pa| - E2 |p1] cos 612

A

4
1
I ) 2 2 _ 2
o my, +miy, +mi, ij

J=1
[ o
Ey = \/Ipal* +m}

E\ =

Ey 5 3andmy 13 03 Es=m ,|p;|2 +m%_7LﬁL |p§|cos€§‘

4
22 2
m§3 =2m(E; +E2+E3)—m2+ZmJ- —my, —mj;
J=1
mi2,13 are IKVs directly

A= /l(mlz,m m) 4|p1|2 sm 012

mi34 = ,[mz +m§ —2mE2
lp2|

VBL= \¥i-1=—"—
mi34

1
(2 2 2
2m|34/12 (111134,m14,m3)

|p1lcosOr2 (m%2 —m% —m%)iEl VA

lp3| =

Ipal = -
Z(Ipll2 sin205 + m%)

Table 14. Set of IKVs containing three invariant mass vari-
ables with corresponding DN (3;6;2211). A4 is the phase space
factor and here d®4 = Aded(cosp)dydm?, dm?, dm3,d(cos6})
d(cos6}) which is consistent with Eq. (16). Quantities with su-
perscripts x and s are defined in the rest frame of the compos-
ite particle 1-3 and particle 2-4, respectively.

IKVs

2 2 2 / *
DN=(3;6:2211) mlz,m13,11124,00592,00501

Aq |1’f| |p;|/l(m2,m%3,m§4)

A
2m)'2 2°m3myzmo4 |p1l|p2l|p3l

Er=yL+ |Pf|2 +m} = yLBL|p} |cosOF
E> =¥ \|pf* +m3 1 pscose
E3y=yL+ |17f|2 +m? +yLBL|p} |cos0F

4
2 _ 2 2 2
my; = 2mE, + Zmi —mi, —myy
i=1
miy,13 are IKVs directly

El,z,sa“d min 13,23

A= ab (m m2,m )
|P1| 2m13 137171113
4] = 5 A% (o3l
= m2,,m2
|P2| 2mz4 245, 1M
1
T2 2 2
LBL = —-1= /12(m mi,,m )
nh yL 2mm3 T34

1 1
— 2 — 5 2 2 2
VB = AW 1= g A2 (i )
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Table 15. Set of IKVs containing three invariant mass vari-
ables with corresponding DN (3;7;3220). A4 is the phase space
factor and here dd4= Adad(cosﬁ)dydm dm dmmd(cos 63)
d(cos6}) which is consistent with Eq. (16). Quantities with su-
perscripts « are defined in the rest frame of the composite
particle 1-2-3.

Table 17. et of IKVs containing three invariant mass vari-
ables with corresponding DN (3;7;2221). 4 is the phase space
factor and here d® = Adad(cosB)dydm?, dm3, dm3,,d(cos6})
d(cos12) which is consistent with Eq. (16). Quantities with su-
perscripts x are defined in the rest frame of the composite
particle 2-4.

IKVs

2 2 2 * *
DN=(3;7:3220) My My 3,M 3 ,cosﬁ‘2 ,cos(i3

IKVs

2 2 2
DN=(3,7:2221) My, M5, , 155, ,€08 63 ,COS 012

Ag |1’;| |p§|/l(m2,m%23,mi)
@m)'2 2°m3m?,; |p1l1p2||p3l

A

4 Ag |1’;|/1% (mz,m%S,mi)

(2m)'2 28m3myy |p3

1
_ 2, .2
E = m (m +m123—m4) 2mE> —2mEj3

Ey=yL W—VL,BL |p;|cos9;
E d
1,2,3and myy 13 23 E3=vyL \/|p;|2—+m§—yLﬁL |p§|cose§

2 _ 2 2 2 2 2 2
m23 —I71I23 +m1 +m2 +l’l’l3 —mlz—mm

mi2,13 are IKVs directly

1

Lo o o

A2 (m123’m13’m2)
2 2 2

——az (m123’m12’m3)

