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Abstract: Balitsky-Kovchegov  equations  in  projectile  and  target  rapidity  representations  are  analytically  solved
for fixed and running coupling cases in the saturation domain. Interestingly, we find that the respective analytic S-
matrices in  the two rapidity representations have almost  the same rapidity dependence in the exponent  in  the run-
ning  coupling  case,  which  provides  a  method  to  explain  why  the  equally  good  fits  to  HERA  data  were  obtained
when  using  three  different  Balitsky-Kovchegov  equations  formulated  in  the  two  representations.  To  test  the
analytic  outcomes,  we  solve  the  Balitsky-Kovchegov  equations  and  numerically  compute  the  ratios  between
these  dipole  amplitudes  in  the  saturation  region.  The  ratios  are  close  to  one,  which  confirms  the  analytic  results.
Moreover, the running coupling, collinearly-improved, and extended full collinearly-improved Balitsky-Kovchegov
equations are used to fit the HERA data. We find that all of them provide high quality descriptions of the data, and
the  obtained from the fits are similar. Both the analytic and numerical calculations imply that the Balitsky-
Kovchegov equation at the running coupling level is robust and has a sufficiently strong predictive power at HERA
energies; however, higher order corrections could be significant for future experiments, such as those at the EIC or
LHeC.
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I.  INTRODUCTION

Nc

In high  energy  hadronic  collisions,  non-linear  phe-
nomena, such  as  gluon  saturation  and  multiple  scatter-
ings,  occur  because  each  emitted  gluon  acts  as  a  source
for  further  emissions,  which  leads  to  the  production  of
saturated gluonic  matter  known  as  the  color  glass  con-
densate (CGC) [1]. Leading order (LO) CGC evolution is
described  by  the  JIMWLK hierarchy  [2-5]  and  its  mean
field  approximation,  known  as  the  Balitsky-Kovchegov
(BK),  equation  in  a  large  limit  [6,7].  Several  models
inspired by the  BK equation have been extensively used
in phenomenological applications at HERA and LHC en-
ergies  [8-12]  and  have  provided  successful  descriptions
of  hallmark  observables  such  as  geometric  scaling  in
HERA data at  a time when the CGC theory was insuffi-
ciently  developed.  However,  the  LO  CGC  evolution
equations have  been  found  to  be  insufficient  for  provid-

ing accurate descriptions of experimental data such as the
proton  structure  function  at  HERA  [13,14]  and  the
charged  hadron  multiplicity  distribution  in  proton-lead
(pA)  [15-17]  and  lead-lead  (AA)  collisions  at  the  LHC
[18,19]  because  the  evolution  speed  of  the  scattering
amplitude resulting from these phenomena is excessively
fast.  Thus,  it  is  crucial  to go beyond the LO accuracy to
quantitatively study  gluon  saturation  physics  in  high  en-
ergy scattering processes.

There has been great progress toward next-to-leading
order (NLO) corrections of the JIMWLK and BK evolu-
tion  equations  in  the  past  fifteen  years.  Pioneering  work
in the form of the running coupling Balitsky-Kovchegov
(rcBK) equation was derived by two independent groups
in Refs. [20,21]. It was found that the evolution kernel is
modified  by  the  running  coupling  effect,  which  slows
down the evolution speed of the scattering amplitude and
significantly  improves  the  prediction  power  of  the  CGC
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theory [22]. Soon after  the  derivation of  the  rcBK equa-
tion,  another  type  of  NLO  correction1) was  considered
during  the  derivation  of  the  NLO BK equation.  The  full
NLO BK equation  was  obtained  by  Balitsky  and  Chirill
in  Ref.  [23].  However,  numerical  solutions  to  the  NLO
BK  equation  were  not  computed  until  seven  years  later
owing  to  its  complex  structure.  Unfortunately,  the  full
NLO BK equation was found as unstable because of large
double transverse logarithms in its evolution kernel. Two
novel  methods  were  proposed  to  solve  the  instability
problem: the first by imposing kinematical constraints to
successive gluon emissions, and the second via resumma-
tion  of  the  leading  double  logarithms.  The  authors  in
Refs. [24,25] obtained kinematically constrained non-loc-
al  Balitsky-Kovchegov (kcBK) and collinearly-improved
local  Balitsky-Kovchegov  (ciBK)  evolution  equations
that were stable and equivalent to each other in terms of
leading logarithmic resummation.

Y = η+ ln(Q2/Q2
0)

Q2 Q2
0

To date, an elaborate NLO BK evolution equation has
been  achieved;  however,  a  recent  study  found  that  the
aforementioned instability is  caused by the wrong rapid-
ity variable, which influences the evolution time [26-28].
Note  that  all  evolution  equations  mentioned  above  are
formulated in terms of projectile rapidity Y. According to
the  outcomes  found  in  Ref.  [26],  the  correct  evolution
variable in the NLO BK equation should be target rapid-
ity η. Moreover, deep inelastic scattering experiments use
target rapidity  rather  than  projectile  rapidity  as  the  vari-
able.  It  has  been shown that  the  severe  instability  of  the
NLO BK equation is automatically solved once the evol-
ution  variable  is  switched  from  the  projectile  to  target
rapidity, although several minor divergences must still be
managed.  A  collinearly-improved  BK equation  in  the η-
representation  (ciBK-η)  was  derived  using  a  change  of
variable  to  transform  the  NLO  BK
equation  from  the Y-representation  to  the η-representa-
tion  [26],  where  and  are the  characteristic  trans-
verse  momentum  scales  of  the  projectile  and  target.
However,  we  found  that  the  ciBK-η equation  does  not
fully include the running coupling corrections because the
running coupling contributions are omitted during the ex-
pansion  of  the  "real" S-matrix in  its  derivation.  In  a  re-
cent paper [29], we re-derived the ciBK-η equation by in-
cluding  running  coupling  corrections,  and  an  extended
collinearly-improved  BK  equation  in  the η-representa-
tion (exBK-η) was obtained. The exBK-η equation had an
extra running  coupling  modified  evolution  kernel  com-
pared  to  the  ciBK-η equation.  As  will  be  explained  in
Sec.  III.C,  the  running  coupling  modified  kernel  plays  a
significant role in the suppression of the evolution speed
of the scattering amplitude.

