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Λ+c → pK−π+
Abstract: Polarization transfer measurement plays an important role in the search for new physics processes
in charmed baryon decays. The measurement of the  decay is suggested as a spin polarimeter. A
general description of the decay is developed using Euler angles, and the polarization parameters are derived.
Its  relationship  with  parity  violation  is  found  using  the  phenomenological  amplitude  model.  A  Monte-Carlo
simulation is performed, and the results show that charmed baryon polarization is well determined using a set
of Monte-Carlo  events  with  selected  asymmetry  parameters.  The  experimental  measurement  of  these  asym-
metry parameters is suggested.
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I.  INTRODUCTION

Measurements  of  the  initial c-quark  polarization  in
charmed-baryon  decays  play  an  important  role  in  the
search  for  new  physics  processes,  for  example,  at  the
Large  Hadron  Collider  (LHC)  experiment.  Analysis  of
spin transfer provides access to the nonperturbative QCD
parameters relevant to the dynamics of the hadronization
process  and  thus  provides  crucial  information  about  the
structure  of  new physics  [1, 2].  Moreover,  measurement
of charmed baryon polarization can be used to search for
the  anomalous  magnetic  moment  [3],  magnetic  dipole
moments [4], and electromagnetic dipole moments [5–7]
at the LHC experiment.

Λ+c → pK−π+

Λ+c → Λπ+, Σ+π0, Σ0π+

pKS ∼

Λ+c → pK−π+

Λ+c → pK−π+

The decay  can be selected as a spin po-
larimeter to analyze charmed baryon polarization [1]. Al-
though two-body decays, such as ,
and ,  having approximately 1% 2% branching frac-
tions  [8, 9],  and their  decay asymmetry parameters  have
recently  been  well  measured  [10],  their  individual
branching  fractions  are  only  one  sixth  of  that  for

.  The  charged  final  states  can  be  directly
identified in the LHC experiment, and an analysis on the
decay  is ongoing [11].

Λ+c → pK−π+Knowledge  on  spin  transfer  in  the  de-
cay is essential for calibrating it as a polarimeter in exper-

Λ+c udc

1/2

Λ+c → pK−π+

e+e−→ Λ+c Λ̄−c Λ+c → pKS , Λπ
+, Σ0π+

Σ+π0

iments. In the quark model, the lightest charmed baryon,
,  is  composed  of  quarks  and  is  classified  into  a

mixed-symmetry 20 multiplet; hence, its spin is assigned
as  [8]. Confirmation of the spin-1/2 assignment dates
back  to  the  90s  in  the  NA32 experiment  [12].  Owing  to
limited  events, the  spin  was  not  conclus-
ively  determined;  however,  the  results  were  compatible
with  the  spin-1/2  assignment.  Recently,  using the  events
from  with ,  and

, the spin-1/2 assignment was confirmed with a sig-
nificance of approximately 6σ [13].

Λ+c
e+e−→ Λ+c Λ̄−c Λ+c → pK−π+

Λ+c → pK−π+

e+e− Λ+c

Λ+c

In  this  study,  we  propose  to  calibrate  the  polari-
meter  using  the  decays  and .
These  decays  were  once  used  to  measure  the  absolute
branching fraction of  during the BESIII ex-
periments [14]. Other than its large branching fraction, an
advantage is  that  its  polarization  information  is  unam-
biguously  known  from  the  transfer  of  the  unpolarized
beams of the  collider. The possible existence of 
transverse polarization (TP) can be determined using data
events and is helpful for calibrating the  polarimeter.

K̄∗(892)0

∆(1232) Λ∗ Σ∗

Λ+c → pK−π+

Copious  intermediate  states,  for  example, ,
, and the excited  and  states, are observed in

the Dalitz plot of the weak decay  [15, 16].
An amplitude model can be applied to the decay to study
the  decay  dynamics  [17].  However,  a  measurement  of
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Λ+c → pK−π+

Λ+c → pK−π+

charmed-baryon  polarization  requires  an  analysis  of  the
angular distributions of decayed particles in experiments.
The possibility of using  as a spin polarimet-
er has been demonstrated in [17] with an amplitude mod-
el determined via full phase space amplitude analysis. In
this study, a model-independent method is developed for
the  three-body  decay  to  calibrate  it  with
data events from the spin polarimeter used in other exper-
iments. 

