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Abstract: In this study, we construct a non-commutative gauge theory of the modified structure of the gravitation-
al field using the Seiberg-Witten map and the general tetrad fields of Schwarzschild space-time to show that the non-
commutative geometry removes the singularity at the origin of the black hole, thus obtaining a non-singular Schwar-

zschild black hole. The geodetic structure of this black hole presents new types of motion next to the event horizon

within stable orbits that are not allowed by the ordinary Schwarzschild spacetime. The noncommutative periastron

advance of the Mercury orbit is obtained, and with the available experimental data, we find a parameter of non-com-
mutativity on the order of 1072 s-kg™!. This result shows that the new fundamental length, V7®, is on the order of

1073 m.
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I. INTRODUCTION

In general relativity, the study of geodesic motion of a
test particle in curved space-time is the best probe for un-
derstanding the physics and geometry of gravitational ob-
jects. It leads to the possibility of solving the problem of
Mercury perihelion, which is considered one of the tri-
umphs of the general theory of relativity. The classifica-
tion of stable and unstable orbits is performed by draw-
ing effective potentials and checking their behavior at dif-
ferent points.

There are many references in the literature that are
concerned with detailed studies of the geodesic move-
ment of black holes, see for instance Refs. [1-25]. In this
paper, we are interested in studying the geodesic motion
in non-commutative space-time by imposing further com-
mutation relations between the position coordinates,
themselves. This non-commutativity leads to the modific-
ation of the Heisenberg uncertainty relations in such a
way that prevents measuring positions to a better accur-
acy than the Planck length. Non-commutativity is mainly
motivated by string theory because of its limit in the pres-
ence of a background field [26—33]. This idea results in
the concept of quantum gravity since quantifying space-
time leads to quantifying gravity. Quantum gravity ef-
fects can be neglected in the low-energy limit, while in
the strong gravitational field of a black hole, these effects
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have to be considered.

In non-commutative space-time the coordinate and
momentum operators satisfy the following commutation
relations

[¥,x"]=10", (1)

where @ is an anti-symmetric real matrix, which de-
termines the fundamental cell discretization of space-time
much in the same way as the Planck constant, 7, which
discretizes the phase space. Moreover, x* are the coordin-
ate operators in a non-commutative space-time defined by
the following transformations:

H= O p,. @)

In the non-commutative theory, ordinary products are
changed to star (Moyal) products "«," which for two ar-
bitrary functions, f(x) and g(x), is defined by

— >

(f *)(x) = f(x)exp [% @9, ay} g(x). 3)

There has recently been a lot of interest in studies that
investigate modifications introduced by non-commutativ-
ity on the geodesic structure in a black hole [34—45]. The
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treatment of gravity in the context of the non-commutat-
ive geometry approach can be studied by two theories. In
the first approach one adapts general relativity to the non-
commutative setting in an intuitive way [46, 47]. While
the second theory, it is based on axiomatically develop-
ing noncommutative versions of the Riemannian geo-
metry [46—50]. This study applies the first theory that de-
scribes noncommutative gravity as noncommutative
gauge theory. Here, we use a gravity gauge theory in non-
commutative space-time with star products and Seiberg-
Witten maps [51]. Non-commutative gauge gravity is a
theory of general relativity in curved space-time with pre-
servation of non-commutative space-time and is partly
based on implementing symmetries on flat non-commut-
ative space-time. In gauge theory of gravity, the action
transforms under ordinary Lorentz transformations of the
ordinary fields since these ordinary transformations, via
the Seiberg-Witten map, induce the non-commutative ca-
nonical transformations of non-commutative fields under
which the noncommutative action is invariant [52—54].

Our work, in this context, aims to write the geodesic
equation that arises from the metric tensor, which has
been corrected using star products between tetrad fields
and Seiberg-Witten maps. We, additionally, obtain non-
commutative corrections for each of the effective poten-
tials and the deviation angle per revolution and discuss
the issue of the stability of circular orbits in a non-com-
mutative Schwarzschild geometry.