Recently,  a  phenomenological  study  on  HERA  data
was  performed  by  using  the  kcBK,  ciBK,  and  exBK-η

equations  [30]. Surprisingly,  both  the  BK equations  for-
mulated in terms of  projectile  rapidity (kcBK and ciBK)
and  the  BK  equation  expressed  using  target  rapidity
offered  equally  good  fits  to  the  HERA  data.  At  first
glance, this outcome appears doubtful because the evolu-
tion equation formulated in  different  rapidity  representa-
tions is supposed to provide a distinguishable description
of the data. However, if one carefully analyzes the dom-
inant  NLO  corrections,  the  overwhelming  correction  is
found to  be  the  running  coupling  effect,  which  sup-
presses the impact of the change in evolution variable.

In this paper, we analytically solve the NLO BK evol-
ution  equations  in  the  saturation  domian  using  the
strategy developed in our previous study [31-33]. To un-
derstand  the  significance  of  the  running  coupling  effect,
we first recall the analytic solutions of the LO BK, rcBK,
and ciBK equations with a small dipole running coupling
prescription; these  solutions  shall  be  used  for  later  com-
parisons.  Second,  we  solve  the  exBK-η equation,  with
emphasis on  the  running  coupling  contributions,  to  ob-
tain  an  analytic S-matrix.  The  exponent  of  the S-matrix
has a linear dependence on the rapidity, which is the same
as  the S-matrix obtained from the  rcBK and ciBK equa-
tions. Surprisingly, we find that the exponent coefficients
of  the  above  mentioned S-matrices  are  almost  same,
which  provides  a  reasonable  explanation  as  to  why  the
NLO BK evolution equations in two types of rapidity rep-
resentations  result  in  a  similar  description  of  the  HERA
data  in  Ref.  [1].  Finally,  we  numerically  solve  the  BK
equations to test the analytic outcomes mentioned above.
The  numerical  results  confirm  our  analytic  findings.
Moreover, we fit the HERA data with the three BK equa-
tions, and all three are shown to provide equally good de-
scriptions of the data. 

II.  LEADING ORDER BALITSKY-KOVCHEGOV
EQUATION AND ITS ANALYTIC

SOLUTION

To establish the general concept of CGC physics and
collect  information  on  the  BK  evolution  equation,  we
briefly recall  the  LO  BK  equation  and  its  analytic  solu-
tion, which will be useful for the subsequent discussion. 

A.    LO BK equation

x
y

Consider  a  high  energy  dipole,  which  consists  of  a
quark-antiquark pair with a quark leg at the transverse co-
ordinate  and an antiquark leg at the transverse coordin-
ate ,  scattering off a dense hadronic target.  In the fixed
coupling case,  the  evolution of  the S-matrix  satisfies  the
BK equation [6,7] 
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∂

∂Y
S xy(Y) =

ᾱs

2π

∫
d2 zKLO(x, y, z)

[
S xz(Y)S zy(Y)−S xy(Y)

]
,

(1)

ᾱs = αsNc/π KLO

z

where ,  and  the  evolution  kernel  de-
scribes the probability of a dipole emitting a soft gluon at

 and has the form 

KLO(x, y, z) =
(x− y)2

(x− z)2(z− y)2 . (2)

Nc
z

r = |x− y|
r1 = |x− z| r2 = |z− y|

αs ln(1/x) αs

It is known that Eq. (1) has the following probabilist-
ic interpretation: the quark-antiquark parent dipole, when
evolved to  higher  rapidities,  may emit  a  gluon,  which is
equivalent to producing two new daughter dipoles in the
large  limit (Fig. 1). The two daughter dipoles share a
common transverse coordinate . For convenience in later
calculations,  we  use  the  shorthand  notations ,

, and  to denote the transverse size of
the parent dipole and the two daughter dipoles. The non-
linear term on the right hand side of Eq. (1) describes the
two new dipoles  simultaneously  scattering with  the  had-
ronic target, which is considered a "real" term. The linear
term on the right hand side of Eq. (1) represents the sur-
vival probability of the parent dipole at  the time of scat-
tering; thus, it is considered a "virtual" term. In addition,
note that Eq. (1) was derived by resumming only leading
logarithmic  corrections  in  the  fixed  case;
therefore, it is an LO evolution equation. 

B.    Analytic solution to the LO BK equation
in the saturation domain

r2Q2
s ≫ 1

S → 0

In this subsection, we perform a detailed derivation of
the solution to the LO BK equation to introduce the meth-
od  used  to  analytically  solve  the  integral-differential
equation.  Here,  we only  consider  the  solution to  the  BK
equation in the saturation domain because the physics of
the dilute region is described by BKFL dynamics, which
is  relatively  old.  In  the  saturation  region ,  high
energy  dipole-hadron  scattering  approaches  the  black
disk  limit;  thus,  the  scattering  matrix .  Therefore,
the non-linear term in S in Eq. (1) can be neglected, res-
ulting in 

∂S (r,Y)
∂Y

≃ − ᾱs

2π

∫ r

1/Qs

d2r1r2

r2
1r2

2

S (r,Y), (3)

Qs
1/Qs

rs ∼ 1/Qs

r1(r2) > r
KLO

r1(r2) > r r1(r2) > r

r2 ∼ r
r1≪ r r1 ∼ r r2≪ r

where  is  the  saturation  scale.  Note  that  we  set  the
lower bound of the integral in Eq. (3) as  because the
saturation  condition  demands  that  the  transverse  dipole
size be greater than the typical dipole size . For
the upper bound of the integral  in Eq. (3),  the parent di-
pole  size r can  be  used.  Although  there  are  few emitted
new dipoles with sizes larger than their parents ,
the  evolution  kernel  has  a  rapid  decay  when

;  hence,  the  contribution  from  the  re-
gion is negligible. The integral in Eq. (3) is governed by
the  situation  in  which either  one  of  the  daughter  dipoles
has a similar  size to the parent  dipole and the remaining
one is  significantly smaller  than the parent dipole, 
and ,  or  and  [31,34].  Therefore,  a
factor of 2 is included on the right hand side of Eq. (4). If
working in the first region, Eq. (3) reduces to 

∂S (r,Y)
∂Y

≃ −2
ᾱs

2

∫ r2

1/Q2
s

dr2
1

r2
1

S (r,Y). (4)

r1Now, we perform integration over  and Y in Eq. (4)
and obtain the analytic solution to the LO BK equation as
[34,35] 

S (r,Y) = exp
[
−λᾱ

2
s

2
(Y −Y0)2

]
S (r,Y0), (5)

where we use 

Q2
s(Y) = exp

[
λᾱs(Y −Y0)2]Q2

s(Y0) (6)

and 

Q2
s(Y0)r2 = 1. (7)