22 02 2
/12 (m ,m123,m4)

T 2my3

T 2mi3

YBL= \J¥i-1=

2mm23

Table 16. Set of IKVs containing three invariant mass vari-
ables with corresponding DN (3;7;3221). 4 is the phase space
factor and here d®s = Aded(cosg)dydm?, dm3, dmZ,,d(cos6})
d(cos#}) which is consistent with Eq. (16). Quantities with su-
perscripts x and s are defined in the rest frame of the compos-
ite particle 2-3-4 and particle 2-4, respectively.

IKVs
2 2 2 7 *
DN=(3;7:3211) mlz,m24,m234,c0562,00593
P Ay s |Ips|

@n)'"227m|pyl|p2l Ip3l

1
Ey= m (mz +mj _”%34)
Ex =i \|py|" + 73 ¥ B, |p5|costh
2
Eypsandmyy 132 Ey=n V|p§| +m§ _VLBLLP;|C°SH§

m%3 =2m(E; +4E3)+m§4—

2 _ 22 2
my; = 2mE, + Zmi —my, —myy
i=1

myy is IKV directly

1
I N
2 ("534”"247’"3)

1
, Lo o2 9
= A2 (m ms5,m )
|p2| 2tins 240121y

B m E1 E;
VB = -1 \/
YLBL = Vi - mezm/l (m my34,my)

with a proper kinematic cut for the e+ p — e+ J/y + p re-
action. Furthermore, the EicC has a higher signal over
background ratio than that of JLabl2. Here, as an ex-
ample of application of the formulae given in this paper,
an analysis of the e+ p —e+J/y + p reaction at the en-

E| = ﬁ (m2+m%—m%34)

E> =yL+/ |P;‘|2 +m§ —-yLBAL |p;|cose;
E3 = \//l(inz,m%3,m§4) +m%3 -E

2 2 2 dm?
my, =mj +nm; +2E1E> -2|p1l||p2|cosbia

E142,3 and myp 13,23

4
2 _ 2 2 2 2
my, =m +Zm,— —my, —my3—2mky

i=1
myy is IKV directly

1 1
— 2 _ 5 2 2 2
YLBAL = \/ -1= 2mm24/12 (m ,mlS,m24)

1
= A2 (m2 ,mz,m2)
|1’2| 2m24 24> 1M1y

Es=yLy |I7§|2 +m2 +yLBL|p}|cos6}

Table 18. Set of IKVs containing three invariant mass vari-
ables with corresponding DN (3;8;3221). A4 is the phase space
factor and here d® = Adad(cosB)dydm3,dm?,, dm3,,d(cos6})
d(cosf12) which is consistent with Eq. (16) Quantities with su-
perscripts x are defined in the rest frame of the composite
particle 1-3-4.

IKVs
2 2 2
DN=(3:8:3221) My, M3, ,155,,C08 6 ,COS 6012
L )
4 Aglpy| 22 (’” ’mz’m134)
2n)'228m3my34 |ps|
1
_ 2,2 2
E| = ﬂ(m +m] —m234)
1
_ 2,2 .2
E; = %(m +m2—m134)
Es=m—E —E;—E;3
E) 5 zandm; 1303 2

= m% +m§ +2E1E> -2|p1l|p2|cos 612

m
2 _ 2 2 2 2
myy =m +Zmi—m12—m|3—2mE4

i=1
my3 is IKV directly

1 1
- L2 m2
YL = \/7L U= (m?.m} o)

p;| = 74/“ (mf34,m%3,mi)

Es=y+|p}[ +m2 i |p}|cos6}

ergy of the EicC experiment is performed below. Be-
cause it is a collision process with a three-body final
state, there are at least four IKVs. After integrating one
variable, a three-dimension distribution plot will be
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Table 19.
ables with corresponding DN (3;8;3311). A4 is the phase space
factor and here d®4 = Adad(cosp)dydm?, dm?,, dm?,,d(cos6})
d(cos613) which is consistent with Eq. (16). Quantities with su-
perscripts « are defined in the rest frame of the composite

Set of IKVs containing three invariant mass vari-

particle 1-2.

