Two－component millicharged dark matter and the EDGES 21 cm signal＊

Qiaodan Li（黎乔丹）${ }^{1} \quad$ Zuowei Liu（刘佐伟）${ }^{1,2 \dagger}$
${ }^{1}$ Department of Physics，Nanjing University，Nanjing 210093，China
${ }^{2}$ Center for Excellence in Particle Physics，Chinese Academy of Sciences，Beijing 100049，China

Abstract

We propose a two－component dark matter explanation to the EDGES 21 cm anomalous signal．The heavier dark matter component is long－lived，and its decay is primarily responsible for the relic abundance of the lighter dark matter，which is millicharged．To evade the constraints from CMB，underground dark matter direct de－ tection，and XQC experiments，the lifetime of the heavier dark matter has to be larger than $0.1 \tau_{U}$ ，where τ_{U} is the age of the universe．Our model provides a viable realization of the millicharged dark matter model to explain the EDGES 21 cm signal，since the minimal model in which the relic density is generated via thermal freeze－out has been ruled out by various constraints．

Keywords：dark matter， 21 cm ，new physics beyond the standard model
DOI：10．1088／1674－1137／ac3d2b

I．INTRODUCTION

The hyperfine transition of the cosmic hydrogen atom，which is known as the 21 cm signal，provides a powerful probe to the physics in the early universe；for reviews，see Refs．［1－3］．Recently，the Experiment to De－ tect the Global Epoch of Reionization Signature （EDGES）has reported a new measurement on the sky－av－ eraged radio spectrum centered at $v=78 \mathrm{MHz}$ ，which corresponds to the 21 cm absorption signal of the primor－ dial hydrogen gas at redshift $z \simeq 17$［4］．The differential brightness temperature T_{21} measured by the EDGES ex－ periment at redshift $z \simeq 17$ is［4］

$$
\begin{equation*}
T_{21}=-500_{-500}^{+200} \mathrm{mK} \tag{1}
\end{equation*}
$$

which is about a factor of two larger than the value ex－ pected in the standard cosmology［4，5］．This hints that either the cosmic microwave background（CMB）could be hotter than expected［6－9］，or the hydrogen gas could be colder than expected［10－27］．

If the EDGES measurement is interpreted as caused by a colder gas，the question is how to cool the hydrogen gas？One simple solution is that，if there exist some sort of particle interactions between dark matter（DM）and hy－ drogen atom，the primordial hydrogen gas can be cooled
by DM，which is colder than gas．${ }^{1)}$ However，there exist very strong constraints from the CMB measurements，as well as from other early universe measurements on DM interactions with standard model particles．Millicharged DM is one of the leading DM candidates to explain the EDGES anomaly，because its interaction with baryons is proportional to v^{-4} ，where v is the relative velocity，thus leading to a much smaller interaction cross section in the early universe than that needed at $z \simeq 17$ for the EDGES interpretation so that the early universe constraints can be significantly alleviated．Millicharged DM has been ex－ tensively investigated for the interpretation of the EDGES anomaly［10－15，19－22］．The parameter space of the mil－ licharged DM is constrained by various experiments，in－ cluding accelerator experiments［28］，the CMB aniso－ tropy［19，20，29－31］，the SN1987A［32］，and the Big Bang Nucleosynthesis（BBN）［12，33，34］；the allowed parameter space is that the millicharged DM mass is 0.1 $\mathrm{MeV} \lesssim m_{\chi} \lesssim 10 \mathrm{MeV}$ ，the millicharge is $10^{-6} \lesssim$ $Q / e \lesssim 10^{-4}$ ，and the mass fraction of the millicharged DM is $0.0115 \% \lesssim f \lesssim 0.4 \%$ ．However，as pointed out by Ref． ［21］，such a parameter space is ruled out by the $N_{\text {eff }}$ limit with the Planck 2018 data if the relic abundance of the millicharged DM is set by thermal freeze－out．Recently， Ref．［22］proposed a new millicharged DM model in which the sub－component millicharged DM has a sizable

[^0]interaction cross section with the other DM components so that the millicharged DM can be cooled by the other DM components; this reopens the parameter space that was previously excluded by various experimental constraints.

In this paper, we propose a new DM model that consists of two DM components: the lighter DM component is the millicharged DM, and the heavier DM component is unstable, which decays into the lighter DM component. In our model, the millicharged DM is primarily produced after the recombination, so that the stringent constraints from CMB can be alleviated. We show that such a model can explain the 21 cm anomaly observed by EDGES and satisfy various experimental constraints. The rest of the paper is organized as follows. We present our model in Sec. II. We compute the number density of the two DM components as a function of redshift in Sec. III. The temperature change due to the heavier DM decays is derived in Sec. IV. We provide the time evolution equations for four different physics quantities in Sec. V. The results of our numerical analysis are given in Sec. VI. We summarize our findings in Sec. VII.

II. THE MODEL

We extend the standard model (SM) by introducing a hidden sector that consists of three $U(1)$ gauge bosons, $X_{\mu}^{i}(i=1,2,3)$, and one Dirac fermion χ that is charged under both X_{μ}^{2} and X_{μ}^{3} gauge bosons. We use the Stueckelberg mechanism [35-40] to provide mass to the three $U(1)$ gauge bosons; the new Lagrangian is given by

$$
\begin{align*}
\Delta \mathcal{L}= & -\sum_{i=1,2,3} \frac{1}{4} X_{i \mu \nu} X_{i}^{\mu \nu}+\bar{\chi}\left(\mathrm{i} \gamma^{\mu} \partial_{\mu}-m_{\chi}\right) \chi \\
& +g_{2}^{\chi} X_{2}^{\mu} \bar{\chi} \gamma^{\mu} \chi+g_{3}^{\chi} X_{3}^{\mu} \bar{\chi} \gamma^{\mu} \chi \\
& -\frac{1}{2}\left(\partial_{\mu} \sigma_{1}+m_{1}^{\prime} X_{1}^{\mu}\right)^{2}-\frac{1}{2}\left(\partial_{\mu} \sigma_{2}+m_{1} X_{1}^{\mu}+m_{2} X_{2}^{\mu}\right)^{2} \\
& -\frac{1}{2}\left(\partial_{\mu} \sigma_{3}+m_{3} X_{3}^{\mu}+m_{4} B^{\mu}\right)^{2} \tag{2}
\end{align*}
$$