This paper is organized as follows. In Sec. II, we
present the non-commutative corrections to the metric
field using star products between tetrad fields and
Seiberg-Witten maps. In Sec. III, we calculate the non-
commutative geodesic equation and obtain the non-com-
mutative effective potentials up to second order in the
non-commutativity parameter, and we determine the con-
dition for the stability of the circular orbits of particles in
noncommutative Schwarzschild space-time. We then cal-
culate the non-commutative adjustment to the perihelion
rotation value and give an estimate for the non-commut-
ative parameter. In the last section, we present our con-
cluding remarks.

II. NON-COMMUTATIVE GAUGE GRAVITY
FOR SPHERICALLY SYMMETRIC METRIC

Using the tetrad and spin connection formalism in the
gauge theory of gravity is unavoidable because of the re-
quirement to describe the spinor fields in this theory. We
denote the tetrad fields by ey with a=0,1,2,3, and the
spin connection by w@(x) = -wh(x), with [ab]=[01],
[02],[03],[12],[13],[23]. Then the Ricci scalar is given
by

R=¢ée) Rze )

where ¢, denotes the inverse of ey, satisfying the usual
properties

ey =0,  eie, =0y, (5)

and RZ’; denotes the curvature tensor

b b b - db - db
RZV =005 — ava)/‘j + (a)l‘j‘ W, — Wy Wy, )ncd. (6)

The action of the pure gravity in the gauge theory reads

1 1
S, = d*xeR =
g 16nt = TenG

where e = det(ey). Using the variational principle, 65 =0,
for the action in (7) with respect to e, we obtain the field

equation for the gravitational potentials ,€5s in vacuum

f d*xee! eZRZ’j , (D

R:=0, (8)

with R% = Rébey being the Ricci tensor.

We consider the general solution for the equation of
the gravitational field (8) in the case of static and spheric-
al symmetry with the metric

ds? = —A%(r)d? + B2(r)dr? + r2(d6* +sin®6d¢?),  (9)

where A(r) and B(r) are functions which depend only on
the radius, ». The tetrad formulation of general relativity
allows us to write the tetrad components as

8uv = ezeaw (10)

We choose a particular form of non-diagonal tetrad fields
satisfying the relation (10) as follows

A(r) 0 0 0
ot = 0  B(r)sinfcos¢ rcosfcos¢ —rsinfsing
H 0  B(r)sinfsing rcosfsing rsinfcose

0 B(r)cosé —rsinf 0

(11

We note that this particular form of tetrad fields can be
used for a stationary observer at spatial infinity [40].

The non-zero components of the spin connection for
this tetrad field are

A/
W ( ) sinfcos ¢,0,0, 0) s

H B(r)
wgz :(1:((:)) sin@sin¢,0,0, 0), (12)
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AI
WP = () c0s0,0,0,0],
H B(r)

wf:(o,o,o,[l B: )]sm 9) (13)

:(0,0, [1 - %]cosd)

[1—m}sm000s051n¢) (14)

(1)/213 =(0,0, [1 - %] sin ¢,

—[l—m} s1n90059005¢) (15)

Using Eq. (6), the spin connection, and the tetrads fields,
we obtain the non-zero components of the curvature
tensor, RZ’;, which are needed in the derivation of the ex-
pressions for the deformed tetrad fields

A'(r) A'(NB'(r)| .
RY! :_[ 50 B0 }sm@cow,
A'(r)
8% =— BZ(::) cosfcosa, (16)
Rgé :2;2)) sin@sin g,
A”(ry AB'N| . .
RY? =_[ 5B }sm@smqﬁ, (17)
A/
8% Bz(( ; cos@sing,
A'(r) .
8% =— 70) sinfcos @,
A'(r)
o :BZ_(rr) siné, (18)

R - [A”m ) A’(r)B'm] 056,

B(r) B2(r)
R;% = [1 - Bz;(r)]sinecos& (19)
B'(r)
g Bz(r)s n 9’
B=- Bz(( ;cosqﬁ,
Rg B;(( )) sinfcosfsing, (20)

1 . .
Rg =— [1 — Bz(r)] sin? fsing,

RY =- 11;;((;)) sinfcosfcos ¢, (21)
B'(r)
3=, S
RE = [1 - BZ(r)} sin®fcos ¢, (22)

where A’(r), B'(r) and A”(r) denote the derivatives of
first and second-order with respect to the r-coordinate.