Table 21. Set of IKVs containing two invariant mass vari-
ables with corresponding DN (2;4;1111). 4 is the phase space
factor and here d®, = Adad(cosB)dydm?, dm3,d(cos6})d(cos b,
dcos6y3) which is consistent with Eq. (16). Quantities with su-
perscripts x and s are defined in the rest frame of the compos-
ite particle 1-3 and particle 2-4, respectively.

IKVs

2 *
DN=(3:8:3311) m124,0059] ,cos6;3

2 2
Mip-Mo3»

IKVs

2 2 *
DN=(2:4;1111) m13,m24,0059| ,cos612,c08613

AgyLBL|p}|

4 12
@m)'227m? |py|

AgyLBL|p}|

4 12
@m)'227m? |py|

Ev =y lpi [+ - p} cos6
Ey=yL m+yLﬂL |p|cosor

Es = i (m2 +m% —m%24)

2

Ey 5 3and mip 13,3 ) )
myy =my +m3 +2E1E3 —2|p1||p3|C05913

2 _ 2 2 2 2
msy =m +Zm,- —mij, —mj3—2mEy
i=1
myy is IKV directly

2
2 2 2_ .2
pL= 1= (m123+m124_m3_m4) :
LBL = Y- 1= -
L 4mPm?,

Ey= ﬁ (m2 +mf1 —m%B)

1
=—A2 (m2 ,mz,mz)
2mia 12>

Table 20. Set of IKVs containing three invariant mass vari-
ables with corresponding DN (3;9;3222). 4 is the phase space
factor and here dd, —Adad(cosﬁ)dydm124 dm%34 dm§34d(cosé)12)
d(cos6;3) which is consistent with Eq. (5). 6;2 and 6,3 denote
the angles between three-momenta of particle 1 and particle 2
and between particle 1 and particle 3, respectively.
IKVs

DN=(3;9;3222)

2 2 2 S S
M5y M 34 ,M534,C08012,C08 013

4 Aglp1l
Qm)'227m3
1 2
ﬂ (m +m _m234)
1
ﬂ( +m2—mH4)

1
E; = (m2+m§—m%24)
2m
Ey 5 3and myy 1323 5 2 2E Er—2 .0
2 =m?+m}+2E1E; —2|p1l|p2lcos 612

m% :m% +m§ +2EE3—2|p1||p3|cosO;3

2 _ 2 2 2 2
M, = —m +Zmi —mj, —myz3+2m(E| + Ey + E3)

i=1

shown to distinguish the background and pentaquark
states.

B. Mechanisms

There are two main mechanisms for the process
e+p—e+J/y+p, namely Pomeron-exchange and P,
resonance, which are shown in Fig. 2(a) and (b), respect-
ively.

Ev =y \|pj [ +m3 =Bt |t cos o
R AR A AL A
Ey =i \|p[* +m3+ v 1 p}| coser

m3, =m? +m? +2E\ E> - 2|p1||pal cos 612

Ey 5 3and mip 13,3

4
2 _ .2 2
my; =m +Zmi—m m13 2mE4

1 1
— 2 — 5 2 .2 2
YLOL = ,/yL—l = 2ml‘ri|3 A2 (m ,m”,mM)
= |y 3 2 2
B = )’L -1= T A2 (m m13,m24)

|P1|_

2’?12 /lé (m13,m1,m3)

/
=—A12 (m2 ,mz,mz)
|1’2| 2 2415511y

Ei =y N|psl” 3+ |phleoses

Table 22. Set of IKVs containing two invariant mass vari-
ables with corresponding DN (2;4;2110). A4 is the phase space
factor and here d®, = Aded(cosB)dydm?, dm?,d(cos67)doss
dfa12) which is consistent with Eq. (16). Quantities with su-
perscripts x are defined in the rest frame of the composite
particle 1-2.