where σ_{1}, σ_{2}, and σ_{3} are the axion fields in the Stueckelberg mechanism, B_{μ} is the SM hypercharge boson, m_{χ} is the dark fermion mass, g_{2}^{χ} and g_{3}^{χ} are the gauge couplings, and $m_{1}^{\prime}, m_{1}, m_{2}, m_{3}$, and m_{4} are the Stueckelberg mass terms. The Stueckelberg mechanism can be commonly seen in extra dimension models, strings, and D branes [41]. The Stueckelberg mechanism can also be viewed as a particular limit of the abelian Higgs mechanism, in which the Higgs mass goes to infinity and the Higgs vacuum expectation value is kept to be fixed [42]. However, unlike in the Higgs mechanism, mass is generated below the spontaneous symmetry breaking temperature in the early universe, in the Stueckelberg mechanism
the vector boson can retain a mass to an arbitrary high temperature [43].

After the spontaneous symmetry breaking in the SM, the mass matrix M^{2} of the neutral gauge bosons in the basis ($X_{1}, X_{2}, X_{3}, B, A^{3}$), where A^{3} is the third component of the $S U(2)_{\mathrm{L}}$ gauge bosons in the SM, is given by

$$
\left\{\begin{array}{ccccc}
m_{1}^{\prime 2}+m_{1}^{2} & m_{1} m_{2} & 0 & 0 & 0 \tag{3}\\
m_{1} m_{2} & m_{2}^{2} & 0 & 0 & 0 \\
0 & 0 & m_{3}^{2} & m_{3} m_{4} & 0 \\
0 & 0 & m_{3} m_{4} & m_{4}^{2}+g_{\mathrm{Y}}^{2} v^{2} / 4 & -g_{\mathrm{Y}} g_{2} v^{2} / 4 \\
0 & 0 & 0 & -g_{\mathrm{Y}} g_{2} v^{2} / 4 & g_{2}^{2} v^{2} / 4
\end{array}\right\}
$$

where v is the vacuum expectation value of the SM Higgs, and g_{2} and g_{Y} are the $S U(2)_{\mathrm{L}}$ and $U(1)_{\mathrm{Y}}$ gauge couplings in the SM respectively. The mass matrix has a vanishing determinant such that there exists a massless mode to be identified as the SM photon. Because the mass matrix is block-diagonal, one can diagonalize the first two gauge bosons and the last three gauge bosons separately.

The mass matrix of the first two gauge bosons (the upper-left two by two block matrix in Eq. (3)) can be diagonalized via a rotation matrix \mathcal{R} which is parameterized by a single angle θ

$$
\mathcal{R}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{4}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

The mass eigenstates, Z_{1} and Z_{2}, are related to the gauge states via $Z_{i}=\mathcal{R}_{j i} X_{j}$. The rotation matrix \mathcal{R} leads to an interaction between χ and Z_{1} such that $\mathcal{L}_{\text {int }}=$ $\sin \theta g_{2}^{\chi} Z_{1}^{\mu} \bar{\chi} \gamma^{\mu} \chi \equiv v_{Z_{1}}^{\chi} Z_{1}^{\mu} \bar{\chi} \gamma^{\mu} \chi$. We are interested in the parameter space where $\theta \ll 1$ so that $Z_{1} \sim X_{1}$ and $Z_{2} \sim X_{2}$. In our analysis, we take $m_{1}^{\prime} \sim 2 m_{\chi}, m_{2}<m_{\chi}$, and $m_{1} \ll m_{2}$ so that the two mass eigenstates have masses $m_{Z_{1}} \simeq m_{1}^{\prime}$ and $m_{Z_{2}} \simeq m_{2}$, and the mixing angle θ is given by $\theta \simeq$ $m_{1} m_{2} /\left(m_{1}^{\prime 2}-m_{2}^{2}\right)$.

The mass matrix of the last three gauge bosons (the bottom-right three by three block matrix in Eq. (3)) can be diagonalized by an orthogonal matrix O such that $E_{i}=O_{j i} G_{j}$, where $G_{j}=\left(X_{3}, B, A^{3}\right)$ are the gauge states, and $E_{i}=\left(Z^{\prime}, Z, \gamma\right)$ are the mass eigenstates. Here, γ is the photon, Z is the neutral gauge boson in the weak interaction, and Z^{\prime} is the new massive vector boson. Thus, we have $O^{T} M_{3 \times 3}^{2} O=\operatorname{diag}\left(m_{Z}^{2}, m_{Z}^{2}, 0\right)$, where $M_{3 \times 3}^{2}$ is the bot-tom-right three by three block matrix in Eq. (3). Such a matrix diagonalization also leads to interactions between matter fields (both hidden sector fermion χ and SM fermions f) and the three mass eigenstates (γ, Z, and Z^{\prime}). The interaction Lagrangian can be parameterized as follows

$$
\begin{equation*}
\bar{f} \gamma_{\mu}\left(v_{i}^{f}-\gamma_{5} a_{i}^{f}\right) f E_{i}^{\mu}+v_{i}^{\chi} \bar{\chi} \gamma_{\mu} \chi E_{i}^{\mu} \tag{5}
\end{equation*}
$$

where the vector and axial-vector couplings are given by

$$
\begin{align*}
& v_{i}^{f}=\left(g_{2} O_{3 i}-g_{Y} O_{2 i}\right) T_{f}^{3} / 2+g_{Y} O_{2 i} Q_{f}, \tag{6}\\
& a_{i}^{f}=\left(g_{2} O_{3 i}-g_{Y} O_{2 i}\right) T_{f}^{3} / 2, \tag{7}
\end{align*}
$$

$$
\begin{equation*}
v_{i}^{\chi}=g_{\chi} O_{1 i} . \tag{8}
\end{equation*}
$$

Here, Q_{f} is the electric charge of the SM fermion, and T_{f}^{3} is the quantum number of the left-hand chiral component under $S U(2)_{\mathrm{L}}$.

