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Abstract: We extend the unitary groups beyond the  and  to determine possible grand unified theories
that give rise to three-generational Standard Model fermions without simple repetitions. By demanding asymptotic
free theories at short distances, we find gauge groups of , , and , together with their anomaly-free
irreducible  representations,  are  such  candidates.  Two  additional  gauge  groups  of  and  can  also
achieve the generational structure without asymptotic freedom. We also deduce that these models can solve the Pec-
cei-Quinn (PQ) quality problem, which is intrinsic in the axion models, with the leading PQ-breaking operators de-
termined from the symmetry requirement.
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I.  INTRODUCTION
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Grand  unified  theories  (GUTs)  [1, 2]  were  proposed
to  unify  all  fundamental  interactions  described  by  the
standard  model  (SM).  In  addition  to  the  aesthetic  aspect
of achieving  the  gauge  coupling  unification  in  its  super-
symmetric  (SUSY) extension [3], it  is  pragmatic  to  con-
jecture the zeroth law of GUT, namely, a successful GUT
could address all intrinsic SM puzzles and as many phys-
ical issues beyond the SM as possible, with all necessary
but minimal set of fields determined by symmetry. One of
such  longstanding  puzzles  that  has  not  been  well
answered is the existence of three generational SM fermi-
ons, as well as their mass hierarchies in the framework of
GUTs. Some of the previous efforts in addressing the SM
fermion masses in GUTs include Refs. [4-14]. In a semin-
al  paper  [15],  Georgi  suggested  to  extend  the  minimal

 into larger simple Lie groups  (with ),
and  developed  his  three  laws  of  GUTs.  Instead  of  the
simple repetition of a set of anomaly-free irreducible rep-
resentations  (irreps)  three  times,  it  is  argued  that  the
three-generational  structure  arises  from  different  anti-
symmetric irreps of the .
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In this paper, we investigate the possible non-minim-
al GUTs beyond the  and  that can give rise to
three-generational SM  fermions.  The  number  of  genera-
tions  can  be  easily  obtained  according  to  the  counting
method in terms of the  irreps as given in Ref. [15].
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ng = 3
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It  turns  out  that  the  SM  fermion  generations  can
already become three or beyond for the  group [16].
Historically,  the  number  of  the  SM  fermion  generations

 was  also  considered  to  be  beyond  three  [17]. Mean-
while,  the  direct  searches  for  the  fourth-generational
quarks at the Large Hadron Collider (LHC) have already
excluded this possibility [18-20]. Therefore, only the non-
minimal GUTs with their anomaly-free irreps that lead to

 cases  will  be considered in  our  study.  In Georgi's
third law, he decided that no individual irrep of the GUT
group  should  appear  more  than  once.  Accordingly,  he
found that the minimal GUT group that give rise to 
is , with a total number of 1023 left-handed fermi-
ons [15]. Obviously, the third law prevent the three-gen-
erational structure through the simple repetition of the an-
omaly-free irreps. However, this may be a too strong con-
straint and was not usually adopted in the later studies. In
our discussions, we modify Georgi's third law in a differ-
ent  version  proposed  by  Christensen  and  Shrock  [21]  in
the  study  on  the  dynamical  origin  of  the  SM  fermion
masses. A different perspective can be formed, such that
the global  symmetries  can  usually  emerge  once  the  ori-
ginal third law was abandoned, such as in the  GUT
[22]. This can be advantageous at least in two aspects. In
the  first  advantage,  the  emergent  global  symmetry,  with
its  breaking,  can  be  a  mechanism  that  elucidated  the
lightness of the Higgs boson, as discussed by Dvali  [23]
in the context of the SUSY . The other advantage is
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that  the  global  symmetry  can  be  identified  as  the
Peccei-Quinn  (PQ)  symmetry  [24]  for  the  strong  CP
problem. The emergent PQ symmetry, together with both
the gauge  and  the  global  symmetries,  can  usually  con-
strain the mass dimensions of the PQ-breaking operators
and lead to a high-quality axion [22, 25-29].  Two recent
examples include the axion from the  [30] and the
SUSY  GUT [31].

SU(N) SU(11)

The  remainder  of  this  paper  is  organized  as  follows.
In Sec. II, we review Georgi's guidelines for building the
non-minimal  GUTs that  can  lead  to  three  generations  of
SM fermions without simple repetition. Some other relev-
ant results of the gauge anomaly cancellation, Higgs rep-
resentations, and PQ quality are also setup in this section.
Sec.  III  presents  the  core  of  this  work.  We  analyze  all
possible  GUTs (up to ) and their anomaly-
free  fermion  contents  that  can  lead  to  three  generational
SM  fermions  according  to  Georgi's  counting.  The  PQ
charge assignments  to  Higgs  fields  and  the  correspond-
ing PQ-breaking  operators  will  be  presented.  We  sum-
marize our results and make discussions in Sec. IV. 

II.  SOME GENERAL REMARKS
 

A.    Lie group representations and Georgi’s guidelines

SU(N)
[N ,k]

To  facilitate  the  discussion,  we  express  the  fermion
representations  under  the  GUT group in  terms of
the set of rank-k anti-symmetric irrep of  as follows 

{ fL}SU(N) =

N−1∑
k=0

nk [N ,k] , (1)

nk k = 0
k = 1

[N ,k] = [N ,N − k]

with  being  the  multiplicity.  Obviously,  corres-
ponds  to  the  singlet  representation,  and  corres-
ponds to the fundamental representation, etc. The singlet
representations  contribute  neither  to  the  gauge  anomaly,
nor  to  the  renormalization  group  equations  (RGEs).
Throughout the discussion, we always denote the conjug-
ate representation, such that .  It will be
also useful to use a compact vector notation of 

n⃗ ≡ (n0 , ... ,nN−1) . (2)

[N ,k]For  a  given  rank-k anti-symmetric  irrep  of , its  di-
mension and trace invariants are 

dim([N ,k]) =
N!

k!(N − k)!
, (3)

 

T ([N ,k]) =
(N −2)!