IKVs
2 0 oo
DN=(2;4;2110) iy, Mi3,C08 07 ,634,0412)
(27" 2°m13 |1l 2
A L
% |p3l|palsin” 634
(E4E12Sin294(12>+E3E12Sin2(934+94<12))+E3E4Sin2034)
Ei=vy \/|*|2—+mz— BL|p}|coser
L VP 17 YLPL Py 1
2
B2 =y It +m + 81 o |cose
E, ;3and sin 6312, | .
=\ |——=Ip1+p2f +m
M 13,23 3 sin® 634 L+ P2 3
m§3 =-m?+ Zm?—mﬂ—mf3 +2m(E1+E> + E3)

i=1
my2,13 are IKVs directly

2 |1+ pal
LAL = -l=—
LB \/ o

1
= 7/17 (m2 ,m2 mz)
|p1| 2mm 1221171

|p1 + p2lis solved from equation,

) )
sin? (12 s, |sin (634 +63012)) _—
——p1+pal Amy+ | 5 Ip1+pal

SiI‘l2 934

2
+/lp1+pal +ml, =

Sin2 934
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Table 23. Set of IKVs containing two invariant mass vari-
ables with corresponding DN (2;5;2111). 4 is the phase space
factor and here d®4 = Aded(cos)dydm?,dm3,,d(cos8})d6r,
d6;3 which is consistent with Eq. (20). Quantities with super-

scripts * are defined in the rest frame of the composite

2
12

the positive sign in the expression of |p,| are allowed, while

2 2 2
1 1 1

and 6y, < /2, both signs are allowed.

particle 3-4. To be precise, when m2, > m? +m3 +2Eym, only

when m +m%+2m2 |p1|2sin26}12+m <m%2<m +m§+2E|m2

Table 25. Set of IKVs containing one invariant mass vari-
able with corresponding DN (1;2;1100). 4 is the phase space
factor and here d(D4:Adwd(cosﬁ)dydm%zd(cos0{‘)d(cos€)13)d934
dfs12) which is consistent with Eq. (16). Quantities with su-
perscripts x are defined in the rest frame of the composite
particle 1-2.

DN=(1:2;1100)

IKVs
m3, ,cos 0% ,cos 013,034,04(12)

IKVs

2 2
DN=(2;5:2111) my, ,Ms,,C08 6% ,c08 612,08 613

AL} IpalIpal

4 256
(27) 2 2°m|E| |p2| — E2|p1]cosb12]

Aglp1+pal Py Ip3l* 1pa?
2m)'225my; |pa|

E| = ﬁ (m2 +m% —m%34)

2
[|1)1|008912(mf2 —m?—m2)+E VA
) =

1

E and
12,3 E3:yL\/|p;|27+m§—'}’LﬁL|P;|C050;

M2, 13,23 2 2 )
myy =my +m3 +2E1E3 —2|p1||p3|005013

4
2 _ 2 22 2
mss = —m +Zmi —mj, —miz3+2m(E| + Ez + E3)

i=1
myy is IKV directly

2(Ipa P sin® 612 +m?) 2

A
% sin2 934
(E4E12 Sil’l2 04(12) +E3E)n sin2(034 + H4<12)) +E3Ey Sil’l2 034)
2
Ey=yLy|pi[ +m? —y1BL|p}|cosO}
2
Ey=yL+ |I’f| +m3 +yLBL |PI|C059f
sa2
sin” 6.
Ei,2,3 and Es= A|——5 2 |p1+ paf 43
sin” O34
m3,13,23 2 2

my = m? +m} +2E| E3 - 2|py||p3|cos 63

4
2 _ 2 2 2 2
my; =m +Zmi —my, —my3—2mEy
i=1

my is IKV directly

2 22
Ale(mfz,m%,mg)—ﬂpll m%sm 012

2 _ 2. 2
ms, =m”+my, —2m(E| + E3)

m—E|—E\2
YLﬁL:\Dﬁ%— = (T)