Thus, the hidden sector fermion χ has a vector current interaction with the SM photon,

$$
\begin{equation*}
v_{3}^{\chi} A_{\mu} \bar{\chi} \gamma^{\mu} \chi \equiv \epsilon e A_{\mu} \bar{\chi} \gamma^{\mu} \chi \tag{9}
\end{equation*}
$$

where we have defined an electric charge ϵ for the χ particle. In our analysis, we adopt the following model parameters: $m_{3}=100 \mathrm{TeV}$, and $m_{4} / m_{3} \ll 1$. In this case, the electric charge ϵ is given by $\epsilon \simeq-\left(m_{4} / m_{3}\right) \cos \theta_{W}\left(g_{3}^{\chi} / e\right)$, where θ_{W} is the weak rotation angle in the SM. Since $m_{4} / m_{3} \ll 1$ in our analysis, we have $\epsilon \ll 1$, which is often referred to as millicharge. χ is then the millicharged particle.

III. TWO DM COMPONENTS

There are two DM particles in the hidden sector, the Z_{1} boson and the hidden Dirac fermion χ. In the very early universe, Z_{1} is the dominant DM component, which is assumed to be nonthermally produced. The Z_{1} DM component is long-lived and decays into $\bar{\chi} \chi$. The decay width of the Z_{1} boson is given by

$$
\begin{align*}
\Gamma\left(Z_{1} \rightarrow \bar{\chi} \chi\right) & =\frac{m_{Z_{1}}}{12 \pi} \sqrt{1-4 \frac{m_{\chi}^{2}}{m_{Z_{1}}^{2}}}\left(1+2 \frac{m_{\chi}^{2}}{m_{Z_{1}}^{2}}\right)\left(v_{Z_{1}}^{\chi}\right)^{2} \\
& \simeq \frac{\sqrt{m_{Z_{1}} \Delta m}}{4 \sqrt{2} \pi}\left(g_{2}^{\chi} \theta\right)^{2} \tag{10}
\end{align*}
$$

where $v_{Z_{1}}^{\chi}=g_{2}^{\chi} \sin \theta \simeq g_{2}^{\chi} \theta, \Delta m \equiv m_{Z_{1}}-2 m_{\chi}$, and we have assumed $\Delta m \ll m_{Z_{1}}$. In our analysis, we have $\theta \ll 1$ and $\Delta m \ll m_{Z_{1}}$ so that Z_{1} is long-lived with a lifetime

$$
\begin{equation*}
\tau\left(Z_{1}\right) \simeq \sqrt{\frac{\mathrm{MeV}}{m_{Z_{1}}}} \sqrt{\frac{\mathrm{meV}}{\Delta m}}\left(\frac{2.3 \times 10^{-16}}{g_{2}^{\chi} \theta}\right)^{2} \tau_{17} \tag{11}
\end{equation*}
$$

where $\tau_{17} \sim 7 \times 10^{15}$ second is the time between the early
universe and $z=17$.
The value of Δm cannot be very large, otherwise the DM χ will be significantly heated by the decay process $Z_{1} \rightarrow \bar{\chi} \chi$ so that χ is unable to cool the baryons. The velocity of the χ particle is $v_{\chi} \simeq \sqrt{\Delta m / m_{\chi}}$ in the rest frame of Z_{1}, under the assumption of $\Delta m \ll m_{\chi}$. For the case where $m_{\chi} \sim 100 \mathrm{MeV}$ and $\Delta m \sim O(\mathrm{meV})$, we have $v_{\chi} \sim 3.2 \times$ 10^{-6}. Thus, in our analysis, we assume a sufficiently small mass difference, $\Delta m \sim O(\mathrm{meV})$, such that the Z_{1} decay does not heat the χ DM significantly.

The χ DM component is mainly produced via the decay process $Z_{1} \rightarrow \bar{\chi} \chi$ in the universe. We assume that the initial number density of χ is negligible. The relic density of χ can also be produced via thermal freeze-out. There are two processes that contribute to the χ DM annihilation cross section: $\bar{\chi} \chi \rightarrow \gamma \rightarrow \bar{f} f$ and $\bar{\chi} \chi \rightarrow Z_{2} Z_{2}$. In our analysis, $\sigma\left(\bar{\chi} \chi \rightarrow Z_{2} Z_{2}\right) \gg \sigma(\bar{\chi} \chi \rightarrow \bar{f} f)$. The $\bar{\chi} \chi$ annihilation cross section into on-shell Z_{2} bosons is given by [44]

$$
\begin{equation*}
\langle\sigma v\rangle\left(\bar{\chi} \chi \rightarrow Z_{2} Z_{2}\right) \simeq \frac{\left(g_{2}^{\chi}\right)^{4}}{16 \pi m_{\chi}^{2}} \frac{\left(1-r^{2}\right)^{3 / 2}}{\left(1-r^{2} / 2\right)^{2}}, \tag{12}
\end{equation*}
$$

where $r=m_{Z_{2}} / m_{\chi}$. For the case where $g_{2}^{\chi}=1, r=1 / 2$, and $m_{\chi}=5 \mathrm{MeV}$, one has $\langle\sigma v\rangle\left(\bar{\chi} \chi \rightarrow Z_{2} Z_{2}\right) \simeq 0.3$ barn, leading to a mass fraction as $f_{\chi} \sim 10^{-11}$. Thus, the contribution to the relic density of χ from thermal freeze-out is negligible, and the constraints imposed on thermal freezeout millicharged DM (e.g. Ref. [21]) are not directly applicable to our model.