2(k−1)!(N − k−1)!
. (4)

From Cartan's classification, it is well-known that the

SU(5) SO(10)
only possible Lie groups for  non-minimal GUTs beyond
the  or  are 

SU(N) (N ≥ 6) , SO(4k+2) (k ≥ 3) , E6 . (5)

E6

SU(5)
SU(N)

Because  the  exceptional  group has  a  fixed rank,  it  is
impossible  to  consider  further  extensions.  For  any  irrep
under these Lie groups, one can always decompose it un-
der  the  subgroup  of  the . For  example,  the  funda-
mental representation of the  can be decomposed as 

[N ,1] = (N −5)× [5 ,0]⊕ [5 ,1] . (6)

LieART SU(N)
SU(5)

The decompositions of  the higher irreps can be obtained
by  [32]. For an  GUT, its fermion contents
can be generally decomposed in terms of the  irreps
as follows 

{ fL}SU(N) = n0 [5 ,0]+n1 [5 ,1]+n2 [5 ,2]+n3 [5 ,3]+n4 [5 ,4] .
(7)

The anomaly  cancellation  condition  leads  to  the  follow-
ing relation to the multiplicities 

n1+n2 = n3+n4 . (8)

SU(5) [5 ,2]⊕ [5 ,4]

In  Ref.  [15],  Georgi  argued that  the  counting  of  the  SM
fermion  generations  is  equivalent  to  the  counting  of  the
multiplicity  of  the  residual  irreps  of ,
which is 

ng = n2−n3 = n4−n1 . (9)

SO(10) ng = 0
SO(10)

SU(5)

Note that the counting of the SM fermion generations in
Eq.  (9)  does  not  rely  on  the  realistic  gauge  symmetry
breaking  patterns.  Based  on  Georgi's  counting,  it  turned
out that any GUT with orthogonal groups larger than the

 essentially  leads  to . This  can  be  under-
stood  by  decomposing  the  16-dimensional  Weyl
fermions under the  as 

16F = 1F⊕5F⊕10F . (10)

SO(10) 16F⊕16F
ng = 0

The Weyl fermions from larger orthogonal groups are al-
ways decomposed under the  in pairs of ,
and this can only lead to .

[N ,k]
nk = 0 nk = 1

Georgi’s  third  law  requires  that  not  any  representa-
tion of  should appear more than once, which means

 or  in  Eq.  (1).  This  leads  to  a  consequence
that no  global  symmetry  can  emerge  from  the  corres-
ponding  fermion  setup.  Instead,  we  adopt  an  alternative
criterion  by  Christensen  and  Shrock  [21],  namely,  the
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{nk}greatest common divisor of  is not greater than unity.
Therefore, one can expect the global symmetry of 

Gglobal =
∏
{k′}

[SU(nk′ )⊗U(1)k′ ] , (11)

[N ,k′]

SU(N +4)
U(1)

for  all  irreps  of  that  appear  more than once.  This
can be viewed as a generalization of the global symmetry
in  the  rank-2  anti-symmetric  theory  of  by
Dimopoulos,  Raby,  and  Susskind  (DRS)  [33].  The 
components of  the  global  symmetry  (11)  can  be  identi-
fied as the global PQ symmetry, which are likely to lead
to  high-quality  axion  [31].  In  this  regard,  the  modified
criterion of the fermion assignments is likely to solve the
long-standing  PQ  quality  problem  [22, 25-29]  in  the
framework of GUT. 

B.    Gauge anomaly cancellation
To have an anomaly-free non-minimal GUT, we have

to solve the following Diophantine equation 

n⃗ · A⃗ = 0 , (12)

with the N-dimensional anomaly vector [34, 35] being 

A⃗ = (A([N ,0]) ,A([N ,1]) , ... ,A([N ,N −1])) , (13)
 

A([N ,0]) = 0 , A([N ,k]) =
(N −2k)(N −3)!

(N − k−1)!(k−1)!
(k > 0) .

(14)

A
([

N ,
N
2

])
= 0

The  property  that  the  anomaly  of  a  given  irrep  and  its
conjugate cancel each other is apparent in Eq. (14). In ad-
dition, the  self-conjugate  representations  must  be  anom-
aly-free, such that  for N being even. Thus,
the anomaly vector can be expressed as 

A⃗ =
(
0 ,A([N ,1]) , ... ,A

([
N ,

[N
2

]])
,

−A
([

N ,
[N

2

]])
, ... ,−A([N ,1])

)
. (15)

SU(N)

[N ,1]
[
N ,

[N
2

]]
SU(5)

In practice, one has to decompose the  fermion rep-
resentations from  to  under the  , to
count the generations. 

C.    The Higgs representations
Once the  fermion  contents  are  determined  for  a  par-

ticular non-minimal  GUT,  the  Higgs  fields  can  be  de-
termined by the following criteria

SU(N)→ SU(m)⊗1. The GUT symmetry breaking of 

SU(N −m)⊗U(1) m =
[N

2

]
SU(N)→ SU(N −1)

N ≥ 6

 with  is  always  assumed  at  its

first stage, which requires an adjoint Higgs field [36]. The
other  possible  symmetry  breaking  of 
(with )  at  the  first  stage  is  very  likely  to  lower  the
proton  lifetime  predictions,  and  thus  bring  tension  with
the current experimental constraint to the proton lifetime
from the Super-Kamionkande [37].
 