αs

r1 r2

N = 1−S

Eq.  (5)  is  known  as  the  Levin-Tuchin  formula  [35].
We would like to emphasize that Eq. (5) is derived under
the condition of fixed running coupling, which means that

 is a constant and does not depend on parent dipole size
or  the  smallest  dipole  size  among  the  parent  and  two
daughters (r, , ). Thus, Eq. (5) is a leading order solu-
tion. The exponent of the S-matrix has a quadratic rapid-
ity  dependence,  which  makes  the S-matrix  too  small
when Y is large. In terms of the relationship between the
S-matrix and scattering amplitude N, , the rapid-
ity evolution speed of the scattering amplitude is too fast.
It is for this reason that the LO BK equation is incapable

NcFig. 1.    (color online) A schematic diagram of dipole rapidity evolution in the large  limit.
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of  providing  a  precise  description  of  the  experimental
data at HERA [13,14,36-38]. In the next section, we shall
see that the argument of running coupling has a signific-
ant impact on the solution of the BK equation. As a con-
sequence, the quadratic rapidity dependence in the expo-
nent of the S-matrix shall convert into linear rapidity de-
pendence once the running coupling effect is considered. 

III.  NEXT-TO-LEADING ORDER BALITSKY-
KOVCHEGOV EQUATIONS AND THEIR

ANALYTIC SOLUTIONS

αs ln(1/x)

From Sec.II, we know that the LO BK equation only
considers  the  resummation  of  leading  logarithmic

 corrections  in  the  fixed  coupling  case.  The
scattering  amplitude  resulting  from the  LO BK equation
is  not  supported  by  HERA  data.  Therefore,  we  must  go
beyond leading order accuracy to improve the predictive
power of the CGC theory. 

A.    Running coupling BK equation and its
analytic solution

αsN f

The first  attempt  toward  NLO corrections  of  the  BK
equation  were  performed  by  Balitsky  in  Ref.  [20]  and
Kovchegov and Weigert in Ref. [21]. They resummed the

 contributions to all orders independently. In the lan-
guage  of  Feynman  diagrams,  they  considered  the  quark
loop contributions. 

1.    The rcBK equation

The rcBK equation can be written as 

∂S (r,Y)
∂Y

=

∫
d2r1 Krc(r,r1,r2) [S (r1,Y)S (r2,Y)−S (r,Y)] ,

(8)

Krc(r,r1,r2)where the evolution kernel  has two prescrip-
tions: the Balitsky type [20] 

KrcBal(r,r1,r2) =
Ncαs(r2

min)

2π2

 r2

r2
1r2

2

+
1
r2

1

αs(r2
1)

αs(r2
2)
−1


+

1
r2

2

αs(r2
2)

αs(r2
1)
−1

 , (9)

and the Kovchegov-Weigert type [21] 

KrcKW(r,r1,r2) =
Nc

2π2

αs(r2
1)

r2
1

−
2αs(r2

1)αs(r2
2)

αs(R2)
r1 · r2

r2
1r2

2

+
αs(r2

2)

r2
2

 , (10)

with 

R2(r,r1,r2) = r1r2

(
r2

r1

) r2
1+r2

2

r2
1−r2

2
− 2

r2
1−r2

2

r2
1r2

2

r1·r2

. (11)

Note that the evolution kernels in Eq. (9) and Eq. (10)
appear to differ at first glance because two types of separ-
ation schemes were used to isolate running coupling from
subtraction in Refs. [20,21] (for the details on the separa-
tion  schemes,  see  [22]).  Interestingly,  in  our  previous
study, we found that both evolution kernels in the satura-
tion region reduce to [31,33] 

Krc(r,r1,r2) ≃ Nc

2π2

αs(r2
min)

r2
1

. (12)

From Eqs.  (9)  and  (10),  it  is  clear  that  the  evolution
kernel  is  modified  by  the  running  coupling  corrections,
which  slows  down  the  rapidity  evolution  speed  of  the
scattering amplitude.  As  a  consequence,  the  rcBK equa-
tion (8) greatly improve the predictive power of the CGC
theory.  The  rcBK  equation  is  more  favored  by  HERA
data than the LO BK equation [13]. Note that we will not
provide a  detailed  derivation  of  the  rcBK  equation  be-
cause  it  is  outside  the  scope  of  this  paper.  In  this  study,
we focus on the impact of running coupling on the evolu-
tion speed  of  the  scattering  amplitude.  To  reveal  the  ef-
fect of  running  coupling,  we  must  analytically  and  nu-
merically solve the rcBK equation. In the subsequent sec-
tions, it shall be revealed that the running coupling effect
plays a significant role in dragging down the evolution of
the CGC system. 

2.    Analytic solution to the rcBK equation in
the saturation domain

αs

To  solve  the  rcBK  equation  (8),  the  format  of  the
QCD  coupling  must  be  identified.  In  this  work,  we
plan to use the QCD coupling at one loop accuracy 

αs(r2) =
1

b ln
(

1
r2Λ2

) , (13)

b = (11Nc−2N f )/12πwith .

r1 r2 1/Qs

1/Qs

As  with  the  LO  BK  equation,  we  analytically  solve
the rcBK equation in the saturation domain, which means
that the sizes of the parent dipole (r) and two daughter di-
poles  (  and )  are  larger  than .  Therefore,  we
know that  the  lower  and upper  bounds of  the  integral  in
Eq.  (8)  are  and r,  respectively.  In  addition,  in  the
saturation domain, the integral in Eq. (8) is dominated by
the case if  one of  the daughters  has  a  similar  size  to  the
parent dipole  while  the  remaining  daughter  is  signific-
antly smaller than the parent dipole. Using the approxim-
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r1ation  in  Eq.  (12)  and  assuming  that  is  the  smallest
among the three dipoles, Eq. (8) can be simplified to 

∂S (r,Y)
∂Y

≃ Nc

2π2 2
∫ r

1/Qs

d2r1αs(r2
1)

r2
1

× [S (r1,Y)S (r2,Y)−S (r,Y)] . (14)