In non-commutative space-time, in order to find the
deformed tetrad fields, é%(x,®), we use the Seiberg-Wit-
ten map, which describes the tetrad fields as a power
series in ® up to the second order [55]

e (x 0) e“(x)—lG)VpeWp(x)

+070Yel | (0)+0(©), (23)
where
ezvp —[w“a e +(6 w‘”—i—R )ed]ncd, (24)
1
eva/lr 32 [2{RTVaR,up}ab c _ (D Rcd+a Rcd)e Nm
—{Wy, (DpRry + 8RN € — Oc{wy, (8w,
+ Rpu)}abeﬁ - (cuf,dﬁpe;f + (apw;cld + R/C)Z) e?)ﬂdm
+20,0 3,05 — 20, (9w + R%) e
— {wy. (Bpwa + Ry )Y Orel, — (Dt + Rey)
X (wsdapei? + ((apw/l + Rp/l)) e:/n) ndm]ncb 5
(25)
and
(.8 =(a"B" + @) nea
[a, ﬂ ( acﬁdb ﬁac db)ncd (26)
DyRab = 0, Rab + (iR + wlRi%). 27)

The complex conjugate, éZT(x, ®), of the deformed tetrad

field is obtained from the Hermitian conjugate of the rela-
tion (23)

247 (x,0) =€l (x) +i0"efl, (x)

Vo @AT &4
+O"O €ypir

() +0(0%), (28)
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and the real deformed metric is given by [52]

~bt

. 1¢. .
8uw(x,0)= 3 [ez #8485 x eff ] Nab - (29)

Using the Seiberg-Witten map (25) we obtain the de-
formed tetrad field, &%(x,®), and its Hermitian conjugate,
&4 (x,0), given by relations (23) and (28). To simplify the
calculations, we only consider space-space non-commut-

ativity, ¢, =0, due to the known problem with unitary;
hence, we choose the following metric for the non-com-

2

32B4(r)

&) =A(r) +

+4A”(r) + BX(r)(=3A" (P B’ (r) +4(A” (r) + rA"" (r)))} sin® 6 + O(©°),

10
¢} =B(r)sinfcos ¢+ 1TB’(r) sin@sing +

+B(r)(B*(r)= B(r)B"(r))(1 + 3cos 26)} sinfcosp +O(@?)

i®
@% =B(r)sinfsin¢ — IZB/(I") sinfcos ¢ +

+B(r)(BA(r) —B(r)B” (r))(1 + 3c0s 26)} sin@sin ¢ + O(©?),

5 ©%sin’0

‘1T 3280

10
2! =rcosfcos - IZ [B(r) - 1]cos Osin +

—%B3(r)B’(r)(—9 +5cos 29)} cosfcosd +0(0?),

i®
@% =rcos@sing + IZ [B(r)—1]cosfcos ¢ +

—%83(r)B'(r)(—9 + 5cos(29))} cosBsing +O0(®),

2sind
64B4(r)

& =—rsinf+

+(=1+5B(r)) cos(26)) + 8rB(r)(B(r)B" (r) — 2B’*(r)) cos> 9} +0(0?),

1) 1
ey =—rsin@sing— IZ [(B(r)— Deos?0—((1- —)+2

2

N0 {

mutativity parameter, @*”

. wv=0,1,2,3, (30)

[= NNl
oo @ o

0

0

0
-0

where O is a real positive constant.
The non-zero components of the non-commutative
tetrad fields, ey, are