2.  All  possible  gauge-invariant  Yukawa  couplings,
which also  respect  the  global  symmetry  in  Eq.  (11),  can
be formed.
 

3. Higgs  fields  for  achieving  any  intermediate  sym-
metry  breaking  stages  are  necessary,  where  their  proper
irreps contain the SM-singlet directions.
 

4. Only the Higgs fields with the minimal dimensions
are taken into account.
 

SU(6)

SU(5)

Before  proceeding  to  the  more  realistic  models,  we
display the Higgs fields in the  GUT as an example.
Its minimal  anomaly-free  fermion  contents  and  decom-
position under the  are 

{ fL}SU(6) =[6 ,2]⊕2× [6 ,5] = 15F⊕2×6F

=2× [5 ,0]⊕ [5 ,1]⊕ [5 ,2]⊕2× [5 ,4] . (16)

[5 ,1] [5 ,4]
[5 ,0]

[5 ,2]⊕ [5 ,4] ≈ [5 ,2]⊕
[5 ,1] SU(6)

SU(2)6F
⊗U(1)PQ

SU(2)6F

The ,  one  of  the ,  as  well  as  two  singlets  of
,  obtain  their  masses  at  an  intermediate  symmetry-

breaking scale. The remaining fermions contain precisely
one  generational  SM  fermions  of 

.  Apparently,  the  minimal  GUT has  a  global
symmetry  of  and  is  a  one-generational
model according to Georgi's counting. The gauge-invari-
ant  and -invariant Yukawa  coupling  can  be  ex-
pressed as follows: 

−LY =6F
ρ
15F6Hρ+15F15F15H

+ ϵρσ6F
ρ
6F
σ

(15H+21H)+H.c. , (17)

SU(6)→ SU(3)c⊗
SU(3)W⊗U(1)X (

1 ,3 ,−1
3

)
H ,ρ
⊂ 6Hρ

(
1 ,6 ,+

2
3

)
H
⊂ 21H

SU(3)c ⊗ SU(3)W ⊗ U(1)X → SU(3)c ⊗ SU(2)W⊗
U(1)Y

with the minimal set of Higgs fields. Of course, a 35-di-
mensional adjoint Higgs field is necessary to achieve the
first-stage  GUT  symmetry  breaking  of 

 [31, 38, 39].  It  turns  out  that  the  VEVs

from Higgs fields of , 

can be responsible for  the intermediate symmetry break-
ing  of 

 [31]. 

D.    The asymptotic freedom (AF)
The  GUTs  with  their  earliest  versions  are  usually
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T ([N ,2]) ∼ N T ([N ,3]) ∼ N2

SU(11)

SU(11)

SU(10) SU(11)

asymptotically free above the unification scale. However,
there was no definite answer to whether the AF should be
retained. An alternative criterion is to have an asymptotic
safe theory, which reaches a fixed point at  the short  dis-
tance [40, 41].  In general,  the analysis of the asymptotic
safe  theories  involves  the  RGEs  of  gauge  couplings,  as
well as Yukawa and Higgs self couplings. This can only
be performed for the individual  theory by specifying the
symmetry  breaking  patterns.  In  the  non-minimal  GUTs,
the AF  is  likely  to  be  violated  because  the  trace  invari-
ants of  the rank-2 and rank-3 anti-symmetric  representa-
tions  scale  as  and . Previ-
ously, this was also considered in the  model [42],
but with only fermions taken into account. In our discus-
sions  below,  we  study  the  short-distance  behavior  for
non-minimal GUTs up to , with their minimal fer-
mion  setup.  It  turns  out  that  the  minimal  models  in

 and  violate the AF, and thus careful ana-
lysis of  their  unification  couplings  and  scales  are  re-
quired  for  these  two  cases.  The  one-loop β coefficients
are obtained by including both fermions and Higgs fields
as follows 

b1 = −
11
3

C2(G)+
4
3
κ
∑

f

T (R f )+
1
3
η
∑

s

T (Rs) , (18)

κ = 1(1/2) η =
1(1/2)

b1 < 0

with  for  Dirac  (Weyl)  fermions,  and 
 for  complex  (real)  scalars.  For  the  adjoint  Higgs

fields,  we  always  consider  them  to  be  real  for  the  non-
SUSY case. The AF can be determined by whether 
or not. 

E.    The PQ quality and axion

2m+n

The  global  PQ  symmetry  has  an  intrinsic  problem
known  as  the  PQ  quality  [22, 25-29].  In  general,  global
symmetries are not fundamental, but emerge with the un-
derlying  gauge  theories.  They  are  believed  to  be  broken
by  quantum gravity  effects  in  the  form of  the  following
dimension-  operator 

Od=2m+n
ZZPQ = k

|Φ|2mΦn

M2m+n−4
pl

. (19)

|⟨a/ fa⟩| ≲ 10−10

The size of  the PQ-breaking is  constrained such that  the
minima of the QCD effective potential induced by axion
should  satisfy ,  which  generates  a  PQ
quality constraint of 

f d
a

Md−4
pl

≲ 10−10Λ4
QCD . (20)

d ≳ 9
fa ∼ O(1012) GeV

Consequently, the mass dimension in Eq. (19) should be
,  to  obtain  a  reasonable  axion  decay  constant

 without  excessively  fine  tuning  the

d ≲ 9

coefficient k [26-28]  in  Eq.  (19).  Without  knowing  the
underlying symmetry origin of the Φ field, there is gener-
ally  no  reason to  forbid  any PQ-breaking  operators  with

.