αs r1

r1

S → 0

Note that there is a symmetric factor of 2 on the right
hand side of Eq. (14) owing to the fact that the larger or
smaller dipole  can  be  either  of  the  emitted  daughter  di-
poles.  More  importantly,  in  Eq.  (14),  the  QCD coupling

 has  an  argument  in  the  running  coupling  case,
which is not a constant as in the fixed coupling case. We
choose  to  use  the  smallest  dipole  size  running  coupling
prescription,  which  was  proposed  in  Ref.  [23] and  de-
veloped by Ref. [25] and our previous publication [33]. In
the  smallest  running coupling prescription,  the  argument
of the running coupling is  in Eq. (14). In the saturation
region,  the  scattering  amplitude  tends  toward  1;  hence,
the S-matrix is close to 0 as . The quadratic term in
S in Eq. (14) can be neglected and has the following ap-
proximation: 

∂S (r,Y)
∂Y

≃ −
∫ r2

1/Q2
s

dr2
1ᾱs(r2

1)

r2
1

S (r,Y), (15)

whose solution is [31,32] 

S (r,Y) = exp

−Nc

bπ
(Y −Y0)

ln √λ′(Y −Y0)
ln 1

r2Λ2

− 1
2


S (r,Y0).

(16)

ln Q2
s/Λ

′2 =
√
λ′(Y −Y0)+O(Y1/6)

Λ′
Here,  we  use  with

 fixed by the initial condition [39]. Let us compare the
solution  of  the  rcBK  equation  (16)  with  the  solution  to
the  LO  BK  equation  (5).  It  is  clear  that  the  quadratic
rapidity  dependence  in  the  exponent  of  the S-matrix
changes to  a  linear  dependence  once  the  running  coup-
ling  effect  is  considered,  which  dramatically  suppresses
the  evolution  speed  of  the  scattering  amplitude.  It  has
been shown in  Ref.  [13]  that  this  suppression  is  favored
by HERA data. 

B.    Collinearly-improved BK equation and its analytic
solution

− lnr2
1/r

2 lnr2
2/r

2

It  is  known  that  the  rcBK  equation  only  includes
quark  loop corrections.  Soon after  its  formation,  the  full
NLO BK equation was derived including gluon loop cor-
rections in addition to quark loop corrections in Ref. [23].
However, the full NLO BK equation was found to be un-
stable owing to  large  double  transverse  logarithmic  con-
tributions  in  the  evolution  kernel,  [40].

To remove these instabilities, kinematical constraint [24]
and  resummation  [25] methods  were  independently  pro-
posed. They obtained two stabilized full  NLO BK equa-
tions, which were equivalent to each other in terms of the
resummation of the leading double transverse logarithms
and are known as the collinearly-improved BK equation. 

1.    The ciBK equation

The ciBK equation can be written as [25] 

∂S (r,Y)
∂Y

≃ 1
2π

∫
d2r1Kci[S (r1,Y)S (r2,Y)−S (r,Y)], (17)

where the collinearly-improved kernel is [41] 

Kci =KDLA
[

r2

r2
1r2

2

+
1
r2

1

(
αs(r2

1)

αs(r2
2)
−1

)
+

1
r2

2

(
αs(r2

2)

αs(r2
1)
−1

)]
+
ᾱs(r2)r2

r2
1r2

2

(
67
36
− π

2

12
−

5N f

18Nc

)
, (18)

with the double logarithmic approximation (DLA) evolu-
tion kernel 

KDLA =

J1

(
2
√
ᾱsρ2

)
√
ᾱsρ2

≃ 1− ᾱsρ
2

2
+O(ᾱ2

s). (19)

J1  in Eq.  (19)  is  the Bessel  function with the defini-
tion 

ρ =

√
ln

r2
1

r2 ln
r2

2

r2 . (20)

In addition, note that if 

ln
r2

1

r2 ln
r2

2

r2 < 0, (21)

J1 I1

an absolute  value  is  used  and  the  Bessel  function  con-
verts from  to  [42] 

KDLA =

I1

(
2
√
ᾱsρ2

)
√
ᾱsρ2

. (22)

Now, it  is clear that the ciBK equation (17) is stable be-
cause the large double transverse logarithmic term disap-
peared  from  the  evolution  kernel  of  the  ciBK  equation
(see  Eq.  (18)).  From  Eq.  (18),  we  know  that  there  is  a
DLA contribution, which is a result of double transverse
logarithmic resummation. 
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2.    Analytic solution to the ciBK equation in the
saturation domain

Let us now analytically solve the ciBK equation. We
will work in the saturation domain, where the ciBK equa-
tion  is  governed  by  the  case  of  one  of  the  two  daughter
dipoles  having  a  similar  size  to  the  parent  dipole  while
the remaining daughter is smaller than the parent dipole.
In this case, the DLA kernel can simplify to 

KDLA ≃ 1− ᾱsρ
2

2
≃ 1, when r1 ∼ r or r2 ∼ r. (23)

Then, the ciBK evolution kernel reduces to 

Kci(r, r1, r2) ≃
ᾱs(r2

min)

2πr2
1

+
ᾱ2

s(r2
min)

8πr2
1

(
67
9
− π

2

3
−

10N f

9Nc

)
. (24)

Here, we once again note that the smallest dipole running
coupling  prescription  is  employed.  Substituting  Eq.  (24)
into Eq. (17) and performing integration over rapidity and
dipole  size,  we  can  obtain  an  analytic  solution  to  the
ciBK equation. 

S (r,Y) =exp
{
− Nc

bπ
(Y −Y0)

[
ln

( √
λ′(Y −Y0)
ln 1

r2Λ2

)
+

B′Nc

bπ ln 1
r2Λ2

− 1
2

]
+

2B′N2
c

b2λ′π2

√
λ′(Y −Y0)

}
S (r,Y0),

(25)

B′ = 67/36−π2/12−5N f /18Ncwith .  By  comparing  the
analytic solution to the ciBK equation (25) with the solu-
tion to the rcBK equation (16), we can see that the dom-
inant  parts  in the exponent of  the S-matrices are similar;
both  have  linear  rapidity  dependence  under  the  smallest
dipole running coupling prescription. This outcome indic-
ates that the running coupling effect plays a major role in
the  suppression  of  the  evolution  speed  of  the  scattering
amplitude,  especially  in  the  saturation  domain.  In  other
words, although the resummation effect  plays  a  signific-
ant role in removing instability from the NLO BK equa-
tion, it  is  not  a  dominant effect  in the suppression of di-
pole evolution. 