The total number of Z_{1} particles in a comoving volume at time t is given by

$$
\begin{equation*}
N_{Z_{1}}(t)=N_{Z_{1}}(0) \mathrm{e}^{-t / \tau} \tag{13}
\end{equation*}
$$

where τ is the lifetime of the Z_{1} particle, $N_{Z_{1}}(0)$ is the total number of Z_{1} particles at time $t=0$, and we have assumed that Z_{1} is non-relativistic. In our analysis, we set $t=0$ at redshift $z_{0}=10^{6}$; the abundance of Z_{1} at $z_{0}=10^{6}$ is given by $\rho_{Z_{1}}\left(z_{0}\right) \simeq \rho_{\mathrm{DM}, 0}\left(1+z_{0}\right)^{3}$, where $\rho_{\mathrm{DM}, 0}$ is the current DM density. The number of χ particles at time t in a comoving volume is $N_{\chi}(t)=2 N_{Z_{1}}(0)-2 N_{Z_{1}}(t)$. Thus, the number density of χ is related to the number density of Z_{1} via

$$
\begin{equation*}
n_{\chi}=2\left(\mathrm{e}^{t / \tau}-1\right) n_{Z_{1}} . \tag{14}
\end{equation*}
$$

where $n_{Z_{1}}\left(n_{\chi}\right)$ is the number density of the $Z_{1}(\chi)$ particle. In our analysis $m_{Z_{1}} \simeq 2 m_{\chi}$, so the mass fraction of the millicharged $\mathrm{DM} \chi$ at redshift z in the total DM is given by

$$
\begin{equation*}
f_{\chi}(z) \simeq\left(1-\mathrm{e}^{-t(z) / \tau}\right), \tag{15}
\end{equation*}
$$

where $t(z)$ is the time between early universe (which we take to be $z_{0}=10^{6}$) and redshift z^{1}. Fig. 1 shows the mass fraction of χ as a function of the redshift z for different lifetimes τ. CMB observations provide strong constraints on millicharged DM ; only $0.4 \% \mathrm{DM}$ can be millicharged, unless the millicharge is negligible [19, 20, 31]. This leads to a lower bound on the τ, which is $\sim 3.6 \times 10^{15} \mathrm{~s}$.

Because $\Delta m \ll m_{\chi}$, the total DM density $\rho_{Z_{1}}+\rho_{\chi}$ at redshift z is given by $\rho_{Z_{1}}+\rho_{\chi}=\rho_{\mathrm{DM}, 0}(1+z)^{3}$. Thus, the number density of χ particles at redshift z is given by

$$
\begin{equation*}
n_{\chi}(z)=\frac{\rho_{\mathrm{DM}, 0}}{m_{\chi}}(1+z)^{3} f_{\chi}(z) \simeq \frac{\rho_{\mathrm{DM}, 0}}{m_{\chi}}(1+z)^{3}\left(1-\mathrm{e}^{-t(z) / \tau}\right), \tag{16}
\end{equation*}
$$

where $\rho_{\mathrm{DM}, 0}=\Omega_{\mathrm{DM}} \rho_{\mathrm{cr}, 0}$ and $\rho_{\mathrm{cr}, 0}=1.054 h^{2} \times 10^{4} \mathrm{eV} \mathrm{cm}^{-3}$ is the critical density [45]. In our analysis, we use $\Omega_{\mathrm{DM}} h^{2}=0.1186$ [46].

Fig. 1. (color online) Mass fraction of χ in the total DM as a function of the redshift. $\tau_{U} \simeq 4.3 \times 10^{17}$ s is the age of the universe.

IV. DM TEMPERATURE INCREASE

 GENERATED BY DECAYSThe $\mathrm{DM} \chi$ is heated by the $Z_{1} \rightarrow \chi \bar{\chi}$ decay process because of the difference between the Z_{1} mass and twice of the χ mass. To compute this effect, consider the kinetic energy Δq that goes into the $\chi \bar{\chi}$ final state for the decay process $Z_{1} \rightarrow \chi \chi$

$$
\begin{equation*}
\Delta q=\Delta m+\frac{3}{2} k_{\mathrm{B}} T_{Z_{1}} \tag{17}
\end{equation*}
$$

[^1]the lighter DM component χ is given by
\[

$$
\begin{equation*}
\frac{\mathrm{d} T_{\chi}}{\mathrm{d} t}=-2 H T_{\chi}+\frac{2}{3} \frac{\mathrm{~d} Q_{\chi}}{\mathrm{d} t}+\dot{T}_{\chi}^{d} \tag{22}
\end{equation*}
$$

\]

where Q_{χ} is the energy transfer term due the interaction between $\mathrm{DM} \chi$ and baryons, and \dot{T}_{χ}^{d} is given in Eq. (19). The first two terms on the right-hand side of Eq. (22) represent the effects due to universe expansion and the DMbaryon scattering respectively, which are similar to the first two terms in Eq. (20). The third term on the righthand side of Eq. (22) is new and is due to the decay of the Z_{1} particle in our model, as discussed in Sec. IV.

In addition, we also solve the time evolution equation of the relative bulk velocity between baryon and DM, $V_{\chi b}=\left|\vec{V}_{\chi b}\right|$ where $\vec{V}_{\chi b} \equiv \vec{V}_{\chi}-\vec{V}_{b}$ [47],

$$
\begin{equation*}
\frac{\mathrm{d} V_{\chi b}}{\mathrm{~d} t}=-H V_{\chi b}-D\left(V_{\chi b}\right), \tag{23}
\end{equation*}
$$

and the time evolution equation of the ionization fraction $x_{e} \equiv n_{e} / n_{H}$ [50]

$$
\begin{equation*}
\frac{\mathrm{d} x_{e}}{\mathrm{~d} t}=-C\left[n_{H} \alpha_{B} x_{e}^{2}-4\left(1-x_{e}\right) \beta_{B} \exp \left(\frac{3 E_{0}}{4 T_{\gamma}}\right)\right] . \tag{24}
\end{equation*}
$$

We follow Ref. [50] to obtain the various coefficients in Eq. (24). The formulas of Q_{b}, Q_{χ}, and $D\left(V_{\chi b}\right)$ for millicharged DM used in our analysis are given in Appendix B.