Λ+c → pK−π+
II.  CONSTRUCTION OF HELICITY AMPLITUDE

FOR 

Λ+c (p0,λ0)→ p(p1,λ)K−(p2)
π+(p3)

pi (i = 0,1,2,3)
λ0

Λ+c λ1

∆(1232)++, K̄∗(890)0 Λ(1520)

Λ+c →
pK−π+ ±

We  consider  the  decay 
 using an isobar model.  It  proceeds via a two-step

sequential  decay,  where  denote the  mo-
menta of individual particles,  denotes the z-projection
of  the  spin,  and  denotes the  proton  helicity.  Cur-
rently,  the  measurement  shows  that  the  resonances

,  and  dominate  the  decays.
Their  branching  fractions  add  up  to  5.2%,  as  shown  in
Table  1,  whereas  the  total  branching  fraction  for 

 is measured to be (6.23 0.23)%.
Λ+c → pK−π+

fi (i = 1,2, ..,10)

The  Dalitz-plot  decomposition  of  the 
decay  has  been  discussed  with  the  helicity  amplitude  in
Ref.  [18].  In  this  study,  we  construct  the  amplitudes  for
these  two-step  consequential  decays  using  the  covariant
tensor formalism, which is then related to the calculation
of  the  helicity  amplitude.  The  first-step  decay  occurs  by
emitting a W boson from a charmed quark and changing
the charmed  quark  into  a  strange  quark.  This  decay  in-
duces a  weak  interaction,  and  the  decay  does  not  con-
serve  parity.  The  vertex  forms  of  the  tensor  formalism,
which include parity-violation terms, are given in Table 1
in terms of the linear combination with complex numbers

. The  second-step  decays  of  intermediate
states conserve spin and parity, and their vertex forms are
also  given  in Table  1.  To  calculate  the  amplitudes,  we
present the amplitude for the sequential decay in the heli-

city system.
Λ+c (p0,λ0)→∆(1232)++K−

→ p(p1,λ1)K(p2)π+(p3)
The helicity amplitudes for 

 reads as 

F∆λ0,λ1
(mpπ+ ) =Tr

[
uλ0

(p0)ūλ1
(p1)pµ0( f1γ5+ f2)

×S 3/2
µν (p1+ p3,m∆,Γ∆) f8 pν1

]
, (1)

uλ(p) ūu = 2m
λ0(λ1) Λ+c (p)

where  is the Dirac spinor, normalized with ,
and  is the helicity value for the  particle, that
is, 

uλ(p) =
̸p+m√
p0+m

uλ(0), with

u+1/2(0) =
(
cos
θ

2
,sin
θ

2
eiϕ,0,0

)T
,

u−1/2(0) =
(
−sin

θ

2
e−iϕ,cos

θ

2
,0,0
)T
, (2)

θ,ϕ

S 3/2
µν

∆(1232)
f1

f2

where  are the polar and azimuthal angles of the mo-
mentum  in  the  Dirac  spinor,  respectively.  is  the
propagator for , which is given in Appendix B. In
this  decay,  the  two terms with  the  coupling constants 
and  correspond  to  the  violated  and  conserved  parity
contributions, respectively.

Λ+c →Λ(1520)π+

→ pK−π+
Similarly,  the helicity amplitude for 

 can be expressed as 

FΛλ0,λ1
(mpK− ) =Tr

[
uλ0

(p0)ūλ1
(p1)pµ0( f3+ f4γ5)

×S 3/2
µν (p1+ p2,mΛ,ΓΛ) f9 pν1

]
, (3)

S 3/2
µν Λ(1520)

f3 f4

where  is  the  propagator  for .  In  this  decay,
the two terms with the coupling constants  and  cor-
respond to  the  violated  and  conserved  parity  contribu-
tions, respectively.

Λ+c → pK̄∗(892)0→
pK−π+

The  helicity  amplitude  for 
 can be expressed as 

FK∗
λ0,λ1

(mK−π+ ) =Tr
[
uλ0

(p0)ūλ1
(p1)

× [ f5 pµ0 + f6γµ+ f7(pν2+ pν3)σµν

+γ5( f8 pµ0 + f9γµ+ f10(pβ2 + pβ3)σµβ)
]

×S 1
µα(p2+ p3,mK∗ ,ΓK∗ ) f11 pα2 , (4)

S 1
µα K̄∗(892)0

f8, f9 f10

f5, f6 f7

where  is the propagator for , which is given
in  Appendix  B.  In  this  decay,  the  terms  combined  with
the  coupling  constants ,  and  correspond  to  the
parity-violation  contributions,  while  the  terms  combined
with ,  and  correspond  to  the  parity-conserved
contributions. 