1 1
*| _ M(mz m? mz)
|P3| 2 34> 1My, M3

N
yBL=Jri-1= 7'”,',,152'

1 1
*| = 2 (m? 2 2
|P1 | = 217112/1- (m]z,m],m2)
|p1 + p2lis solved from equation

.2
sin? 0412 > N sin” (034 +94(]7_)) ) )
pr+pal +mi+ \| —————— Ip1+pal”+my

Sin2 534

f 2
+ylp1+pal +mdy =m

Sin2 934

Table 24. Set of IKVs containing two invariant mass vari-
ables with corresponding DN (2;6;2211). 4 is the phase space
factor and here d®4 = Aded(cosp)dydm?,, dm3,,d(cos83)d61>
dg;3 which is consistent with Eq. (16). Quantities with super-
scripts x are defined in the rest frame of the composite

Table 26. Set of IKVs containing one invariant mass vari-
able with corresponding DN (1;3;1110). 4 is the phase space
factor and here dd, :Adad(cos/})dydm§34d(cosef)d(cosf)lz)d913
d634) which is consistent with Eq. (16). Quantities with su-
perscripts x are defined in the rest frame of the composite
particle 3-4.

DN=(1;3;1110)

IKVs
m§34 ,COs 9; ,005912 ,913 ,92(34)

particle 3-4.
IKVs
DN=(2:6:2211) m%34,m%34,c059;,cos612,00s613
A Ag 7L/3L|P§ ||P1 |

(2m)1226m2

Aglp3+ pal|p3|Ip1* 12l sin® 61
(271')12 25mm34E2 sin2 92(34)

A

E| = ﬁ (m2 +mf —m%m)

E, = ﬁ (m2 +m§ —m%34)

E3=yL+ |ng|2 +m2 = yLBL|p}|cos6F

2

E 5 zandmyy 13 23
2 » 13, _ 2 2 .
mi, =mj +m;+2E1Ey —2|p1]|p2|cos »

m%S = m% +m§ +2EE3 -2|p1l|p3|cosb; 3

4
2 _ 2 2 2 2
myy =m +Zmi —mij, —mj3 —2mEy
i=1

E| = i(m2+m%—m§34)

Ey = \[lp2f* +m3
2
E) 5 3and E3 =yL|p}|"+m? - yLBL|p}|cos6F

mi, 13,23 m3, =m? +m +2E E> - 2|py||p2lcosfi2

2 _ .2 2
m13—ml+m3+2E1E3—2|p1||p3|005013
4
2 _ .2 2 2 2
my; =m +Zm,— —my, —my3—2mky
i=1

2 _ 2 2 2 _ .2 2 >
M3y = Mg+ Mgy + 10y =My —my =

2

P 2 29
Y R (m234+m134_m|_m2) I
nBL=vi-1= At -

) 34
1

| = b (2 m2, )

P3| 2mzs 341311y

Ey =y |pi[ +m2 + 7L p}| cos o

|p3 + Pl
MBL= Vi -1= T

2 _ 2, 2
m3, =m-=+mj, —-2m(E, +E»)
1
x|
|I’3| 2
|p3 + palis solved from equation,

1
T2 2 2
A2 (m34,m3,m4)

2
sin” 6234
—— |p3 + pa* +m}
sin” 012
2 ]
s (02(34)+012) sin® 02(34) P )
N — 2 |P3 + pal” +m5 + \[lp3+ pal” +m3, =m
sin” 6(34) sin” 012 )
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Fig. 2. Mechanisms of the interaction e+ p — e+ J/y + p for (a) background channel and (b) signal channel.