SU(5) SO(10)

SO(10) SU(6) SO(10)

SU(6)

vEW
fa

d < 9
SU(6)

Od=6
cancel̸PQ = (ϵαβ6H

α
6H
β
15H)2 α = 1 ,2

⟨6H
1⟩ ∼ ⟨15H⟩ ≃ vEW ⟨6H

2⟩ ≃ fa

ng = 3

Previous  studies  of  the  axion  in  the  GUT  [43-46]
were  made  in  both  and ,  where  the  global
PQ symmetry was introduced manually. Therefore, the is-
sue of PQ quality remains present. Recent discussions on
the PQ quality problem in the frame of GUT include the

 [30] and  [31] cases. In the  GUT, the
author adopted the generational symmetry in the limit of
vanishing  Yukawa  couplings.  A  dimension-9  gauge-in-
variant  operator  for  generating  a  high-quality  axion  was
found, which is made up of Higgs fields for the interme-
diate  symmetry  breaking.  In  the  minimal  GUT,  it
already  possesses  a  global  DRS symmetry,  as  expressed
in Eq.  (11).  With the SUSY extensions,  the authors [31]
found  a  dimension-6  operator  that  led  to  a  high-quality
axion.  Therefore,  it  becomes  suggestive  that  the  GUTs
beyond the  minimal  versions  are  likely  to  solve  the  PQ-
quality  problem,  with  their  local  and  emergent  global
symmetries. In the context of GUTs, the PQ-breaking op-
erators can be formed by Higgs fields that develop vacu-
um  expectation  values  (VEVs)  at  both  the  electroweak
(EW) scale  of  and the PQ symmetry-breaking scale
of .  This further alleviates the PQ quality constraint in
Eq.  (20),  even when .  For  example,  in  the  minimal
SUSY  GUT  [31],  such  a  PQ-breaking  operator
turns out to be , with .
The  PQ  quality  constraint  can  be  fulfilled  when  setting

 and .  A  natural  question
can be raised on whether the PQ quality constraint can be
generally satisfied in the non-minimal GUTs with .
Remarkably, we find this generally holds with proper as-
signment of the PQ charges to the Higgs fields.

The probes of the axion rely on the axion-photon ef-
fective coupling of 

Caγγ =
E

NSU(3)c

−1.92 . (21)

E/NSU(3)c
= 8/3 NSU(3)c

vSB = |2NSU(3)c
| fa
NDW = 2NSU(3)c

For the GUTs, there is a universal prediction to the factor
.  The  color  anomaly  factor  of 

relates the  axion  decay  constant  with  the  associate  sym-
metry-breaking  scale  as , and  also  de-
termines  the  domain  wall  number  as .  In
practice, it is unnecessary to derive the factor by analyz-
ing  the  symmetry  breaking  patterns.  Instead,  this  can  be
obtained by  using  the  't  Hooft  anomaly  matching  condi-
tion [47] of 

NSU(3)c
= NSU(N) =

∑
F

T (RF)PQ(RF) . (22)

∼ 1016 GeV
Notice that  in our current  study,  the physical  axion does
not  emerge  at  the  GUT  scale  of .  Instead,  it
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SU(6)

originates from  the  phases  of  Higgs  fields  that  are  re-
sponsible  for  the  intermediate  symmetry  breaking  scale,
with necessary orthogonality conditions imposed. One of
such examples can be found in the minimal SUSY 
GUT [31]. We focus on the PQ-breaking operators in the
non-minimal GUTs, while the constructions of the phys-
ical axion in the specific GUT model will  be left  for fu-
ture work. 

III.  THE RESULTS

SU(N)
ng = 3 SU(7) SU(8)

SU(9)
SU(10) SU(11)

In  this  section,  we  obtain  our  results  for  the 
GUTs that lead to . Examples include , ,
and  groups,  where  the  AF  can  be  achieved.  We
also deduce that the higher groups of  and 
with their  minimal  irreps  cannot  achieve  the  AF  condi-
tion. For each case, we also look for the possible gauge-
invariant  and  PQ-breaking  operators.  With  proper  PQ
charge assignment at the GUT scale, we demonstrate that
the PQ quality problem can be generally avoided in each
model. 

A.    The SU(7)
SU(7)For the  group, the anomaly vector in Eq. (13) is

reads: 

A⃗ = (0 ,1 ,3 ,2 ,−2 ,−3 ,−1) . (23)

SU(7) SU(5)The decompositions  of  the  irreps  under  the 
are expressed as: 

7 = [7 ,1] = 2× [5 ,0]⊕ [5 ,1], (24a)
 

21 = [7 ,2] = [5 ,0]⊕2× [5 ,1]⊕ [5 ,2], (24b)
 

35 = [7 ,3] = [5 ,1]⊕2× [5 ,2]⊕ [5 ,3.]. (24c)

ng = 3There are two possibilities for , namely, 

{ fL}ASU(7) =2× [7 ,2]⊕ [7 ,3]⊕8× [7 ,6]

=2×21F⊕35F⊕8×7F , dimF = 133,

GA
global =[S U(8)7F

⊗U(1)PQ]⊗ [S U(2)⊗U(1)′] , (25a)

 

{ fL}BSU(7) =[7 ,2]⊕2× [7 ,3]⊕7× [7 ,6]

=21F⊕2×35F⊕7×7F , dimF = 140 ,

GB
global =[SU(7)7F

⊗U(1)PQ]⊗ [SU(2)⊗U(1)′] . (25b)

Because the number of fermions in two cases only differ
by less than 10, we determine to consider both possibilit-

SU(7)ies. Note that a recent study [48] suggested that the 
model can suppress the proton decay with the proper em-
bedding of the SM fermions.