{=4B(r)(4rB' (A" (r)+ A’"(r)2B'(r)+ rB"(r))) + 16rA’(r)B"*(r) + B (r)(A’(r)B'(r)

3D
o {82B'(r)~ B(r)B"(r))sin® 0 + B*(r)B" (r)(3 + cos 26
64B3(r) (2B'(r)= B(r)B"(r))sin rB” (r)(3 + cos26)
(32)
2
e {8Q2B'(r) = B(r)B” () sin® 6 + B*(r)B" (r)(3 + cos 20)
(33)
{(8 —3B(r)B"*(r)- B(r)B" (r)(4 + (-3 + B(r))B(r))} cos@+ B(r)cos6+0(0%), (34)
@ /
32B%(r) {B' (0B (r)(=3+cos26)
+sin0|16rB”(r)— B*(r)(B'(r) - 4rB" (r)) —4B(r)(2B'(r) + 2rB”(r) + rB" (r))]
35)
e’ ’
32B4(r) {34(F)B (r)(=3 +cos(20))
+sin’ 6] 16rB”(r) ~ B (r)(B'(r) = 4rB" (r) =4B(r)(2B'(r) + 2rB*(r) + rB"(1))]
(36)
[sin?0[4B(r)B' (r)(4 + B*(r)) - 32rB™(r) + 8rB(r)B" (r)| B*(r)B'()(5 - B(r)
(37)
B g;((g r) sin’ 9} sinfcos ¢
[+3B*(r)B'(r)+ 36rB™*(r) + 8rB*(r)B" (r) — B(r)(1B'(r) + 16rB’*(r)
(38)

+12rB” (r)]sin® 6+ 2B>(r)B' (r) - 2B*(r)B' (r) cos? 9} (—sin@sing) + O(©%),
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. i®
&3 =rsinfcos ¢ + T

1
2
(B(r)—1)cos“ 68— ((1- %)4-2

B'(r)
B(r)

r)sin? 0} (—sin@sing)

2
+ —32(24 B {[+332(r)B’(r) +36rB(r) + 8rB*(r)B” (r) = B(r)(1B'(r) + 16rB(r)

+12rB” (r)]sin 0+ 2B>(r)B' (r) - 2B*(r)B' (r) cos? 9} (sinfcos p) + 0(0),

3 i0

8= 3or [(=B(r) + B(r)* +2rB'(r)) | sin® 6cos 6. (40)

Then, using definition (29), we obtain the non-zero

A(r)®?

(39)

components of the non-commutative metric, g,,, up to
the second-order in ®. We intend to analyze a geodesic
movement over a plane 6=x/2. Thus, the new metric
will assume a simpler diagonal form

Boo =—A*(r) - 650 {(=4B(r)(4rB' (r)A” (r) + A’ (r)2B'(r) + rB" (r))) + 16rA’(r)B™(r) + B> (r)(A’(r)B'(r)

+AA” (1) + B (r)(=3A"(NB'(r) +4A” (1) +rA”" (1))} + 0(®%),

2
g1 =B+

2
gn=r'+

2

g =r+ 9 {9B*(r) = 2B*(1)(3 - rB' (1)) + 40* B2(r) = rB(r)(B'(r)(11 + 32rB'(r))
16B4(r)

+12rB"(r)) + BX(r)(1 +27rB’ (r) + 16r23”(r))} +0(0>).

We can clearly see that if ® — 0 we obtain the commutat-
ive metric (9).