C.    Collinearly-improved BK equation in
target rapidity

Until  now,  all  of  the  evolution  equations  mentioned
above have been represented by the projectile rapidity Y.
Recently, it was found that the instability issue in the full
NLO BK equation is caused by the wrong choice of evol-
ution variable, which means that the evolution variable in
the  BK  equation  should  not  be  the  projectile  rapidity.

Y = η+ρ

From previous handling of  similar  unstable  issues  in  the
NLO BFKL equation,  it  is  known that  the proper evolu-
tion variable in the NLO BK equation ought to be the tar-
get  rapidity η.  By  using  the  change  of  variable  method,

,  the  authors  in  Ref.  [26] derived a  semi  collin-
early-improved  Balitsky-Kovchegov  equation  in  a  target
rapidity (ciBK-η) representation. The reason why we call
it the semi ciBK-η equation is that it does not include full
running coupling corrections. In our recent study [29], we
developed  upon  the  semi  ciBK-η equation  by  including
running coupling corrections during the expansion of the
"real'' S-matrix  and obtained an extended collinearly-im-
proved BK equation in  the  target  rapidity  (exBK-η) rep-
resentation. 

1.    The caBK-η and exBK-η equations

To obtain the ciBK-η equation, we must briefly intro-
duce  the  full  NLO  BK  equation  in  the Y-representation,
which can be written as [20] 

∂S (r,Y)
∂Y

=
ᾱs

2π

∫
d2r1 · (K0+Kq+Kg)

·
(
S (r1,Y)S (r2,Y)−S (r,Y)

)
+
ᾱ2

s

8π2

∫
d2r1 d2r′2 ·K1

·
(
S (r1,Y)S (r3,Y)S (r′2,Y)−S (r1,Y)S (r2,Y)

)
+
ᾱ2

s

8π2

N f

Nc

∫
d2r1 d2r′2

×K f ·
(
S (r′1,Y)S (r2,Y)−S (r1,Y)S (r2,Y)

)
,
(26)

with 

K0 =
r2

r2
1r2

2

, (27)

 

Kq =
r2

r2
1r2

2

ᾱs

b lnr2µ2−b
r2

1 − r2
2

r2 ln
r2

1

r2
2

 , (28)

 

Kg =
r2

r2
1r2

2

ᾱs

[67
36
− π

2

12
−

5N f

18Nc
− 1

2
ln

r2
1

r2 ln
r2

2

r2

]
, (29)

 

K1 =−
2
r4

3

+

[
r2

1r′22 + r′21 r2
2 −4r2r2

3

r4
3(r2

1r′22 − r′21 r2
2)

+
r4

r2
1r′22 (r2

1r′22 − r′21 r2
2)
+

r2

r2
1r′22 r2

3

]
ln

r2
1r′22

r′21 r2
2

, (30)

and 

Wenchang Xiang, Mengliang Wang, Yanbing Cai et al. Chin. Phys. C 46, 054104 (2022)

054104-6



K f =
2
r4

3

−
r′21 r2

2 + r′22 r2
1 − r2r2

3

r4
3(r2

1r′22 − r′21 r2
2)

ln
r2

1r′22

r′21 r2
2

, (31)

r′21 = (x−u)2 r′22 = (y−u)2 r2
3 = (z−u)2

Kq Kg
Nc

x, y x, z z, y
z

z, y u, z u, y
u

where , , ,  and  the
kernels  and  denote the NLO corrections from the
quark loop and gluon contributions. In the large  limit,
Eq. (26)  has  a  probability  interpretation:  the  parent  di-
pole ( ) splits into two daughter dipoles ( ) and ( )
with a common transverse coordinate . Then, the dipole
( )  further  splits  into  dipoles  ( )  and  ( )  with  a
common transverse coordinate .

Now,  we  transform  Eq.  (26)  from  the Y-representa-
tion to the η-representation using a change of variable 

Y = η+ρ. (32)

Therefore,  the S-matrices  can  be  expressed  in  the η
representation as 

S (r,Y) = S (r,η+ρ) ≡ S̄ (r,η), (33)
 

S (r1,Y) =S (r1,η+ρ) = S̄
r1,η+ ln

r2
1

r2


≃S̄ (r1,η)+ ln

r2
1

r2

∂S̄ (r1,η)
∂η

, (34)

 

S (r2,Y) =S (r2,η+ρ) = S̄
r2,η+ ln

r2
2

r2


≃S̄ (r2,η)+ ln

r2
2

r2

∂S̄ (r2,η)
∂η

(35)

ρ = ln Q2/Q2
0with .

Substituting  Eqs.  (33),  (34),  and  (35)  into  Eq.  (26),
and after some complex algebra, the ciBK-η equation can
be obtained as [26] 

∂S (r1,η)
∂η

=
ᾱs

2π

∫
d2r1 ·K0 · Θ

(
η−δr;r1;r2

)
×

(
S̄ (r1,η−δr1;r)S̄ (r2,η−δr2;r)−S̄ (r,η)

)
+
ᾱs

2π

∫
d2r1 · (Kq+Kg)

(
S̄ (r1,η)S̄ (r2,η)− S̄ (r,η)

)
+
ᾱ2

s

8π2

∫
d2r1 d2r′2 · (K1+4K2)

·
(
S̄ (r1,Y)S̄ (r3,Y)S̄ (r′2,Y)− S̄ (r1,Y)S̄ (r2,Y)

)
+
ᾱ2

s

8π2

N f

Nc

∫
d2r1 d2r′2 ·K f

·
(
S̄ (r′1,Y)S̄ (r2,Y)− S̄ (r1,Y)S̄ (r2,Y)

)
,

(36)

K2 = r2/(r′21 r2
3r2

2) lnr′22 /r
2+δr′2;r δr′2;r =max{0, lnr2/r′22 }

δr1;r =max{0, lnr2/r2
1} δr2;r =max{0, lnr2/r2

2}
with , ,

,  and .  If  only
the  dominant  part  is  retained,  the  canonical  form  of  the
BK equation (caBK-η) can be obtained as [26] 

∂S̄ (r,η)
∂η

=
ᾱs

2π

∫
d2r1 ·K0 · Θ

(
η−δr;r1;r2

)
× [

S̄ (r1,η−δr1;r)S̄ (r2,η−δr2;r)−S̄ (r,η)
]
, (37)

which is a non-local evolution equation in rapidity η. The
rapidity shifts in Eq. (37) act as resummation.