Λ+c → pK−π+.

Table 1.    Branching fractions and the vertex forms of the de-
cay for resonances in 

Λ+c → Branching fraction Vertex form

∆(1232)++K− ±(1.07 0.25)% f1γ5 pµ0 + f2 pµ0

Λ(1520)π+ ±(2.2 0.5)% f3 pµ0 + f4γ5 pµ0

pK̄∗(892)0 ±(1.94 0.27)% f5 pµ0 + f6γµ

+ f7(pν2 + pν3)σµν

+γ5( f8 pµ0 + f9γµ)

+γ5 f10(pν2 + pν3)σµν

∆++→ pπ+ 33.1% f8 p1µ

Λ(1520)→ pK− 22.5% f9γ5 p1µ

K̄∗(892)0→ K−π+ 33.3% f11 p2µ
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Λ+c → pK−π+III.  POLARIZATION IN  DECAYS

Λ+c

2×2

The spin of  is conclusively determined to be 1/2,
and its spin density matrix (SDM) can be expressed with
a  matrix. This is usually written in terms of Pauli σ
matrices as 

ρ(Λ+c ) =
1
2

(1+ P⃗ · σ⃗) =
1
2

[
1+Pz Px − iPy
Px + iPy 1−Pz

]
, (5)

P⃗ = (Px,Py,Pz)
Λ+c

where  the  mean  polarization  vector ,
which determines the  polarization.

Λ+c (λ0)→ p(λ1)K+π−

Λ+c

xz

α,β,γ
Λ+c

For  the  decay,  the  three  final-
state particles are located on the same decay plane in the
rest  frame  of  the  system.  We  take  the x axis  to  be
along the proton flying direction, the z axis is the normal
to  the  decay  plane,  and  the y axis  is  vertical  to  the 
plane; hence, they form a right-hand system. The orienta-
tion  of  this  system is  described  using  three  Euler  angles
( ),  with  which  the  three  successive  rotations  carry
the  production  helicity  system  to  this  system.  The
SDM of the proton can be calculated using 

ρ(p) = N ·ρ(Λ+c ) ·N†, (6)

Λ+cwhere N is a  decay matrix, which can be expressed as 

Nλ1,λ0
=
∑
µ=±1/2

D1/2∗
λ0, µ

(α,β,γ)Fµ,λ1
(mpK ,mpπ,mKπ), (7)

Fµ,λ1

pK−π+
where the  decay matrix  is dependent  on the  reson-
ance  structures  in  the  final  states,  which  can  be
expressed by the  coherent  sum of  intermediate  states,  as
given in the previous section; that is, 

|Fµ,λ1
(mpK ,mpπ,mKπ)|2 =|F∆µ,λ1

(mpπ+ )

+FΛµ,λ1
(mpK− )+FK∗

µ,λ1
(mK−π+ )|2. (8)

Λ+c Fµ,λ1

pK−π+

Fµ,λ1

Λ+c

For a study on intermediate states in  decays, 
must be related to the decay amplitude of different reson-
ances  observed  in  the  final  states  [18].  In  this
study, we do not model the decay matrix . Instead we
treat it as a model-independent parameter and then relate
them to the polarization parameters; the values can be de-
termined with the data events. This treatment has the ad-
vantage  of  model-independent  measurement  on  the 
polarization parameters.

dΦ3

Because the helicity amplitudes are isolated from the
angular distributions represented by Euler angles, we can
integrate  out  the  masses  in  the  above  model-dependent
amplitude over  the  three  body space .  It  then relates

to the square of the model-independent amplitude, 

|Fµ,λ1
|2 =
∫

dΦ3|Fµ,λ1
(mpK ,mpπ,mKπ)|2, (9)

mpK , mpπ mKπwhere  the  invariant  masses, ,  and ,  are
treated as  Dalitz  plot  variables,  and  only  two  are  inde-
pendent in the integral. Because the mass variables are in-
tegrated  out,  we  will  suppress  this  mass  dependence  of
the helicity amplitudes in what follows.