III. GEODESIC EQUATION IN THE NON-COM-
MUTATIVE SCHWARZSCHILD SPACETIME

The structure of space-time in the non-commutative
case is given by the line element

[ 2 [ 2
m(88m2+mr(—77+15 1——m)—8r2(—2+ 1——mD
r r
+

(41)
@ / 24 b
65°0) {B2(r) 8+ B(r)(=1+9B(r)) + B"(rB(r)(—4+ B(r) +9B(r)} +0(©?), (42)
16:)4@) {B'(r) (-B(r)(1+ B(r) + (8 + B(r)(~5+2B(r) + 16rB'(r)))) —4rB(r)B (1)} r + O(®?), (43)
(44)
ds* =goo(r,©)c*dr* + g1, (r, ©)dr?
+322(r, ©)d6” + Z33(1, ©)dg”. (45)

Inserting the Schwarzschild potential, A(r) = B~!(r) =
(1-@2m)/r)'/?, into Egs. (41), (42), (43), and (44), we ob-
tain the deformed Schwarzschild metric with corrections
up to the second order in ®

16/ (—2m + 1) ©’+0©"), (46)
. m(12m2+mr(—14+ ‘/1—2—m)—r2[5+ ‘ll—z—m])
g Zm d 2 3
(1 B _) 8r2(-2m+r)3 ©°+0©7, 47)
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G s e e e

~ 2
8n =r+

16(=2m+r)?

0> +0(0%), (48)

0’ +0(®3). (49)

5 3
g =r+ S gVlm

From these expressions, all non-zero components of the
metric acquire a singularity in the NC correction term at
r=2m, as well as the goy component. This result is in
contrast to that given in Ref. [52], which is a con-
sequence of using a general form of the tetrad field.

The corresponding event horizon in the non-commut-
ative Schwarzschild black hole can be obtain by solving
the equation, g, = 0.

NC
ry =rut

(4\/§+1)®+(10+ «/5)(9_2’ (50)

324/5 128 rH

where rg = 2m is the event horizon of the Schwarzschild
black hole in commutative space-time.

As is clear from Fig. 1, the event horizon in the NC
space-time is larger than that in the commutative space,
€ > rS, where the singularity of the Schwarzschild solu-
tion at r =0 is now shifted by the non-commutativity of
space to the finite radius, r = 2m. Thus, the NC structure
of space-time gives a non-singular black hole. This is a
new result and is in contrast to the works published in
Refs. [52, 56, 57] or in the theory of non-singularity black
holes where the non-commutativity eliminates the point-
like gravitational source [41-45], the Hayward black hole
[58— 61]. However, it agrees with the results of the
quantum-corrected black hole theory [62—64], but just in
the particular case where a = ry, with a in this theory be-
ing a minimal distance expected to be on the order of the
Planck length, lp. The result is obtained when the singu-
larity of the black hole in this theory is shifted to
r=a=rmn ~ Ip; hence, it is not a natural result because
one would need to fix the parameter, a, for a particular
value in order to observe the same result as in Fig 1. This
is contrary to our results, which emerge naturally from
the quantum structure of space-time itself when we im-
pose the NC property of the geometry to space-time,
without the need to impose a particular value to the NC
parameter, ®. Then, we conclude that the NC geometry
removes the singularity at the origin of the black hole and

1) U* = ¢~ 1(dx*/dr) denotes the 4-velocity.

10

[
increases the radius of the event horizon.

The corresponding Lagrangian can be written accord-
ing to the non-commutative spacetime structure de-
scribed by (45) as follows

2L = gu(r,®)c* + 8, (r,0)i% + Zsp(r,©)¢%,  (51)

where the dots represent the derivative with respect to the
affine parameter, 7, along the geodesic. Using the Euler-
Lagrange equation

d (oL oL
d—(a—)‘a— =0 (52)

and using the fact that L is independent of ¢ and ¢, we ob-
tain two conserved quantities

. Ey
Ey=p,=c’8 O =>f=——, 53
0=pi=Cgu(r,0)= 23,(r,0) (53)
1= ps=Zos(rOp = = ——. 54
Py = 8o ¢p=¢ G (54)

Using the invariance” of 2w U*UY = —h, together with

éﬂ

[N S

0 1 3 4 5 6 7

r
Fig. 1.  (color online) Behaviors of g, fora stationary ob-
server at spatial infinity in the non-commutative space-time
with a given ©.
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relations (53) and (54), we obtain the explicit relation for

i.2

Substituting (46), (47), and (49) into (55), and ex-
panding in ® up to O(®%), equation (55) can be written as