The  ciBK-η equation only  includes  part  of  the  run-
ning coupling corrections; it does not include the running
coupling  contributions  of  the  Taylor  expansions  in  (34),
and  (35).  To  obtain  a  full  running  coupling  improved
ciBK-η equation, we  re-derive  it  by  considering  all  run-
ning  coupling  corrections  in  the  Taylor  expansions  (see
[29]  for  a  detailed  derivation).  From  this,  we  obtain  the
running coupling improved ciBK-η equation [29] 

∂S (r1,η)
∂η

=
ᾱs

2π

∫
d2r1 ·K0 · Θ

(
η−δr;r1;r2

)
×

(
S̄ (r1,η−δr1;r)S̄ (r2,η−δr2;r)−S̄ (r,η)

)
+
ᾱs

2π

∫
d2r1 · (Kq+Kg)

(
S̄ (r1,η)S̄ (r2,η)− S̄ (r,η)

)
+
ᾱ2

s

8π2

∫
d2r1 d2r′2 · (K1+4K3)

·
(
S̄ (r1,Y)S̄ (r3,Y)S̄ (r′2,Y)− S̄ (r1,Y)S̄ (r2,Y)

)
+
ᾱ2

s

8π2

N f

Nc

∫
d2r1 d2r′2 ·K f

·
(
S̄ (r′1,Y)S̄ (r2,Y)− S̄ (r1,Y)S̄ (r2,Y)

)
,

(38)

with 

K3 =

(
ln

r′22

r2 +δr′2;r

)[ r2

r′21 r2
3 r2

2

+
r2

r′21 r′22

1
r2

3

(
αr3

s

αr2
s
−1

)
+

r2

r′21 r′22 r2
2

(
αr2

s

αr3
s
−1

)
+

r′22

r′21 r2
3 r2

2

αr′1
s

α
r′2
s

−1


+
1

r′21 r2
3

αr′1
s

α
r′2
s

−1
(αr3

s

αr2
s
−1

)
+

1
r′21 r2

2

αr′1
s

α
r′2
s

−1
(αr2

s

αr3
s
−1

)
+

1
r2

3 r2
2

αr′2
s

α
r′1
s

−1
+ 1

r′22 r2
3

αr′2
s

α
r′1
s

−1
(αr3

s

αr2
s
−1

)
+

1
r′22 r2

2

αr′2
s

α
r′1
s

−1
(αr2

s

αr3
s
−1

) ]
,

(39)
where  we  use  variations  of  the  shorthand  notation
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αr1
s = αs(r2

1) for  all  terms.  Similar  to Eq.  (37),  if  only the
dominant  part  is  retained,  the  extended  BK  equation  in
target rapidity representation (exBK-η) can be obtained as
[29] 

∂S̄ (r,η)
∂η

=

∫
d2r1Krc(r,r1,r2)Θ

(
η−δr;r1;r2

)
× [

S̄ (r1,η−δr1;r)S̄ (r2,η−δr2;r)−S̄ (r,η)
]
, (40)

Krc = ᾱs(K0+Kq)/2π

which  has  the  same  structure  as  the  caBK-η equation
(37),  but  with  a  running  coupling  modified  kernel

. 

2.    Analytic solutions to the caBK-η and exBK-η equa-
tions in the saturation domain

1/Qs≪ r1≪ r2 r2 ∼ r

To intuitively understand the significance of the run-
ning  coupling  effect,  we  shall  analytically  solve  the
caBK-η and exBK-η equations in the saturation region for
the  fixed  and  running  coupling  cases,  respectively.  We
employ the same strategy we used for the solutions to the
LO BK and rcBK equations. We are interested in the sat-
uration domain where one of the two daughter dipoles is
much smaller  than  the  other,  while  the  large  daughter  is
close to the parent dipole. In this section, we also assume

 and . It is known that the non-local-
ity  (or  rapidity  shift)  is  only  important  for  the S-matrix
associated with the smaller dipole. Therefore, the impact
of the rapidity shift can be neglected for the larger dipole.
Eq. (37) reduces to 

∂S̄ (r,η)
∂η

≃ ᾱsS̄ (r,η)
π

∫ r

1/Qs

d2r1

r2
1

Θ

(
η− ln

r2

r2
1

)
×

S̄ (
r1,η− ln

r2

r2
1

)
−1

 , (41)

Qs

Q̄s r2Q2
s = (r2Q̄2

s)1/(1+λ̄)
where  is the  saturation  momentum,  which  is  associ-
ated with  via  [26].

Now,  we  solve  Eq.  (41)  in  the  saturation  domain,
where the scattering amplitude approaches 1 and thus the
S-matrix is close to 0. This indicates that the S-matrix in
the square brackets on the right hand side of Eq. (41) can
be neglected because it is much smaller than 1. Thus, Eq.
(41) simplifies to 

∂S̄ (r,η)
∂η

≃ −ᾱsS̄ (r,η)
∫ r2

1/Q2
s

dr2
1

r2
1

. (42)

r1Performing  integration  over  and η,  we  can  obtain
the analytic solution to the caBK-η equation in the satura-
tion domain as 

S̄ (r,η) = exp

− ᾱ2
s

2
λ̄
(
η−η0

)2

1+ ᾱsλ̄

 S̄ (r,η0), (43)

where 

Q̄2
s = Q2

0 exp(λ̄η). (44)

αs
αs

From Eq. (42), we can see that the QCD coupling 
is  fixed.  We  will  not  artificially  represent  as a  func-
tion  of  the  size  of  the  smallest  dipole  because  running
coupling  was  not  included  when  deriving  the  caBK-η
equation.  In  the  fixed  coupling  case,  the S-matrix  has  a
quadratic rapidity dependence in its exponent (43), which
is similar  to  the  solution of  the  LO BK equation (5),  al-
though the coefficients in the exponent are slightly differ-
ent.  The  quadratic  rapidity  dependence  implies  a  rapid
evolution speed in the scattering amplitude, which is not
favored by the proton structure data at HERA.