VI. RESULTS

We simultaneously solve the four time evolution equations for $T_{b}, T_{\chi}, V_{\chi b}$, and x_{e} from redshift $z=1010$ to $z=10$. The baryon temperature T_{b} at $z=1010$ is assumed to be equal to the CMB temperature $T_{\gamma}=T_{0}(1+z)$, where $T_{0}=2.7 \mathrm{~K}$, since these two components are tightly coupled in the early universe. The temperatures for both DM components are assumed to be negligible in the early universe, so we set $T_{Z_{1}}=0$ and $T_{\chi}=0$ at $z=1010$. This is due to the fact that in our model, Z_{1} does not interact with the SM particles and $\Delta m \ll m_{\chi}$. We also set $x_{e}=0.05$ [51] and $V_{\chi b}=29 \mathrm{~km} / \mathrm{s}$ [10] at redshift $z=1010$.

We scan the parameter space spanned by ϵ and m_{χ} for three different decay lifetimes of $Z_{1}: \tau=2 \times 10^{16}$, 3×10^{17}, and $8 \times 10^{17} \mathrm{~s}$. In our analysis, we fix $\Delta m=1$ meV . In order to explain the EDGES data, the baryon temperature T_{b} has to be at least 5.1 K at $z=17$ within the 99% CL [22]. Fig. 2 shows the parameter space where the baryon temperature can be cooled to $T_{b}=5.1 \mathrm{~K}$ at $z=17$ for three different lifetimes of $Z_{1}: 2 \times 10^{16}$ (blue

Fig. 2. (color online) Parameter space spanned by the millicharge ϵ and the DM mass m_{χ}. Model points in which $T_{b}=5$ K at $z=17$ correspond to three different lifetimes: $\tau=2 \times 10^{16}$ s (blue dot-dashed), $\tau=3 \times 10^{17} \mathrm{~s}$ (purple dashed), and $\tau=8 \times 10^{17} \mathrm{~s}$ (red solid), with the mass fraction of the millicharged DM component being $0.06 \%, 0.004 \%$, and 0.001% at $z=1100$, and $100 \%, 77 \%$, and 42% today, respectively. The green shaded region is excluded by various accelerator experiments, including SLAC electron beam dump [28], CMS [52], MiniBooNE and LSND [53], ArgoNeuT [54], milliQan demonstrator [55], and others [56, 57]. The gray shaded region indicates the parameter region excluded by the dark matter direct detection (DMDD) experiments; above the DMDD region, millicharged DM is absorbed by the rocks on top of underground labs [22,58]. The magenta region is ruled out by the rocket experiment XQC for mass fractions: $f=100 \%$ (solid) [59], $f=1 \%$ (solid) [59], and $f=0.4 \%$ (solid) [58]. The brown shaded region is excluded by the SN1987A data [60]. The black dashed vertical line indicates the upper bound on DM mass due to $\Delta N_{\text {eff }}$ from CMB [12,33]. The black dotted line indicates the parameter space of the minimal millicharged DM model with a mass fraction of 0.4% to explain EDGES data [22].
dot-dashed), 3×10^{17} (purple dashed), and $8 \times 10^{17} \mathrm{~s}$ (red solid) ${ }^{1)}$. Millicharged DM is mainly constrained by CMB around $z \simeq 10^{3}$ [61]. The mass fractions of χ at $z=1100$ are about $0.06 \%, 0.004 \%$, and 0.001% for the lifetimes $\tau=2 \times 10^{16}, 3 \times 10^{17}$, and $8 \times 10^{17} \mathrm{~s}$, respectively, which satisfy the CMB bound $f_{\chi}<0.4 \%$ [20]. However, in our model, the mass fraction of the millicharged DM increases with redshift. Energy injections after the recombination can further influence the CMB power spectrum and thus, are constrained by the CMB data (see Refs. [6266]). Thus, we compute the mass fractions of χ at $z=600$, which are about $0.15 \%, 0.01 \%$, and 0.004% for the lifetimes $\tau=2 \times 10^{16}, 3 \times 10^{17}$, and $8 \times 10^{17} \mathrm{~s}$, respectively. Because the mass fractions for all the models con-

[^2]Table 1. Benchmark model points. All the masses are in unit of MeV . We take $g_{2}^{\chi}=g_{3}^{\chi}=1$ in our analysis.

Model	m_{1}^{\prime}	m_{1}	m_{2}	m_{3}	m_{4}	m_{χ}	Δm	θ	ϵ	$\tau_{Z_{1} / \mathrm{s}}$
A	160	10^{-13}	1.55	10^{8}	2.76×10^{3}	~ 80	10^{-9}	6.1×10^{-18}	8×10^{-5}	8×10^{17}
B	400	10^{-8}	1.25×10^{-4}	10^{8}	3.45×10^{3}	~ 200	10^{-9}	7.8×10^{-18}	1×10^{-4}	3×10^{17}

sidered in this analysis are smaller than 0.4% for redshift $z>600$, the CMB constraints are satisfied [20] ${ }^{1)}$. We find that the viable parameter in our model is much larger than the minimal millicharged DM model ${ }^{2}$, which is indicated by the black dotted line for 0.4% millicharged DM [22]. Various experimental constraints are considered in Fig. 2. These include, the underground dark matter direct detection (DMDD) experiments [22,58], the XQC experiment [58, 59], SN1987A [60], and the accelerator experiments: SLAC electron beam dump [28], CMS [52], MiniBooNE [53], LSND [53], ArgoNeuT [54], and milliQan demonstrator [55]. Two benchmark model points that can explain the 21 cm anomaly while satisfying various constraints are presented in Table 1. The mass fractions of the $\chi \mathrm{DM}$ at today are $100 \%, 77 \%$, and 42% for the lifetimes $\tau=2 \times 10^{16}, 3 \times 10^{17}$, and $8 \times 10^{17} \mathrm{~s}$, respectively. We find that the Z_{1} lifetime 2×10^{16} is nearly excluded by both the underground DMDD and the XQC constraints. In order to evade the XQC constraints, the Z_{1} lifetime has to be $\geqslant 2 \times 10^{16} \mathrm{~s}$.