In  practice,  integration  over  the  phase  space  can  be
estimated as an average using the Monte-Carlo method. If
the  number  of  unweighted  phase-space  Monte-Carlo
(MC)  events  is  sufficiently  large,  the  helicity  amplitude
can be estimated as 

|Fµ,λ1
|2 = Φ̃3

N

N∑
i=1

|Fµ,λ1
(mpK ,mpπ,mKπ)|2, (10)

m(i)
pπ+ , m(i)

pK− m(i)
K−π+

Φ̃3 =
∫

dΦ3

where ,  and  are invariant  masses calcu-
lated  with  the i-th  phase-space  event,  and  is
the normalization factor when generating the unweighted
MC events.

The angular distribution of protons can be calculated
by taking the trace of its SDM matrix. 

W(α,β,γ) =A0+ P⃗ · A⃗, (11)

A0
A⃗

Λ+c

where  corresponds  to  an  unpolarized  cross  section,
and  represents the analyzing power. These are determ-
ined with the  decay matrix as1)
 

A0 = Tr[N ·N†], (12)
 

A⃗ = Tr[N · σ⃗ ·N†]. (13)

Λ+cUsing the  decay matrix, we get 

A0 =|F−1/2,−1/2|2+ |F−1/2,1/2|2+ |F1/2,−1/2|2+ |F1/2,1/2|2,
Ax =2(I1+I2) (sinαcosγ− cosαcosβsinγ)

+2(R1+R2)(cosαcosβcosγ+ sinαsinγ)
+Gcosαsinβ,

Ay =−2(I1+I2)(sinαcosβsinγ+ cosαcosγ)
+2(R1+R2)(sinαcosβcosγ− cosαsinγ)
+Gsinαsinβ,

Az =2(I1+I2) sinβsinγ+Gcosβ
−2(R1+R2) sinβcosγ.

(14)

Λ+c → pK−π+Using  as spin polarimeter Chin. Phys. C 46, 074002 (2022)
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Here, we define 

G =
∣∣∣F1/2,−1/2

∣∣∣2+ ∣∣∣F1/2,1/2
∣∣∣2− ∣∣∣F−1/2,−1/2

∣∣∣2− ∣∣∣F−1/2,1/2
∣∣∣2.

Λ+c → pK−π+ G = 2
∣∣∣F1/2,1/2

∣∣∣2−If  parity  is  conserved  in , 

2
∣∣∣F−1/2,−1/2

∣∣∣2 R1 I1

F∗1/2,−1/2 F−1/2,−1/2

R2 I2

F∗1/2,1/2F−1/2,1/2

.  and  are the real and imaginary parts
of  the  product  of  the  amplitudes, , re-
spectively,  while  and  are  those  of  the  product

. These are determined using the square of
the helicity amplitude, for instance,

2R1 =

∫
dΦ3

[∣∣∣F1/2,−1/2(...)+F−1/2,−1/2(...)
∣∣∣2− ∣∣∣F1/2,−1/2(...)

∣∣∣2− ∣∣∣F−1/2,−1/2(...)
∣∣∣2] ,

2I1 =

∫
dΦ3

[∣∣∣F1/2,−1/2(...)
∣∣∣2− ∣∣∣F−1/2,−1/2(...)

∣∣∣2− ∣∣∣F1/2,−1/2(...)+ i∗F−1/2,−1/2(...)
∣∣∣2] , (15)

(...) (mpK ,mpπ,

mKπ)
fi

where  implies  the  integration  variables 
,  as  given  in  Eq.  (8).  These  are  dependent  on  the

coupling constants , as shown in Table 1.
A0

Λ+c R1,2 I1,2

G

Λ+c pK−π+

In the above equations,  corresponds to the unpo-
larized cross  section of  decays,  while , ,  and

 correspond to contributions due to parity violation. We
introduce three parameters characterizing the asymmetric
distribution  of  decays  into  final  states,
namely, 

G0 = G/A0, G1 = (I1+I2)/A0, G2 = (R1+R2)/A0,

and reformulate the angular distribution as 

W(α,β,γ) =A0[1+G0P⃗ · R⃗+G1P⃗ · S⃗+G2P⃗ · T⃗ ], (16)

P⃗ Λ+cwhere  is the  polarization vector, 

P⃗ =(Px,Py,Pz),

R⃗ =(sinβcosα,sinβsinα,cosβ),

S⃗ =(sinαcosγ− cosαcosβsinγ,
− sinαcosβsinγ− cosαcosγ,
sinβsinγ)