SU(7)The Higgs sector of two  models is determined
by the fermions and global symmetries in Eq. (25) as fol-
lows 

{H}ASU(7) = 8×21H⊕7H⊕2×21H⊕35H[⊕48H] ,
(26a)

 

{H}BSU(7) = 7×7F⊕7H⊕2×21H⊕35H[⊕48H] . (26b)

bA
1 = −5 bB

1 = −
55
6

SU(7) SU(7)

Here and below,  we adopt  the  square  brackets  to  denote
the real adjoint Higgs fields for the GUT scale symmetry
breaking. By using the fermions and Higgs fields in Eqs.
(25)  and  (26),  we  deduce  that  and .
Hence,  both  the -A  and  the -B  model  are
asymptotically free.  The  gauge-invariant  Yukawa  coup-
lings are 

−LA
Y =

8∑
ρ=1

7ρF35F21Hρ+
∑
ρ̇=1 ,2

21ρ̇F35F21H ρ̇

+ ϵρ̇σ̇21F
ρ̇21F

σ̇35H+35F35F7H+H.c. , (27a)
 

−LB
Y =

7∑
ρ=1

7ρF21F7Hρ+
∑
ρ̇=1 ,2

35ρ̇F21F21H ρ̇

+ ϵρ̇σ̇35F
ρ̇35F

σ̇7H+21F21F35H+H.c. .
(27b)

SU(7)

SU(7)
PQ(21F) = q1 PQ(35F) = q2

We assign the PQ charges for all  fermions and
Higgs  fields  in Table  1.  The  PQ  charges  cannot  be
uniquely  determined  from  the  PQ  neutrality  of  the
Yukawa  couplings  (27).  Therefore,  we  assign  the  PQ
charges  by  removing  the  possible  dangerous  PQ-break-
ing operators with low mass dimensions. In -A, one
may assign  and . Accordingly,
it is easy to find two following PQ-breaking operators 

Od=5
ZZPQ = ϵ

ρ̇σ̇21H ρ̇21H σ̇7H
3 , ∆PQ = −2q1−8q2

Od=3
ZZPQ = ϵ

ρ̇σ̇21H ρ̇35H σ̇7H , ∆PQ = −2q1−4q2 . (28)

q1 = q2 = 0
SU(7)

These two operators would better be PQ-neutral owing to
their mass dimensions, and this leads to . Sim-
ilarly,  in  the -B  and  larger  groups  below,  we  find
the corresponding PQ charge assignments.

The  color  and  electromagnetic  anomaly  factors  and
domain wall numbers according to Eq. (22) are given by 
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SU(7)−A : NSU(3)c
= 4 , E =

32
3
, NDW = 8 , (29a)

 

SU(7)−B : NSU(3)c
=

7
2
, E =

28
3
, NDW = 7 , (29b)

for  two  models.  The  leading  gauge-invariant  PQ-break-
ing operators become1)
 

SU(7)−A : Od=10
∆PQ=−8 = (21Hρ)8 ·7H

2 = ϵA1 ...A7ϵB1 ...B7ϵρ1 ...ρ8

× (21Hρ1
)[A1 B1]...(21Hρ8

)[A8 B8]7H
[A8 7H

B8] ,
(30a)

 

SU(7)−B : Od=7
∆PQ=−7 = (7Hρ)7

=ϵA1 ...A7ϵρ1 ...ρ7 (7Hρ1
)A1
...(7Hρ7

)A7
. (30b)

SU(7)

21Hρ 7H

∼ fa SU(7)

fa ≳ 108 GeV
7Hρ

For  the  leading  PQ-breaking  operator  in  the -A
model,  its  mass  dimension  of  10  can  guarantee  the  PQ-
quality constraint even if all Higgs fields of  and 
develop their  VEVs at .  For  the -B model,  the
leading PQ-breaking operator has a mass dimension 7. To
obtain a consistent axion decay constant of ,
it  is  necessary that  one of  the  develops  its  VEV for
the electroweak symmetry breaking (EWSB).
 

SU(8)B.    The 
SU(8)For the  group, the anomaly vector in Eq. (13) is

reads:
 

A⃗ = (0 ,1 ,4 ,5 ,0 ,−5 ,−4 ,−1) . (31)

SU(8) SU(5)The decompositions  of  the  irreps  under  the 
are expressed as:
 

8 = [8 ,1] = 3× [5 ,0]⊕ [5 ,1], (32a)
 

28 = [8 ,2] = 3× [5 ,0]⊕3× [5 ,1]⊕ [5 ,2], (32b)
 

56 = [8 ,3] = [5 ,0]⊕3× [5 ,1]⊕3× [5 ,2]⊕ [5 ,3]. (32c)

ng = 3The possibility for  with the minimal anomaly-
free fermion content is given by 

{ fL}SU(8) =[8 ,2]⊕ [8 ,3]⊕9× [8 ,7]

=28F⊕56F⊕9×8F ,dimF = 156 ,
Gglobal =S U(9)8F

⊗U(1)PQ. (33)

SU(8)The  Higgs  sector  of  the  is  determined  by  the
fermions and  the  global  symmetries  in  Eq.  (33)  as  fol-
lows2) 

{H}S U(8)= 9×8H⊕9×28H⊕28H⊕56H⊕70H[⊕63H] . (34)

b1 = −
2
3
< 0

SU(8)