VII. CONCLUSIONS

We construct a new millicharged DM model to explain the recent 21 cm anomaly. In our model, the millicharged $\mathrm{DM} \chi$ is a subcomponent in the early universe and is mainly produced via decays of the other DM component Z_{1}. The DM annihilation cross section $\bar{\chi} \chi \rightarrow Z_{2} Z_{2}$ is so strong that the relic abundance of χ due to thermal freeze-out is negligible. We compute the heating term due to the decay process $Z_{1} \rightarrow \bar{\chi} \chi$ and include it in our numerical calculations of the time evolution equation of the DM temperature. We find that the model can explain the EDGES 21 cm anomaly while satisfying various experimental constraints, including those from accelerators, XQC , underground DMDD , and CMB .

ACKNOWLEDGEMENT

We thank Ran Ding and Mingxuan Du for helpful discussions.

$$
\begin{equation*}
t(z)=\int_{z}^{z_{0}} \frac{\mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)\left(1+z^{\prime}\right)} \tag{A1}
\end{equation*}
$$

where H is the Hubble parameter. Here, we use $z_{0}=10^{6}$. We compute the Hubble parameter at redshift z via

$$
\begin{equation*}
H(z)=H_{0} \sqrt{\Omega_{R}(1+z)^{4}+\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}, \tag{A2}
\end{equation*}
$$

where $H_{0} \equiv 100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ is the present Hubble parameter, Ω_{R}, Ω_{m}, and Ω_{Λ} are the density of radiation, matter, and dark energy, respectively. In our analysis, we adopt the following values: $\Omega_{R}=2.47 \times 10^{-5} / h^{2}$ [67], $\Omega_{m}=0.308, \Omega_{\Lambda}=0.692$, and $h=0.678$ [46].

APPENDIX B: MILLICHARGED DM FORMULAS

We provide the formulas of $\sigma_{0, t}, Q_{b}, Q_{\chi}$, and $D\left(V_{\chi b}\right)$ for millicharged DM used in our analysis.

The scattering cross section between millicharged DM and baryons can be parameterized as $\sigma_{t}=\sigma_{0, t} v^{-4}$ where v is the relative velocity between DM and baryons, and $\sigma_{0, t}=2 \pi \alpha^{2} \epsilon^{2} \xi / \mu_{\chi t}^{2}$ where α is the fine structure constant, ϵ is the millicharge, $\mu_{\chi t}$ is the reduced mass of DM χ and the target particle t, and ξ is the Debye logarithm $[10,68] \xi=\ln \left[9 T_{b}^{3} /\left(4 \pi \epsilon^{2} \alpha^{3} x_{e} n_{H}\right)\right]$.

The baryon heating term due to interactions with millicharged DM is given by [10, 47]

$$
\begin{align*}
\frac{\mathrm{d} Q_{b}}{\mathrm{~d} t}= & n_{\chi} x_{e} \sum_{t=e, p} \frac{m_{t} m_{\chi}}{\left(m_{\chi}+m_{t}\right)^{2}} \frac{\sigma_{0, t}}{u_{\mathrm{th}, t}} \\
& \times\left[\sqrt{\frac{2}{\pi}} \frac{\mathrm{e}^{-r_{t}^{2} / 2}}{u_{\mathrm{th}, t}^{2}}\left(T_{\chi}-T_{b}\right)+m_{\chi} \frac{F\left(r_{t}\right)}{r_{t}}\right] \tag{B1}
\end{align*}
$$

where $\quad u_{\mathrm{th}}^{2} \equiv T_{b} / m_{b}+T_{\chi} / m_{\chi}, \quad r \equiv V_{\chi b} / u_{\mathrm{th}}, \quad$ and $\quad F(r)=$ $\operatorname{erf}(r / \sqrt{2})-\sqrt{2 \pi} r \mathrm{e}^{-r^{2} / 2}$. Here, we assume that electron and proton share a common temperature T_{b} with the hydrogen atom. The DM heating term due to interactions with baryons is given by

$$
\frac{\mathrm{d} Q_{\chi}}{\mathrm{d} t}=n_{H} x_{e} \sum_{t=e, p} \frac{m_{\chi} m_{t}}{\left(m_{\chi}+m_{t}\right)^{2}} \frac{\sigma_{0, t}}{u_{\mathrm{th}, t}}
$$

The time $t(z)$ at redshift z is given by

[^3]\[

$$
\begin{equation*}
\times\left[\sqrt{\frac{2}{\pi}} \frac{\mathrm{e}^{-r_{t}^{2} / 2}}{u_{\mathrm{th}, t}^{2}}\left(T_{b}-T_{\chi}\right)+m_{t} \frac{F\left(r_{t}\right)}{r_{t}}\right], \tag{B2}
\end{equation*}
$$

\]

where $n_{e}=n_{p}=n_{H} x_{e}$ is assumed.
The D term in Eq. (23) is given by [47]

$$
\begin{equation*}
D\left(V_{\chi b}\right)=\frac{\rho_{m} \sigma_{0}}{m_{\chi}+m_{b}} \frac{F(r)}{V_{\chi b}^{2}} \tag{B3}
\end{equation*}
$$

where we consider both electron and proton as the target baryons.