T⃗ =(cosαcosβcosγ+ sinαsinγ,
sinαcosβcosγ− cosαsinγ,
− sinβcosγ). (17)

If  the  angle γ is integrated  out,  the  angular  distribu-
tion is reduced to 

W(α,β) =A0[1+G0P⃗ · R⃗]. (18)

G0, G1 G2

∆(1232), Λ(1520)
K̄∗(892)

In the above equations, the parameters , and 
are  determined  by  the  intrinsic  properties  of  the  decays,
in which the parity is not conserved in the production of
intermediate  states,  such  as  and

.  If  we  observe  the  distribution  of  the  angle

P⃗ R⃗
G⃗0

Λ→ pπ− F1/2,1/2 = −F1/2,−1/2
F−1/2,1/2 = F−1/2,−1/2 F−1/2,1/2 =F1/2,−1/2
G0 = 0

between,  for  example,  and , the  slope  of  the  asym-
metry  angular  distribution  is  proportional  to .  In  this
sense, labeling them as asymmetry parameters is a direct
generalization  for  a  two-body  decay,  for  instance,

.  If  the  parity  is  conserved, ,
,  and .  This  leads

to .
Λ+cIn experiments,  polarization can be determined by

measuring several moments, which are defined as the av-
erage of  the  polarization observables,  formed with Euler
angles.  Some  of  the  moments  related  to  the  polarization
vector are listed below. 

Px = 3⟨cosαsinβ⟩/G0, Py = 3⟨sinαsinβ⟩/G0,

Pz = 3⟨cosβ⟩/G0. (19)

G0 = G/A0
G , 0

Λ+c →
pK−π+

Λ+c

Here,  we consider the factor  to be the asym-
metry parameter with the assumption , which is in-
trinsically determined by the helicity amplitudes of the 

 decay. Once it is determined in one experiment, it
is  applicable  to  other  experiments  for  measurements  of

 polarization. 

IV.  SENSITIVITY OF MEASUREMENT ON THE
ASYMMETRY PARAMETER

G0 = G/A0
Λ+c

The  sensitivity  of  measurement  on  the  asymmetry
parameter, ,  is  determined  by  the  number  of

 events. We define the sensitivity as 

δG0 =

√
V(G0)
G0

, (20)

V(G0) G0

X1,X2, ...,XN L
G0

where  is  the  variance  of ,  which  is  estimated
with the likelihood function. For a sample with N events,

,  the  likelihood  function  defined  over  the
parameters  is given by 

L(X1,X2, ...,XN |G0) =
N∏

i=1

W̃(Xi|G0), (21)

Dai-Hui Wei, Yong-Xu Yang, Rong-Gang Ping Chin. Phys. C 46, 074002 (2022)
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W̃ =W(α,β)/
∫
W(α,β) sinβdβdα

G0

where  is the  normal-
ized  function  of  the  angular  distribution  (see  Eq.  (18)).
With  the  maximum  likelihood  estimate,  the  variance  of
parameter  is defined by the expected value. 

V−1(G0) =E
[
−∂

2 lnL(Xi|G0)
∂2G0

]
,

=N
∫

1

W̃

∂W̃(X|G0)
∂G0

2 dX, (22)

dX = sinβdβdαwhere .

G0

G0|P⃗| ≪ 1 Λ+c
e+e− Λ+c Λ̄

−
c
Px = Pz = 0

O((G0|P⃗|)5)

We  consider  a  special  case  with  weak  polarization
and  a  small  asymmetry  parameter ,  such  that

. In particular, the  events are accumulated at
the  collider  near  the  mass  threshold  in  the
BESIII  experiment  [10],  with . Up  to  an  ac-
curacy of , we obtain
 

δG0 =

√
105
N

1
G0Py

√
1

35+21G2
0P2

y +15G4
0P4

y
. (23)

G0

G0

An inverse problem in the application of the spin po-
larimeter  concerns  the  estimation  of  the  polarization
measurement  sensitivity,  which can be  determined using
the same procedure. We find that it has the same form as
the  measurement because the polarization is solely de-
pendent  on  the  measurement,  as  shown  in  Eq.  (19),
namely, 

∆Py

Py
=

√
105
N

1
G0Py

√
1

35+21G2
0P2

y +15G4
0P4

y
. (24)