By  adopting  the  fermions  and  Higgs  fields  in  Eqs.  (33)
and  (34),  we  find  that .  Thus,  the  minimal

 model  is  asymptotically  free.  The  gauge-invariant
Yukawa couplings are 

−LY =

9∑
ρ=1

(8F
ρ
28F8Hρ+8F

ρ
56F28Hρ)

+56F56F28H+28F56F56H+28F28F70H+H.c. ,
(35)

SU(8)
SU(7)

We  assign  PQ  charges  for  all  fields  in Table  2,
with  the  same  argument  in  the  models.  The  color
and electromagnetic anomaly factors and the domain wall
numbers according to Eq. (22) are given by 

SU(8) : NSU(3)c
=

9
2
, E = 12 , NDW = 9 . (36)

SU(7)

Table  1.    The PQ  charge  assignments  and  the  representa-
tions of the fermions and Higgs fields under their global sym-
metries for two  unification models.

SU(7)-A 7F 21F 35F 21H 7H 21H 35H 35H

PQ charges 1 0 0 −1 0 0 0 0

SU(8)7F □ 1 1 □ 1 1 1 1

SU(2) 1 □ 1 1 1 □ □ 1

SU(7)−B 7F 35F 21F 7H 35H 21H 21H 7H

PQ charges 1 0 0 −1 0 0 0 0

SU(7)7F □ 1 1 □ 1 1 1 1

SU(2) 1 □ 1 1 1 □ □ 1

SU(9)F

SU(8)

Table 2.    The PQ charge assignments and  representa-
tions  of  the  fermions  and  Higgs  fields  in  the  minimal 
unification model.

9×8F 28F 56F 9×8H 9×28H 28H 56H 70H

PQ charges 1 0 0 −1 0 0 0 0
SU(9)8F □ 1 1 □ 1 1 1 1

Ning Chen Chin. Phys. C 46, 053107 (2022)
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S U(8)The leading PQ-breaking operators in the  model is 

SU(8) : Od=12
∆PQ=−9 = (8Hρ)9 ·28H ·56H ·70H

=ϵA1 ...A8ϵB1 ...B8
ϵρ1 ...ρ8 δ(8Hρ1

)A1
...(8Hρ8

)A8
(8Hδ)B0

× (28H)[B0 B1](56H)[B2 B3 B4](70H)[B5 B6 B7 B8] . (37)
 

SU(9)C.    The 
SU(9)For the  group, the anomaly vector in Eq. (13) is

expressed as: 

A⃗ = (0 ,1 ,5 ,9 ,5 ,−5 ,−9 ,−5 ,−1) . (38)

SU(9) SU(5)The decompositions  of  the  irreps  under  the 
are the following 

9 = [9 ,1] = 4× [5 ,0]⊕ [5 ,1], (39a)
 

36 = [9 ,2] = 6× [5 ,0]⊕4× [5 ,1]⊕ [5 ,2], (39b)
 

84 = [9 ,3] = 4× [5 ,0]⊕6× [5 ,1]⊕4× [5 ,2]⊕ [5 ,3],
(39c)

 

126 =[9 ,4] = [5 ,0]⊕4× [5 ,1]⊕6× [5 ,2]⊕4
× [5 ,3]⊕ [5 ,4]. (39d)

ng = 3The possibility for  with the minimal anomaly-free
fermion content is given by 

{ fL}SU(9) =[9 ,3]⊕9× [9 ,8] = 84F⊕9×9F ,

dimF =165 ,
Gglobal =SU(9)9F

⊗U(1)PQ . (40)

Another  possibility  with  more  fermions  of  [9  ,  2]⊕[9  ,
4]⊕10×[9 , 8] will not be considered here. Larger fermi-
on contents of 2 × [9 , 2] ⊕ 2 × [9 , 4] ⊕ [9 , 6] ⊕ 11 ×
[9 , 8] were previously mentioned in Ref. [5].

SU(9)The  Higgs  sector  of  the  is  determined  by  the
fermions and the global symmetries in Eq. (40) as follows 

{H}SU(9) = 9×36H⊕84H[⊕80H] . (41)

b1 = −
15
2
< 0

SU(9)

By using the fermions and Higgs fields in Eqs.  (40) and
(41),  we  deduce  that .  Hence,  the  minimal

 model  is  asymptotically  free.  The  gauge-invariant
Yukawa couplings are 

−LY = 9F
ρ
84F36Hρ+84F84F84H+H.c. , (42)

84H

Od=3
ZZPQ
= (84H)3 = ϵA1 B1C1A2 B2C2A3 B3C3

×(84H)[A1 B1C1](84H)[A2 B2C2](84H)[A3 B3C3]

PQ(84H) = 0

and we assign the PQ charges in Table 3. Naively, the PQ
charge  of  the  can  be  arbitrary  according  to  the
Yukawa  couplings  (42).  Consequently,  a  dimension-3
PQ-breaking operator of 

 can  emerge,  which
is dangerous  from  the  dimensional  counting.  Therefore,
we  determine  that . The  color  and  electro-
magnetic  anomaly  factors  and  the  domain  wall  numbers
according to Eq. (22) are given by
 

SU(9) : NSU(3)c
=

9
2
, E = 12 , NDW = 9 . (43)

SU(9)
The  leading  dimension-9  PQ-breaking  operator  in  the

 model is
 

Od=9
∆PQ=−9 =(36H)9 = ϵA1 ...A9ϵB1 ...B9ϵρ1 ...ρ9 (36Hρ1

)[A1 B1]

... (36Hρ9
)[A9 B9] . (44)

According to the dimension counting in Ref. [27], this is
likely to produce a high-quality axion.
 