References

[1] S. Furlanetto, S. P. Oh, and F. Briggs, Phys. Rept. 433, 181301 (2006), arXiv:astroph/0608032[astro-ph]
[2] M. F. Morales and J. S. B. Wyithe, Ann. Rev. Astron. Astrophys. 48, 127-171 (2010), arXiv:0910.3010 [astroph.CO]
[3] J. R. Pritchard and A. Loeb, Rept. Prog. Phys. 75, 086901 (2012), arXiv:1109.6012[astroph.CO]
[4] J. D. Bowman, A. E. E. Rogers, R. A. Monsalve et al., Nature 555(7694), 67-70 (2018), arXiv:1810.05912[astroph.CO]
[5] A. Cohen, A. Fialkov, R. Barkana et al., Mon. Not. Roy. Astron. Soc. 472(2), 1915-1931 (2017), arXiv:1609.02312[astro-ph.CO]
[6] C. Feng and G. Holder, Astrophys. J. Lett. 858(2), L17 (2018), arXiv:1802.07432[astro-ph.CO]
[7] S. Fraser, A. Hektor, G. Hütsi et al., Phys. Lett. B 785, 159164 (2018), arXiv: $1803.03245[$ hep-ph]
[8] T. Moroi, K. Nakayama, and Y. Tang, Phys. Lett. B 783, 301-305 (2018), arXiv:1804.10378[hep-ph]
[9] E. D. Kovetz, I. Cholis, and D. E. Kaplan, Phys. Rev. D 99(12), 123511 (2019), arXiv:1809.01139[astro-ph.CO]
[10] J. B. Muñoz and A. Loeb, Nature 557(7707), 684 (2018), arXiv:1802.10094[astro-ph.CO]
[11] A. Fialkov, R. Barkana, and A. Cohen, Phys. Rev. Lett. 121, 011101 (2018), arXiv:1802.10577[astro-ph.CO]
[12] A. Berlin, D. Hooper, G. Krnjaic et al., Phys. Rev. Lett. 121(1), 011102 (2018), arXiv:1803.02804[hep-ph]
[13] R. Barkana, N. J. Outmezguine, D. Redigolo et al., Phys. Rev. D 98(10), 103005 (2018), arXiv:1803.03091[hep-ph]
[14] R. Barkana, Nature 555(7694), 71-74 (2018), arXiv:1803.06698[astroph.CO]
[15] T. R. Slatyer and C. Wu, Phys. Rev. D 98(2), 023013 (2018), arXiv:1803.09734[astro-ph.CO]
[16] L. B. Jia, Eur. Phys. J. C 79(1), 80 (2019), arXiv:1804.07934[hep-ph]
[17] N. Houston, C. Li, T. Li et al., Phys. Rev. Lett. 121(11), 111301 (2018), arXiv:1805.04426[hep-ph]
[18] P. Sikivie, Phys. Dark Univ. 24, 100289 (2019), arXiv:1805.05577[astro-ph.CO]
[19] E. D. Kovetz, V. Poulin, V. Gluscevic et al., Phys. Rev. D 98(10), 103529 (2018), arXiv:1807.11482[astro-ph.CO]
[20] K. K. Boddy, V. Gluscevic, V. Poulin et al., Phys. Rev. D 98(12), 123506 (2018), arXiv:1808.00001[astro-ph.CO]
[21] C. Creque-Sarbinowski, L. Ji, E. D. Kovetz et al., Phys. Rev. D 100(2), 023528 (2019), arXiv:1903.09154[astroph.CO]
[22] H. Liu, N. J. Outmezguine, D. Redigolo et al., Phys. Rev. D 100(12), 123011 (2019), arXiv:1908.06986[hep-ph]
[23] A. Aboubrahim, P. Nath, and Z. Y. Wang, EDGES data as a signal of the Stueckelberg mechanism in the early universe, arXiv: 2108.05819 [hep-ph]
[24] S. Clark, B. Dutta, Y. Gao et al., Phys. Rev. D 98(4),