P G0

δG0

Estimation  of  the  sensitivity  is  dependent  on  the
measurements  of  parameters  and . Figure  1 shows
that the sensitivities of measurement  varied with the

Λ+c
Py = 0.3 G0 = 0.1,0.2,0.3

e+e−

Px = Pz = 0

105 Λ+c

number of  candidates for the different parameters, for
instance,  and . Here, we assume
the  use  of  an  collider  with  unpolarized  beams  and

,  such  as  in  the  BESIII  experiment.  We  can
see that a sensitivity of a few percent can be achieved if

 candidates survive from the event selection criter-
ia. 

e+e−→ Λ+c Λ̄−cV.  CALIBRATION WITH  EVENTS

Λ+c
e+e−

Λ+c
e+e−

e+e−

Λ+c
Λ+c

The advantages of calibrating the  polarimeter with
 annihilation events originate from the parity conser-

vation in this electromagnetic process. Also,  polariza-
tion is well known. For the unpolarized  beam exper-
iment,  a  virtual  photon  is  produced  from  annihila-
tion with tensor polarization, while the longitudinal polar-
ization is zero. Hence, the polarization of  particles is
only  allowed  along  the  direction  normal  to  the  pro-
duction plane.

Λ+c Λ+c

e+e−→ Λ+c (λ1)Λ̄−c (λ0)
Λ+c

Λ+c e+

Λ+c Λ+c

Λ+c x,y,z
e+e− Λ+c

Λ+c

To calculate the  SDM, we first define the  heli-
city  system  (x-y-z),  which  is  produced  from  the

 process,  as  shown in Fig.  2.  The z
axis  is  taken  along  the  flying  direction,  the x axis  is
defined  in  the -production  plane  formed  by  the 
beam  and  momenta  and  is  normal  to  the  mo-
mentum,  and the y axis  is  taken along the  normal  to  the

-production  plane;  therefore,  form  a  right-hand
system. In the -center-of-mass (CM) system, the 
momentum  is  characterized  by  the  polar  angle θ.  Then,
the  SDM is calculated using 

ρ(Λ+c )λ1,λ
′
1
=
∑
m,λ0

D1∗
m,λ1−λ0

(0, θ,0)

×D1
m,λ′1−λ0

(0, θ,0)Aλ1,λ0
A∗λ′1,λ0

, (25)

m = ±1
Aλ1,λ2

A−1/2,−1/2 = A1/2,1/2, A−1/2,1/2 =

A1/2,−1/2
Λ+c

where  is the spin projection of the virtual photon,
and  denotes the helicity amplitudes.  There are two
independent  amplitudes  due  to  the  constraints  of  parity
conservation,  that  is, 

. In  the  experiment,  only  the  ratio  of  two  amp-
litudes  can  be  measured.  The  study  on  the  angular
distribution  is  related  to  the  measurement  of  amplitude

 

δG0

Py G0 Λ+c → pK−π+.

Fig. 1.    (color online) Sensitivity of measurement  for the
different parameters  and  with the decay 

 

Λ+c

e+e−→ Λ+c Λ̄−c ,Λ+c → pK−π+
Fig.  2.    (color  online)  Definition  of  the  helicity  system
for its production from the  process.
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αc=
( ∣∣∣A1/2,−1/2

∣∣∣2−2
∣∣∣A1/2,1/2

∣∣∣2 )/( ∣∣∣A1/2,−1/2
∣∣∣2+

2|A1/2,1/2
∣∣∣2 ), αc

Λ+c Λ+c

ratio, namely, 
 where  is the  angular  distribution  para-

meter for the  particles.  Using these relations,  the 
polarization vector can be expressed as 

Px = Pz = 0,

Py =

√
1−α2

c sin2θ sin∆
4(1+αc cos2 θ)

, (26)

sin∆
Λ+c

e+e−

Λ+c
Λ+c Λ̄

−
c

αc = −0.20±0.04±0.02 sin∆ = −0.28±0.13±
0.03

√
s = 4.6

Λ+c

3A0/G

where Δ is the difference between the phase angles in the
two  independent  helicity  amplitudes.  The  nonzero 
allows  us  to  observe  the  transverse  polarization  of 
production in  collisions. Recent measurements have
shown  that  TP  is  insignificant  at  energies  near  the

 mass  threshold,  with  measurements  of
 [19]  and 

 using  BESIII  data  taken  at  energy  point 
GeV [10]. Although the average of  TP vanishes when
an estimation is made over full detector coverage, the po-
larizations  in  the  forward  and  backward  hemisphere  of
the  detector  are  nonvanishing  and  have  a  reverse  sign.
This  allows  us  to  measure  the  polarization  constant

 defined in the helicity system. 