The amplitude M of the process e+p —e+J/y+p
can be written as

—8uv
q2

Mep—>eVp = Mi. M}’Qh P (48)

where /\/(’1‘el and M} denote the amplitudes of subpro-
cess e — ey and yp — pJ/y, respectively. /\/(’;el can be ob-
tained straightforwardly from quantum electrodynamic
theory:

M, = ieio (K, )Y ue(k, ), “49)

where u, is the spinor of the electron, k(k’)is the four-mo-
mentum and A is the z-component of the spin, with
unprimed variables for the incoming electron and primed
variables for the outgoing electron. Mj includes two
parts corresponding to the different mechanisms:

My, =i, (p'ml) € (a2 ) (M (g.0.0- )
+ My (g.p, q’,p’))up (p,my), (50)

where p,p’,q,q" are the four-momenta of the initial pro-
ton, final proton, intermediate proton, and J/y, respect-
ively; and mg,mi, 4, y are the z-component of spin of the
initial proton, final proton andJ/y, respectively. In addi-
tion, u, and € denote the spinor and polarization vector
of the proton and J/y, respectively. The two terms Mg
and M}, are the amplitudes for the y+p— J/y+p by
Pomeron exchange and the P, resonances, respectively.

The Pomeron exchange diagram is regarded as the
background channel. The detailed derivation of M.” can
be found in Ref. [11]. Here we just list the resulting
definitions:

emz/w
i IZTﬁcﬁu/dFj/w(t)Fl (48" —q"y")

W2 apt+ay—1 .
sz(—) exp{—z[a}Hag—l]},
S0 2

M =Gy

>

1 2u
Fj/w(t):m2 —t[2 Zim?, —t)
Iy Ho ™My

4m]2v —2.8¢t

F =
O = G = 1/0717

where Gp is the Propagator of the Pomeron with o/, =
1/S0=0.25 GeV™ and ag=1.25. By is the coupling
between the Pomeron and the quark in the hadron, with
Buya =2.07 GeV' and Be=0.84 GeV''. The form factors
Fjy and Fy are for the interaction of Pomeron with J/y
and N respectively, where pg = 1.1 GeV and ¢ = (p—p’)?
is in unit of GeV".

For the signal channel, the amplitude M., is given by
the assumption that the spin of P, is 1/2 with negative
parity.

y 3 R
M};L =§g11/w’ag” Z Fy(q?)

V=J/y.p.w
le ~m3 g1y g+ p—mp, (~/lv_ ﬂfv)
Jv —m? +iTymy W2 —m3 +ilp mp, & 7
(51)
+q)¥(p+q)
where g =g’ — P (ptg” (Z)+(5)2 9 , =p'=4", ¥ =v,8",

7 =r,8". Fy(g®) is the off-shell form factor for the inter-
mediate vector,

4

Fy(@)=——V | 52
v(g®) ATy (52)

where cut-off Ay is an undetermined parameter as dis-
cussed in Ref. [11]. For simplification, this factor will be
dealt with as a constant, since the main contribution will
be around ¢* ~ 0 GeV’ because of the photon propagator.
Here the aim is to find out the kinematic range for largest
signal of P, states, thus we neglect the interference
between the above two mechanisms and the overall con-
stant factors are just taken as 1 for simplification.

The amplitudes can be calculated from the equations
above, then the proper set of IKVs is chosen for the best
phase space range of the signal of P, states. For a three-
body final state, there are three sets of IKVs for e+ p —