SU(10)D.    The 
SU(10)For the  group, the anomaly vector in Eq. (13)

is expressed as:
 

A⃗ = (0 ,1 ,6 ,14 ,14 ,0 ,−14 ,−14 ,−6 ,−1) . (45)

SU(10)
SU(5)

The  decompositions  of  the  irreps  under  the
 are the following 

10 = [10 ,1] = 5× [5 ,0]⊕ [5 ,1] , (46a)
 

45 = [10 ,2] = 10× [5 ,0]⊕5× [5 ,1]⊕ [5 ,2] , (46b)
 

120 =[10 ,3] = 10× [5 ,0]⊕10× [5 ,1]⊕5
× [5 ,2]⊕ [5 ,3] ,

(46c)
 

210 =[10 ,4] = 5× [5 ,0]⊕10× [5 ,1]⊕10
× [5 ,2]⊕5× [5 ,3]⊕ [5 ,4] . (46d)

ng = 3The possibility for  with the minimal anomaly-free
fermion content is given by 

SU(9)F

SU(9)

Table 3.    The PQ charge assignments and  representa-
tions  of  the  fermions  and  Higgs  fields  in  the  minimal 
unification model.

9×9F 84F 9×36H 84H

PQ charges 1 0 −1 0
SU(9)9F □ 1 □ 1

High-quality grand unified theories with three generations Chin. Phys. C 46, 053107 (2022)
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{ fL}SU(10) =[10 ,3]⊕ [10 ,8]⊕8× [10 ,9]

=120F⊕45F⊕8×10F , dimF = 245 ,
Gglobal =SU(8)10F

⊗U(1)PQ . (47)

SU(10)The Higgs sector  of  the  is  determined by the
fermions and the global symmetries in Eq. (47) as follows 

{H}SU(10) = 8×45H⊕8×120H⊕10H⊕210H[⊕99H] . (48)

b1 = 223/6
SU(10)

By using the fermions and Higgs fields in Eqs.  (47) and
(48),  we  deduce  that .  Hence,  the  minimal

 model is not asymptotically free.
The gauge-invariant Yukawa couplings are 

−LY =10F
ρ
120F45Hρ+10F

ρ
45F120Hρ

+ (45F45F+120F120F)210H

+45F120F10H+H.c. , (49)

Od=5
ZZPQ
=

(10H)4210H Od=5
ZZPQ
= (10H)2(210H)3 Od=5

ZZPQ
= (210H)5

PQ(10H) , 0 PQ(210H) , 0
PQ(10H) = 0 PQ(210H) = 0

and we assign the PQ charges in Table 4. Consequently,
three  dimension-5  PQ-breaking  operators  of 

, ,  and 
can  emerge  if  or .  Therefore,
we  determine  that  and .  The
color and  electromagnetic  anomaly  factor  and  the  do-
main wall numbers according to Eq. (22) are given by 

SU(10) : NSU(3)c
=4 ,

E =
32
3
,

NDW =8 . (50)

SU(10)Two dimension-12  PQ-breaking  operators  in  the 
model are expressed as: 

Od=12
∆PQ=−8 =(45H)8(10H)2(210H)2

=ϵA1 B1 ...A5 B5ϵρ1 ...ρ8 (45Hρ1
)[A1 B1]...(45Hρ5

)[A5 B5]

× (45Hρ6
)[A6 B6](45Hρ7

)[A7 B7](45Hρ8
)[A8 B8]

× (10H)C1
(10H)C2

(210H)[A6A7A8C1](210H)[B6 B7 B8C2] ,
(51a)

 

Od=12
∆PQ=−8 =(120H)8(10H)2(210H)2

=ϵA1 ...A8A9A10ϵB1 ...B8 B9 B10ϵC1 ...C8C9C10ϵρ1 ...ρ8

× (120Hρ1
)[A1 B1C1]...(120Hρ8

)[A8 B8C8](10H)D1

× (10H)D2
(210H)[D1A9 B9C9](210H)[D2A10 B10C10] .

(51b)
 

SU(11)E.    The 
SU(11)For the  group, the anomaly vector in Eq. (13)

is reads:
 

A⃗ = (0 ,1 ,7 ,20 ,28 ,14 ,−14 ,−28 ,−20 ,−7 ,−1) . (52)

SU(11) SU(5)The decompositions of the  irreps under the 
are expressed as:
 

11 = [11 ,1] = 6× [5 ,0]⊕ [5 ,1] , (53a)
 

55 = [11 ,2] = 15× [5 ,0]⊕6× [5 ,1]⊕ [5 ,2] , (53b)
 

165 =[11 ,3] = 20× [5 ,0]⊕15× [5 ,1]⊕6
× [5 ,2]⊕ [5 ,3] , (53c)

 

330 =[11 ,4] = 15× [5 ,0]⊕20× [5 ,1]⊕15
× [5 ,2]⊕6× [5 ,3]⊕ [5 ,4] , (53d)

 

462 =[11 ,5] = 7× [5 ,0]⊕15× [5 ,1]⊕20
× [5 ,2]⊕15× [5 ,3]⊕6× [5 ,4] . (53e)

ng = 3The possibility for  with the minimal anomaly-free
fermion content is given by
 

{ fL}SU(11) =[11 ,3]⊕2× [11 ,9]⊕6× [11 ,10]

=165F⊕2×55F⊕6×11F , dimF = 341 ,
Gglobal =[SU(6)11F

⊗U(1)PQ]⊗ [SU(2)⊗U(1)′] . (54)

SU(11)The Higgs sector  of  the  is  determined by the
fermions and the global symmetries in Eq. (54) as follows
 

{H}SU(11) = 6×55H⊕2×11H⊕330H⊕462H[⊕120H] . (55)

b1 = 83/3
By using the fermions and Higgs fields in Eqs.  (54) and
(55),  we  deduce  that .  The  gauge-invariant
Yukawa couplings are
 

SU(8)10F

SU(10)

Table 4.    The PQ charge assignments and the  rep-
resentations  of  the  fermions  and  Higgs  fields  in  the  minimal

 unification model.