VI.  MONTE-CARLO APPLICATION

fi (i = 1,2, ...,10)

Fλ1,λ2

Λ+c pK̄∗(892)0

We use the Monte-Carlo method to obtain the polariz-
ation constant.  In  a  model-dependent  analysis,  the  coup-
ling constants  in  the helicity amplitudes
can  be  determined  by  fitting  the  angular  distribution  of
Eq. (11)  to  data  events  by  substituting  the  helicity  amp-
litudes  of Eqs. (1)–(4). As an example, to show the
simulation of Monte-Carlo event production, we only se-
lect the  decay to .

p(p1)K−(p2)π+(p3) Λ+c
p⃗1+ p⃗2+ p⃗3 = 0

Λ+c

pK−π+

In  the  calculation  of  the  three  Euler  angles,  we  first
boost  the  final  states  to  the  rest
frame so that , as shown in Fig. 2. We de-
scribe  decay in the system (X-Y-Z), which defines the
orientation of the decay plane formed by the momenta of
three  final  states.  The X axis  is  taken  along  the
proton flying direction, the Z axis is normal to the decay

p⃗1× p⃗2

Λ+c

(x z)

z× Z
z Z

γ
(β,α)

plane  [20, 21]  and  parallel  to ,  and  the Y axis  is
chosen to  form a  right-hand system,  as  shown in Fig.  2.
Moreover,  polarization is described in the (x-y-z) sys-
tem (see Fig. 2), as defined in the previous section. For a
given event, three successive Euler rotations must be per-
formed so that the -y-  system is carried to overlap the
(X-Y-Z)  frame,  as  shown  in Fig.  3.  First,  angle α is ro-
tated about the z-axis to align the y-axis along the nomin-
al to the plane formed by .  Then, angle β is  rotated
about  the y-axis  to  align  to  the  direction.  Finally,
angle  is rotated about the Z axis to overlap the two sys-
tems.  The  angles  correspond to  the  polar  and  azi-
muthal  angles  of  the z axis  in  the  (X-Y-Z)  system.  The
calculation of Euler angles is given in Appendix A.

p1, p2 p3

p1x = | p⃗1| p1y = 0 p2x = p⃗1 · p⃗2/| p⃗1|
p3x = p⃗1 · p⃗3/| p⃗1| p2y = Y⃗ · p⃗2y p3y = Y⃗ · p⃗3y

Y⃗ = (Z⃗× p⃗1)/| p⃗1| fi

f5 = f6 = f7 = f8 = f9 = f10 = 1+ i

In the decay plane, the momenta of the final states are
denoted  by ,  and ,  and  their z components  are
zero.  The  direction  of  the  proton  is  along  the x axis;
therefore, , , ,

, ,  and ,  where
.  Only  the  ratios  of  the  coupling con-

stants  are  measured  in  the  experiment,  and  we  set
 in the MC event genera-

 

(x,y,z)

(X,Y,Z) (α,β,γ)
Λ+c → pK−π+.

Fig.  3.    (color online) Euler  rotations  to  overlap  the 
system with the  system using angles  for the de-
cay 

mpK− A0/GFig. 4.     and  distribution in the generated Monte-Carlo events.
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K̄∗(892)0

mK∗ = 895.55 ΓK∗ = 47.3

K̄∗(892) mpK−

A0/G = 12.0

tion.  The  mass  and  width  of  are  taken  as
 MeV  and  MeV,  respectively.

Figure 4 shows the events sampled using the acceptance-
rejection  method.  is  identified  in  the  spec-
trum,  and  the  calibration  constant  is  distributed  with  a
peak at approximately .