Krc Krc

Next, we solve the running coupling modified exBK-
η equation, Eq. (40), in the saturation domain. From solv-
ing  the  rcBK  equation  in  Sec.  III.A,  we  know  that  the
evolution  kernel  in  Eq.  (40)  can  reduce  to ,  Eq.
(12).  Furthermore,  the  non-locality  is  only  important  for
the S-matrix associated with the smaller dipole. Thus, we
can obtain a simplified Eq. (40) as follows: 

∂S̄ (r,η)
∂η

≃ S̄ (r,η)
π

∫ r

1/Qs

d2r1

r2
1

ᾱs(r2
1)Θ

(
η−ln

r2

r2
1

)
×

S̄ (
r1,η−ln

r2

r2
1

)
−1

 . (45)

αs
αs

αs

At  first  glance,  it  seems  that  Eq.  (45)  is  almost  the
same  as  Eq.  (41).  However,  there  is  a  key  difference
caused by QCD running coupling.  is fixed in Eq. (41),
whereas  is a function of the size of the smallest dipole
among the  parent  and  daughter  dipoles  in  Eq.  (45).  It  is
precisely  because  of  that  the  rapidity  dependences  of
the scattering amplitude greatly differs.

In  the  saturation domain,  it  is  known that  the S-mat-
rix  is  close  to  0.  The S-matrix  in  square  brackets  on  the
right hand side of Eq. (45) is  negligible.  Using one loop
running  coupling,  Eq.  (13),  we  can  obtain  a  simplified
Eq. (45) as 

∂S̄ (r,η)
∂η

≃ −NcS̄ (r,η)
π

∫ r2

1/Q2
s

dr2
1

r2
1

1

b ln
1

r2
1Λ

2

, (46)

whose solution is 

S̄ (r,η) = exp
{
− Nc

bπ
(η−η0)
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×

ln

√
λ̄′(η−η0)+

√
λ̄′

2
ln

1
r2Λ2√η−η0+

√
λ̄′

2

 ln
1

r2Λ2

−
1
2


}

S̄ (r,η0), (47)

ln Q̄2
s/Λ

′2 =
√
λ̄′(η−η0)+O(η1/6)

r2Q2
s ≃

[
r2Q̄2

s

]1/(1+
√
λ̄′/4η)

where  and

.
So far, we have obtained five analytic solutions, Eqs.

(5), (16), (25), (43), and (47) for five different BK evolu-
tion equations, Eqs. (1), (8), (17), (37), and (40), respect-
ively.  Now,  two  comparisons  are  performed:  (i)  the  two
solutions with the fixed QCD coupling, (5) and (43), have
a  quadratic  rapidity  dependence,  which  leads  to  rapid
evolution speeds in the scattering amplitude; (ii) the three
solutions  with  running  QCD  coupling,  (16),  (25),  and
(47),  have  similarly  linear  rapidity  dependences,  which
yield  a  favored  HERA  data  scattering  amplitude.  This
outcome indicates that running coupling plays a signific-
ant  role  in  the  precise  description  of  experimental  data.
Interestingly, we  observe  that  the  running  coupling  cor-
rections cause the rapidity dependence in the exponent of
the S-matrix to  change  from  quadratic  to  linear  depend-
ence  regardless  of  whether  the  evolution  equations  are
equipped  in  the  projectile  rapidity  (Y)  or  target  rapidity
(η) representation.  This  suggests  that  the  running  coup-
ling  corrections  overwhelm  the  contribution  from  the
changing of evolution variable. Finally, it is clear why the
ciBK,  kcBK,  and  exBK-η equations  used  in  Ref.  [30]
provide  indistinguishable  descriptions  of  the  reduced
cross section  data  at  HERA,  because  these  three  equa-
tions  yield  similar  scattering  amplitudes  in  the  running
coupling case. 

IV.  NUMERICAL ANALYSIS

N(r,Y) =1−S (r,Y) =
1−S (|r|,Y)

In this  section,  we  numerically  solve  the  BK  equa-
tions to test the analytic results obtained in previous sec-
tions.  It  is  known that  the  BK equations  are  integro-dif-
ferential equations that can be solved via the Runge-Kutta
method. We shall use the GNU Scientific Library (GSL)
to  perform  the  numerical  analysis,  since  the  GSL
provides almost all of the numerical routines required by
our purpose. In this study, we do not consider the impact
parameter dependence  and  assume  that  the  dipole  amp-
litude  is  independent  of  angle, 

.

Y = 0

For the initial condition of the BK equations, we use
the McLerran-Venugopalan (MV) model to parameterize
the scattering amplitude at rapidity  [43] 

S MV(r,Y = 0) = exp
[
−

( r2Q2
s0

4

)γ
ln

( 1
r2Λ2 + e

)]
, (48)

Q2
s0where  and γ are the free parameters that shall be de-

termined by fitting to HERA data.
αs

N f = 3 Nc = 3
For  in  the  BK  equations,  we  use  the  one-loop

QCD coupling constant, Eq. (13), with  and .
The smallest dipole running coupling prescription is em-
ployed in these numerical simulations. 

αs(r2
min) = αs

(
min{r2,r2

1,r
2
2}
)
. (49)

αs(rfr) = 0.75 r > rfrRunning coupling  is frozen when 
to regularize the infrared behavior. 

A.    Solutions to the BK equations
The left-hand panel of Fig. 2 presents the solutions to

the LO BK and rcBK equations for three different rapidit-
ies. Note that  we only select  two typical  groups of  solu-
tions  to  the  BK  equations  to  unambiguously  reveal  the
role of the running coupling effect. The dashed and solid
curves  denote  the  results  computed  by  the  LO  BK  and
rcBK  equations,  respectively.  In  addition,  the  blue,  red,
and purple  curves  present  numerical  solutions  at  rapidit-
ies  of  4,  8,  and  12,  respectively.  The  black  curve  is  the
MV initial condition. By comparing the solutions for each
respective rapidity, we can see that the values of the scat-
tering  amplitudes  resulting  from  the  rcBK  equation  are
significantly smaller  than  those  from  the  LO  BK  equa-
tion, which implies that the running coupling corrections
significantly slow down the  evolution  speed  of  the  scat-
tering amplitude. This outcome is consistent with the ana-
lytic solution obtained in Sec. III.A, in which the running
coupling effect  converts  the  quadratic  rapidity  depend-
ence in the LO case (5) into linear rapidity dependence in
the NLO case (16); as a consequence, the evolution speed
of  the  scattering  amplitude  is  suppressed  by  the  running
coupling effect.