8×10F 45F 120F 8×45H 8×120H 10H 210H

PQ charges 1 0 0 −1 −1 0 0
SU(8)10F □ 1 1 □ □ 1 1

Ning Chen Chin. Phys. C 46, 053107 (2022)
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−LY =

6∑
ρ=1

11F
ρ
165F55Hρ+

∑
ρ̇=1 ,2

55F
ρ̇
165F11Hρ̇

+ ϵρ̇σ̇55F
ρ̇
55F

σ̇
330H+165F165F462H+H.c. . (56)

Od=5
ZZPQ
=

(330H)3(462H)2

PQ(330H) = 0 PQ(462H) = 0

We  assign  the  PQ  charges  in Table  5.  Consequently,  a
possible  dimension-5  PQ-breaking  operator  of 

 may  emerge.  Accordingly,  we  consider
 and . The  color  and  electro-

magnetic  anomaly  factors  and  the  domain  wall  numbers
according to Eq. (22) are given by 

SU(11) : NSU(3)c
= 3 , E = 8 , NDW = 6 . (57)

S U(11)The leading PQ-breaking operators in the  model
is deduced to be 

Od=9
ZZPQ =(55H)6(330H)3

=ϵA1 B1 ...A6
ϵρ1 ...ρ6 (55Hρ1

)[A1 B1]...(55Hρ6
)[A6C]

× ϵD1E1 ...E3F3
(330H)[D1E1F1G1](330H)[D2E2F2G2]

× (330H)[D3E3F3C] . (58)
 

IV.  CONCLUSIONS

We have studied a set of non-minimal GUTs that can
lead to  the  observed three  generational  SM fermions ac-
cording to Georgi’s counting. With the origin of the gen-

SU(6)
SU(6)

erational structure,  these  models  themselves  are  prom-
ising in answering the most puzzling question of the SM
fermion  mass  hierarchies.  Our  results  suggest  four  such
models  that  achieve  the  AF  property  at  short  distances,
and two more  that  may be  considered  with  further  stud-
ies. The obtained results are summarized in Table 6. The
other important  feature of  the non-minimal GUTs in our
study originates from their global symmetries, which was
also  previously  noted  in  the  model  [23, 31]. Al-
though the  model benefits from a global DRS sym-
metry,  the  SUSY extension  was  inevitable,  to  produce  a
high-quality PQ symmetry.  In six non-minimal GUTs of
the current study, the sizes of the PQ-breaking effects due

ng = 3

to the quantum gravity are generally under better control
due  to  the  gauge  symmetries  and  the  associated  global
DRS symmetries. It is thus reasonable to expect the long-
standing PQ quality problem can be avoided in non-min-
imal GUTs with ,  where the emergent global DRS
symmetries are general.

SU(6)

ng = 3
ng = 3

ΛGUT

ng = 3

Evidently, we expect the following studies to be per-
formed for specific models: (i) viable symmetry breaking
patterns, (ii) SM fermion mass hierarchies and their mix-
ings,  and  (iii)  physical  axion  mass  predictions  and  their
related  experimental  searches.  A  recent  study  on  the

 toy  model  [39]  suggested  that  the  bottom  quark
and tau lepton masses can be naturally suppressed to the
top  quark  mass  through  the  seesaw-like  mass  matrices
with  their  heavy  fermion  partners.  Such  heavy  fermion
partners  for  both  the  down-type  quarks  and  charged
leptons are general in the non-minimal GUTs with .
Furthermore, the non-minimal GUTs with  can nat-
urally lead to multiple symmetry breaking scales between
the  and the EW scale. In general, we expect that the
observed  fermion  mass  hierarchies  among  these  three
generations can  be  realized  with  the  appropriate  sym-
metry  breaking  pattern  in  the  non-minimal  GUT  with

. Ultimately, one has to analyze the gauge coupling
unifications  for  the  viable  symmetry  breaking  patterns
and predict the proton lifetime. Because our models pos-
sess several  intermediate scales,  this  usually requires the
two-loop  RGEs,  together  with  the  matching  conditions
and mass threshold effects [49, 50]. 
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SU(6)11F

SU(11)

Table 5.    The PQ charge assignments and  represent-
ations of the fermions and Higgs fields in the minimal 
unification model.

6×11F 2×55F 165F 6×55H 2×11H 330H 462H

PQ charges 1 0 0 −1 −1 0 0

SU(6)11F □ 1 1 □ □ 1 1

ng = 3Table 6.    The non-minimal GUTs with , their one-loop
β coefficients,  the  color  anomaly  factors,  and  the  PQ-break-
ing operators.

Models dimF b1 NSU(3)c PQ-breaking

SU(7)-A 133 −5 4 (21Hρ)8 · (7H)2

SU(7)-B 140 − 55
6

7/2 (7Hρ)7

SU(8) 156 − 2
3

9/2 (8Hρ)9 ·28H ·56H ·70H

SU(9) 165 − 15
2

9/2 (36H)9

SU(10) 245 223
6

4 (45H)8(10H)2(210H)2

(120H)8(10H)2(210H)2

SU(11) 341 83
3

3 (55H)6(330H)3
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