Λ+c → pK−π+

R1+I1i = −4.78−1.65i
R2+I2i = 106.14+4.96i G0 = 11.83/223.93

P⃗ = (0.0,0.5,0.0)

Py, Pz

Py = 0.494±0.074
Py

Px, N G0

Py 14.7%
Px = 0.5, N =200000 G0 = 11.83/223.93

Using a large number of  events, the av-
erages of  the helicity amplitudes squared in Eq.  (14)  are
calculated  to  be ,

, and . We con-
sider  a  general  case  and  set  the  polarization  vector

. Using an ensemble of generated events,
the polarization can be calculated using the moments giv-
en  in  Eq.  (19).  The  statistics  of  the  polarizations  are
shown in Fig. 5. The two peaks are centered at the input
polarization  of  the  values  and  follow  Gaussian
distributions, with the standard deviation determining the
statistical uncertainties.  From these  distributions,  we ob-
tain . From these simulations, the sens-
itivity of , for example, is determined as 15.0%, which
is  dependent  on  the  values  of ,  and . Further-
more,  for  a  consistency  check,  we  can  also  estimate  the
sensitivity of  to be  using Eq. (24) by substitut-
ing in , and  in the
Monte-Carlo simulations. 

VII.  SUMMARY AND REMARKS

Λ+c → pK−π+

Measurement of the polarization transfer plays an im-
portant  role  in  the  search  for  new  physics  processes  in
charmed  baryon  decays.  We  show  that  the  decay

 can be chosen as a spin polarimeter. A gen-
eral  description  of  the  decay  is  developed  using  Euler
angles, and the polarization parameters are derived using
a  helicity  amplitude  method.  A  relationship  with  parity
violation is  revealed  using  the  phenomenological  amp-
litude  model.  A  Monte-Carlo  simulation  is  performed,
and  the  results  show  that  charmed  baryon  polarization
can be well  separated using a  set  of  Monte-Carlo events

with  selected  asymmetry  parameters.  The  measurement
of these asymmetry parameters in experiments is recom-
mended. 

APPENDIX A: CALCULATION OF EULER
ANGLES

Λ+c

Λ+c X̂, Ŷ Ẑ

Λ+c → p(p1)K−(p2)π+(p3)

We  take  an  intrinsic  rotation  starting  with  the -
helicity system (x-y-z) to reach the target system (X-Y-Z).
The  unit  vectors  of  the  two  systems  are  defined  in  the

-CM system. The unit vectors , and  are defined
by  the  CM  momenta  of  the  final  states  of  the

 decay, that is, 

X̂ =
p⃗1

| p⃗1|
, Ẑ =

p⃗1× p⃗2

| p⃗1||p⃗2|sinθ12
, Ŷ = Ẑ× X̂, (A1)

pi (i = 1,2,3) Λ+c
θ12 p⃗1 p⃗2

xy XY

where  are defined in the CM system of ,
and  is the angle spanned by the momenta  and .
The intersection of  the  plane  and  in Fig.  3 is ex-
pressed by 

N̂ =
z⃗× Z⃗
sinβ
, (A2)

where β is calculated with 

β = cos−1(ẑ · Ẑ). (A3)

YN = Ẑ · (N̂ × Ŷ) yN =

ẑ · (ŷ× N̂)
We  define  two  scalers,  and 

, then α and γ are calculated using
 

α =

 cos−1(ŷ · N̂), if yN ≥ 0,

2π− cos−1(ŷ · N̂), if yN < 0,
(A4)

 

γ =

 cos−1(Ŷ · N̂), if YN ≥ 0,

2π− cos−1(Ŷ · N̂), if YN < 0.
(A5)

 

APPENDIX B: PROPAGATORS FOR SPIN 3/2 AND
1 RESONANCES

The propagator for the spin 1 resonance is taken as 

S 1
µν(k,m,Γ) =

g̃µ,ν(k)
k2−m2+ imΓ

with (B1)

 

g̃µ,ν(k) = −gµ,ν+
kµ kν

k2 . (B2)

The propagator for the spin 3/2 resonance is taken as 

 

Py

Pz

Λ+c → pK−π+

Fig.  5.    (color  online)  Distribution  of  polarizations  (left
peak) and  (right peak) for 438 sets of MC simulations for
the decay , with 200,000 events for each MC set.
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S 3/2
µν (k,m,Γ) =

1
k2−m2+ imΓ

2
5

(
−γµ1

k/γµ2
+mγµ1

γµ2

){1
2

[
g̃µ,µ2

(k)g̃µ1,ν(k)+ g̃µ,ν(k)g̃µ1,µ2
(k)
]

− 1
3

g̃µ2,ν(k)g̃µ1,µ(k)
}
. (B3)
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