083101-13
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e+ J/y+ p as shown in Tables 1-3. To make the regions
minimally overlap between the two mechanisms, vari-
ables dmlzj . deg s> da,d(cosp), and dy are the most ap-
propriate choices and the z-axis of coordinate frame is
along the direction of initial proton. Typically, the in-
dexes of the final state proton, electron, and J/y are set as
particle 1, 2, and 3, respectively, then the physical mean-
ing of the Euler angles can be clear and the IKVs are set
the same as those in Table 1. It is worth mentioning that S
can be recognized as the angle between the initial and fi-
nal protons. Furthermore, because of the axial symmetry
for the scattering process, da can be trivially integrated
out and one can obtain the factor 2. On the other hand,
dy will be integrated through the Gaussian quadrature
method for the case here, because it's hard to measure dir-
ectly. The remaining kinematic variables are m; I
m? 1> COSB and the phase space is now three-dimension-
al. The distribution of IMgp_,eVpldeI)4/dmi 5 wdmz 4o
is straightforwardly computed as a three-dimensional plot
with variables mif/w’ mfws and cosp.

C. Result and discussion

In order to show significant phase space range for two
mechanisms, three-dimensional distribution plots are
shown in Fig. 3 with the center-of-mass energy being 18
GeV, which will be available at EicC in the future. Red
and green scatters stand for signal channel and back-
ground channel, respectively. The density of scatter in the
neighborhood of a point in the phase space indicates the
order of magnitude of the differential cross section at that
point. Actually, since there is a huge magnitude differ-
ence in the differential cross sections for different ranges,
we only draw the main contribution component and leave
the other blank. Clearly, P, signals are mainly enhanced
on the boundary between two invariant mass variables. It

7200

j mzeJ:w(Ge\“]
7100

Fig. 3.

is easy to understand that the signal events will concen-
trate around the mass of the P, state because of its nar-
row width. On the other hand, the background signals
concentrate in the range of 8 ~ 0 and decrease quickly for
larger . This results from the exponential term in M".
Then by this diagram, we find that the best kinematic in-
terval for extracting the pentaquark signal for the process
e+p— e+ J/y+ p requires the following conditions. The
energy of the outgoing electron should be larger than 8
GeV, as calculated from the limitation of invariant mass
of the J/yp system. The scattering angle of the proton
should be between 11° and 55° to avoid background in-
terference. The directions of the outgoing proton and out-
going electron are almost anti-parallel because the main

contributions are from the edge of the Dalitz plot of m}% 1

2
and M-

VI. A SIMPLE CASE FOR FOUR-BODY FINAL
STATES

In the previous three-body case, we found that the
resonant peak will be buried in the huge background. It is
necessary to find a typical kinematic region to isolate the
resonance. For the four-body case, there are many more
possible choices of IKVs than in the three-body case.
Thus, it is important to choose a proper set of variables
for extracting the information of a typical resonance.

As mentioned before, the invariant mass spectrum is
usually useful for extracting the mass and width of the
resonance, however, in some cases the resonance peak is
not directly seen in the invariant mass spectrum for a re-
action with several different mechanisms. To illustrate,
we provide a toy model for J/y — nn*n~¢ reaction here.
Since the aim is just to show the importance of choosing
proper kinematic variables, we simply assume that the

m’ pyg(GeV?)
100 200 300

(b)

(color online) Distributions of two channels with the center-of-mass energy being 18 GeV. The density of scatter in the neigh-

borhood of a point in the phase space indicates the order of magnitude of the differential cross section at that point. Regions with no

scatter mean that cross sections in that region are at least 10* times smaller than the maximum. (a) Distribution of two channels where
red scatter stands for the signal channel while green scatter stands for the background channel. (b) Distribution of background channel

in a detailed scale of —cosg.
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Feynman diagrams for the reaction are just the three tree
diagrams shown in Fig. 4. For each diagram, there are
two resonances. To avoid overcomplicated amplitudes,
we use Breit—Winger propagators of each resonance for
the amplitude of each diagram,

1
M=7A($21T0)A(fo(980)) +A($(1680))A(fo(980)

+A(7(1405)) (A(a (980)) + A(ay (980))) /2., (53)

A(R) =

— (54)

pR—m12e+iFRmR’

where pg, mg, and I'g are the four-momentum, mass, and
width of the resonance R. The mass and width paramet-