NciBK/NrcBK NexBK−η/NrcBK

NexBK−η/NrcBK

The right-hand panel of Fig. 2 shows the ratios of the
ciBK,  and exBK-η equation solutions  to  the  rcBK equa-
tion solutions in the saturation domain for rapidities of 0
(black  curve),  4  (blue  curves),  8  (red  curves),  and  12
(purple  curves).  The  solid  and  dashed  curves  denote  the
ratios  and  computed from the
exact numerical solutions to these equations. By compar-
ing the ratios for each respective rapidity, we can see that
all ratios are close to one, which indicates that the scatter-
ing amplitudes resulting from the rcBK, ciBK, and exBK-
η equations are similar in the saturation domain. The nu-
merical  results  support  the  analytic  findings  in  Sec.
III.C.2. These numerical results can provide a reasonable
explanation as to why the kcBK, ciBK, and exBK-η equa-
tions provide equally high quality descriptions of HERA
data  in  Ref.  [30].  Moreover,  to  compare  the  numerical
and analytic solutions, the ratio  (triangles)
computed by the analytic expressions is plotted in Fig. 2.
Note  that Fig.  2 only shows  the  analytic  ratios  in  relat-
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rQs > 2

ively  large  dipole  sizes  because  the  analytic  amplitudes
are  valid  only  in  the  saturation  region,  for  example,

 [9]. The analytic ratios are consistent with the nu-
merical ratios. 

B.    Fit to HERA data
To  further  support  the  outcomes  obtained  above,  we

use the rcBK (8), ciBK (17), and exBK-η (40) equations
to fit HERA data [44]. The actual quantity we shall fit is
the reduced cross-section 

σred =
Q2

4π2αem

[
σ
γ∗p
T +

2(1− y)
1+ (1− y)2σ

γ∗p
L

]
, (50)

y = Q2/(sx)
σT σL

with  as  the  inelasticity  variable  and s the
squared  center  of  mass  collision  energy.  and  in
Eq.  (50)  are  the  transverse  and  longitudinal  cross-sec-
tions, respectively. 

σ
γ∗p
T,L =

∑
f

∫ 1

0
dz

∫
d2r|ψ( f )

T,L(r,z; Q2)|2σqq̄
dip(r, x), (51)

ψ
( f )
T,L

σ
qq̄
dip

σ
qq̄
dip(r, x) = σ0

[
1−S (r, x)

]
σ0

αs(r2) = 1/[b ln(4C/r2Λ2)]

where  is the light cone wave function, which can be
calculated via QED [45]. The key term in Eq. (51) is the
dipole amplitude , which can be expressed in terms of
the S-matrix, .  Here,  denotes
the  area  of  the  proton  and  is  a  free  parameter  in  our  fit.
To obtain a good description of HERA data, it is useful to
slightly modify the one loop running coupling Eq. (13) to

 with C as a free parameter.

x < 0.01

χ2/d.o.f

Within  the  framework  of  the  color  glass  condensate,
we  must  work  in  a  small x region, .  Thus,  there
are 252 data points  from Ref.  [44] being used in our fit.
Table  1 provides  the  values  of  the  relevant  parameters.
Reasonable  values  indicate  that  BK  equations

χ2/d.o.f
with higher order corrections provide good description of
HERA  data.  In  particular,  note  that  resulting
from the three higher order BK (rcBK, ciBK, and exBK-
η) equations have similar values, which suggests that they
provide HERA data descriptions of similar quality.

Q2

To intuitively display the good matching between the
theoretical  calculations  and  experimental  data,  we  plot
the reduced cross-section versus x for different values of

 in Fig. 3. The green squares, red circles, and blue tri-
angles  denote  the  numerical  results  computed  using  the
rcBK,  ciBK,  and  exBK-η equations,  respectively.  From
Fig. 3, we can see that almost all of the numerical results
overlap  with  the  data  points,  which indicates  once  again
that the three aforementioned BK equations provide sim-
ilar descriptions of HERA data. Because the rcBK equa-
tion (with  only  running  coupling  corrections)  is  relat-
ively low among the three higher order equations, we can
reason that  the  NLO BK equation running coupling cor-
rection is only sufficient in the description of the experi-
mental data at HERA energies. 

V.  SUMMARY

In  this  paper,  we first  presented analytic  solutions  to
the  LO  BK,  rcBK,  ciBK,  and  exBK-η equations  in  the
saturation  region  for  the  fixed  and  running  coupling
cases. By comparing these equations, we found that all of
the analytic S-matrices in the final three (NLO) equations
had  similar  linear  rapidity  dependence  in  the  exponent,

χ2/d.o.fTable 1.    Parameters and  from the fits.

Dipole amplitude σ0 /mb Q̄2
s0/GeV2 γ C2 χ2/d.o.f

rcBK 30.75 0.16 1.10 5.20 1.15

ciBK 31.51 0.15 1.05 26.56 1.26

exBK-η 33.24 0.13 1.08 0.80 1.20

Fig. 2.    (color online) Numerical solutions to the BK equations for three different rapidities. The left hand panel presents comparisons
of the evolution speeds of the LO scattering amplitude and running coupling modified scattering amplitude. The right hand panel shows
the respective ratios of the ciBK and exBK-η equation solutions to the rcBK equation solutions.
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which indicates that the running coupling correction was
the main  correction  among  all  NLO corrections  (for  ex-
ample, gluon loop and collinear resummation) in the sup-
pression of the rapidity evolution of the dipole amplitude.
Thus, the  dominant  part  of  the  dipole  amplitudes  result-
ing  from  the  final  three  equations  was  almost  the  same
(see Eqs. (16), (25), and (47)). This finding can provide a
reasonable explanation for a surprising result presented in
Ref.  [30],  where  the  authors  found  that  different  fit
schemes  (kcBK,  ciBK,  and  exBK-η)  resulted  in  equally
good  descriptions  of  HERA  data.  Our  study  found  that
the  running coupling BK equation was  robust  and had a
sufficiently strong predictive power for the DIS measure-
ments at HERA energies, although other higher order cor-

rections  may  be  significant  for  future  experiments,  such
as those at the EIC or LHeC.

χ2/d.o.f

To  test  the  analytic  outcomes  mentioned  above,  we
numerically  solved  the  BK  equations  and  calculated  the
ratios  between  these  solutions  (see Fig.  2).  The  ratios
were close  to  one  in  the  saturation  region,  which  sug-
gests  that  the  three  dipole  amplitudes  were  almost  equal
and confirmed  our  analytic  findings.  Moreover,  we  nu-
merically  fit  the  three  dipole  amplitudes  to  HERA  data.
The  obtained from the fits reveals that the three
equations  provide  an equally  good description of  HERA
data (see also Fig. 3). In short, our study suggests that the
BK equation  with  NLO  correction  at  the  running  coup-
ling level has sufficient accuracy to describe HERA data.
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