043006 (2018), arXiv:1803.09390[astro-ph.HE]
[25] K. Cheung, J. L. Kuo, K. W. Ng et al., Phys. Lett. B 789, 137-144 (2019), arXiv:1803.09398[astro-ph.CO]
[26] C. Li and Y. F. Cai, Phys. Lett. B 788, 70-75 (2019), arXiv:1804.04816[astro-ph.CO]
[27] A. Halder, M. Pandey, D. Majumdar et al., JCAP 10, 033 (2021), arXiv:2105.14356[astro-ph.CO]
[28] A. A. Prinz, R. Baggs, J. Ballam et al., Phys. Rev. Lett. 81, 1175-1178 (1998), arXiv:hep-ex/9804008[hep-ex]
[29] S. Dubovsky, D. Gorbunov, and G. Rubtsov, JETP Lett. 79, 1-5 (2004), arXiv:hepph/0311189[hep-ph]
[30] A. Dolgov, S. Dubovsky, G. Rubtsov et al., Phys. Rev. D 88(11), 117701 (2013), arXiv:1310.2376[hep-ph]
[31] R. de Putter, O. Dor, J. Gleyzes et al., Phys. Rev. Lett. 122(4), 041301 (2019), arXiv:1805.11616[astro-ph.CO]
[32] J. H. Chang, R. Essig, and S. D. McDermott, JHEP 09, 051 (2018), arXiv: 1803.00993[hepph]
[33] C. Boehm, M. J. Dolan, and C. McCabe, JCAP 08, 041 (2013), arXiv:1303.6270[hep-ph]
[34] P. F. Depta, M. Hufnagel, K. Schmidt-Hoberg et al., JCAP 04, 029 (2019), arXiv:1901.06944[hep-ph]
[35] B. Kors and P. Nath, JHEP 07, 069 (2005), arXiv:hep-ph/0503208[hep-ph]
[36] D. Feldman, Z. Liu, and P. Nath, Phys. Rev. Lett. 97, 021801 (2006), arXiv:hep-ph/0603039[hep-ph]
[37] D. Feldman, Z. Liu, and P. Nath, JHEP 11, 007 (2006), arXiv:hep-ph/0606294[hep-ph]
[38] D. Feldman, Z. Liu, and P. Nath, Phys. Rev. D 75, 115001 (2007), arXiv:hep-ph/0702123[hep-ph]
[39] D. Feldman, Z. Liu, P. Nath et al., Phys. Rev. D 80, 075001 (2009), arXiv:0907.5392[hep-ph]
[40] M. Du, Z. Liu, and V. Tran, JHEP 05, 055 (2020), arXiv:1912.00422[hep-ph]
[41] P. Nath, Mod. Phys. Lett. A 25, 3003-3016 (2010), arXiv:0812.0958[hep-ph]
[42] T. J. Allen, M. J. Bowick, and A. Lahiri, Mod. Phys. Lett. A 6, 559-572 (1991)
[43] A. E. Nelson and J. Scholtz, Phys. Rev. D 84, 103501 (2011), arXiv:1105.2812[hep-ph]
[44] J. M. Cline, G. Dupuis, Z. Liu et al., JHEP 08, 131 (2014), arXiv:1405.7691[hep-ph]
[45] E. W. Kolb and M. S. Turner, Front. Phys. 69, 1-547 (1990)
[46] P. Ade et al., Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589[astro-ph.CO]
[47] J. B. Muñoz, E. D. Kovetz, and Y. Ali-Haïmoud, Phys. Rev. D 92(8), 083528 (2015), arXiv:1509.00029[astro-ph.CO]
[48] S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. Suppl. 128, 407-430 (2000), arXiv:astro-ph/9912182[astroph]
[49] P. J. E. Peebles, Principles of physical cosmology
[50] Y. Ali-Haimoud and C. M. Hirata, Phys. Rev. D 83, 043513 (2011), arXiv:1011.3758[astro-ph.CO]
[51] S. S. McGaugh, Phys. Rev. Lett. 121(8), 081305 (2018), arXiv:1808.02532[astro-ph.CO]
[52] S. Chatrchyan et al., Phys. Rev. D 87(9), 092008 (2013), arXiv: 1210.2311 [hepex]
[53] G. Magill, R. Plestid, M. Pospelov et al., Phys. Rev. Lett. 122(7), 071801 (2019), arXiv:1806.03310[hepph]
[54] R. Acciarri et al., Phys. Rev. Lett. 124(13), 131801 (2020), arXiv:1911.07996[hep-ex]
[55] A. Ball, G. Beauregard, J. Brooke et al., Phys. Rev. D 102(3), 032002 (2020), arXiv:2005.06518[hep-ex]
[56] S. Davidson, S. Hannestad, and G. Raffelt, JHEP 05, 003 (2000), arXiv:hep-ph/0001179[hep-ph]
[57] A. Badertscher, P. Crivelli, W. Fetscher et al., Phys. Rev. D 75, 032004 (2007), arXiv:hep-ex/0609059[hep-ex]
[58] T. Emken, R. Essig, C. Kouvaris et al., JCAP 09, 070 (2019), arXiv:1905.06348[hep-ph]
[59] M. S. Mahdawi and G. R. Farrar, JCAP 10, 007 (2018), arXiv:1804.03073[hep-ph]
[60] M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, The Dark Photon, arXiv: 2005.01515[hep-ph]
[61] W. L. Xu, C. Dvorkin, and A. Chael, Phys. Rev. D 97(10), 103530 (2018), arXiv:1802.06788[astro-ph.CO]
[62] T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner, Phys. Rev. D 80, 043526 (2009), arXiv:0906.1197[astro-ph.CO]
[63] T. R. Slatyer, Phys. Rev. D 87(12), 123513 (2013), arXiv:1211.0283[astro-ph.CO]
[64] N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. A 641, 6 (2020) [Erratum: Astron. Astrophys. C 652, 4 (2021)], arXiv: 1807.06209 [astro-ph.CO]
[65] M. Kawasaki, K. Nakayama, and T. Sekiguchi, Phys. Lett. B 756, 212-215 (2016), arXiv:1512.08015[astro-ph.CO]
[66] W. C. Huang, J. L. Kuo, and Y. L. S. Tsai, JCAP 06, 025 (2021), arXiv:2101.10360[astro-ph.CO]
[67] S. Dodelson, Modern Cosmology
[68] S. D. McDermott, H. Yu, and K. M. Zurek, Phys. Rev. D 83, 063509 (2011), arXiv:1011.2907[hep-ph]

[^0]: Received 1 November 2021；Accepted 25 November 2021；Published online 21 February 2022
 ＊Supported in part by the National Natural Science Foundation of China（11775109）
 ${ }^{\dagger}$ E－mail：zuoweiliu＠nju．edu．cn
 1）A strong DM－baryon interaction can provide too much cooling such that T_{21} is even smaller the EDGES data．Thus，the EDGES measurement can also be used to constrian DM－baryon interactions．

 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence．Any further distribution of this work must main－ tain attribution to the author（s）and the title of the work，journal citation and DOI．Article funded by SCOAP ${ }^{3}$ and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub－ lishing Ltd

[^1]: 1) The formulas to compute $t(z)$ are given in Appendix A.
 2) For a system without thermal equilibrium, $T_{Z_{1}}$ represents the average kinetic energy of Z_{1}. This treatment is acceptable since EDGES only measures the sky-averaged brightness temperature.
 3) See Appendix A for the calculation of H.
[^2]: 1) We note that the three curves will move towards the right direction if the magnitude of T_{21} becomes smaller.
[^3]: 1) We note that, because χ in our model is smaller at larger redshift, the allowed mass fraction of χ at $z \simeq 600$ should be somewhat larger than 0.4%, which is obtained assuming a constant mass fraction. A detailed analysis taking into account the variation of the mass fraction is beyond the scope of this study.
 2) In the minimal millicharged DM model, the millicharge interaction is responsible for both DM thermal freeze-out and cooling the cosmic hydrogen atoms.