¢

(2170) &

I/ I/

f(980)

Tt

ers are listed in Table 27, which are roughly consistent
with the values in the RPP. The additional factor 1/2 is
used to weaken the contribution of the first diagram.
Furthermore, we recognize Fig. 4(a) as the signal
channel and the other two mechanisms are both back-
ground. The task is to find a proper way to show the ex-
plicit peak of ¢(2170). Since in this amplitude the vari-
ables are all invariant masses, the IKVs shown in Table 5
are the most convenient choices. Here, n*, 77, #, and ¢
are recognized as particle 1, 2, 3, and 4, respectively.

Table 27. Parameters used in Eq. (53), with unit MeV.

£4(980)

(b)

R #(2170) #(1680) f0(980) a5 (980) 1(1405)
mass 2157 1680 980 980 1405
width 100 100 70 70 100

¢

(c)

Fig. 4. Three tree diagrams of reaction J/y — nntn~¢.

€ 1.75

125 |

M2,,.(GeV?)

PR
LN L B L B B

N S R

4 6

M2¢7¥+TF<GG\/2>

Daliz plots of invariant mass squared of ¢x*n~ vs invariant mass squared of n*n~, na*, pyr~ and ¢n* for reaction

Fig. 5.
JIy - nrta¢.

4 6
M2¢ﬂ+ﬂ* ( G e\/2>
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Mern(GEV)
Fig. 6. Invariant mass spectrum of ¢n*n~ for reaction
J/y > nrta¢. dN/dmyr*n~ is normalized to the 1000 events
of this process. The solid line is the distribution with all con-

tributions and the dashed line has a cut mf],ri >1.25 GeV™.

Various Dalitz plots are shown in Fig. 5. From these Dal-
iz plots, it is clear that the background channels will inter-
fere with the peak structure of ¢(2170). Indeed, from
Fig. 6, it is found that the typical peak of ¢(2170) reson-
ance is buried in the distribution dN/ dmzm, shown in Fig.
6 by the black solid line. On the other hand, from
Fig. 5(b) and (c) one can easily find that a cut of m,zl,,l is
necessary for a clean zpeak of #(2170). Therefore, with a
cut mf]ﬂ: >1.25 GeV’, a clear peak can be found, as
shown in Fig. 6 by the dashed line. This is a very simple
example to show the importance of finding a proper kin-
ematic region to extract information about the resonance.
In a more realistic case, things are much more complic-
ated since the amplitudes can be dependent on various
angles by including the high partial wave contributions.
At that time, we believe that this set of IKVs including
five invariant masses may not the best choice to search
the proper kinematic region; other IKV sets should be
useful.

VII. SUMMARY AND PROSPECT

In this paper, all unique sets of kinematic variables
containing a certain number of invariant masses are enu-
merated and classified for three- and four-body final
states. Expressions of phase space factor as well as four-
momenta for each case are explicitly shown. The formu-
lae given in this paper are especially useful for extracting
the structure of resonances. As an example of application,
we calculate the process e+ p — e+ J/y+p and find out
the region of phase space where the signal and back-
ground each reach their maxima, which will help experi-
mental physicists to search for P. signal economically
and effectively. Therefore, the formulae in this paper
should be useful for the further research on three- and
four-body final state processes. Moreover, the method
provided in this paper can also be used for any n-body fi-
nal state processes. Furthermore, the method developed
here can be used in the case that the intermediate particle
is on shell. Typically, if this happens in the tree diagram,
such intermediate particles can be cut for the final state of
the former process and the initial state of the continue
process. Then the whole process can be divided into two
processes, where three- and four-body phase spaces are
also applied for each, as discussed in Ref. [13]. If this
happens in the loop integral, the loop momentum can be
recognized as a phase space integration momentum. So
our phase space integration method can also be used in
the on-shell loop integration. This may combine with
some useful techniques such as sector-decomposition
[13].
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