2 Eg 1 P )
= - : - _ +he?|, (55) S
c*8u(r,0)8,(r,0) g (r,0) \gyy(r,0) 2+ Veg(r,©) = 0, (56)
where we shall consider 4 = m, for massive particles. where
2
o\ [ 2 2ls s 5 m(—17+5/ 1—7”1)
(122 g2l 23
Veff(r’(a)—(l r)(r2+hc) E*+0® 373 1 ; =
2 2
I L m(64m2+m —49+13,/1——m)r+2(13—3,/1——m)r2J
r ) r r
(-2m+r)? tE 2m\?
16r5(1——m)
;
2 2
, m 12m2+m(—14+1/1——m)r—(5+1/1——m]]r2
r r
+ (—2 + hcz) +0(0%). (57)
r

It is clear that when ® — 0 we restore the commutative
effective potential for the Schwarzschild metric

lZ

Veff(r,®=0)=(1—z—m)(—2+hc2)—E2. (58)
r r

We show in Fig. 2 the influence of the parameters ©,
m, E, and [ on the effective potential for a massive
particle. From this figure, we observe that, in the NC
space-time, all the extremes of the effective potential are
located outside the event horizon for any value of the
used parameters. This deformed geometry adds a new
minimum to this effective potential, which gives us mul-
tiple stable circular orbits. In Fig. 2(a), when © increases,
the maximum peak of the curve decreases and shifts a
little off the event horizon. We note here that the diver-
gence around the event horizon is a consequence of the
non-commutative geometry, which plays the role of a
barrier preventing high-energy particles from falling into
the event horizon. In Fig. 2(b), we observe that the in-
crease of mass shifts the effective potential off the event
horizon and increases the depth of the potential well in
NC space-time. As we observe from Fig. 2(c), the effect-
ive potential depends on the energy of the test particle in
NC space-time (57). Then, the increase in energy leads to
an increase in the level of the effective potential and an
increase in the depth of the potential well. For low-en-
ergy particles, £ < 1, the new minimum of the effective

8r° (

1-2)
p

potential disappears and hence such particles fall into the
event horizon. In Fig. 2(d), it is worth mentioning that in
the NC space-time, there always exists a minimum of the
effective potential near the event horizon whatever the
value of the orbital momentum; when [ increases, the
depth of the potential well decreases and shifts towards
the event horizon. The other extremes of the effective po-
tential are restored when I > 2 V3m.

In this scenario, the NC geometry plays the role of the
potential well near the event horizon when all matter ab-
sorbed by the black hole is compressed into this region
before entering the event horizon. This leads to the form-
ation of an accretion disk with high density and high tem-
perature around the black hole, which becomes very
bright. This is known as "Black Hole Accretion Disk
Theory" (see Refs. [65—68]) and is also known in astro-
nomy as "Quasar" (see Refs. [69, 70]).

The new minimum appearing in the behaviors of the
effective potential in Fig. 2 can also be found in other
theories such as Reissner-Norstrom charged black hole
theory [71, 72], or the non-singularity black hole theory
[60, 61]. While these theories have a problem with this
minimum being located inside the event horizon and thus
cannot be interpreted as a stable circular orbit, in our
work, the non-commutativity shifts the new minimum
outside of the event horizon, thus giving a possibility to a
stable circular orbit near the event horizon. We elaborate
on this in the following section.
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merreees 20,998

9 10 11 12 13 14 15 16 17 18 19
r

Fig. 2.

(color online) The behaviors of the effective potential for a massive particle. (a) different ® and fixed: £=0.998, m=1, [ =4.2.

(b) different m and fixed: E =0.998, ® =0.2, and/ =4.2m. (c) different £ and fixed: m=1, ®=0.2, and =4.2. (d) different / and fixed:

E=0.998,0=02,and m=1.

A. Stability condition

In what follows, we treat the circular orbits and the
stability condition in the NC space-time in order to see
how the deformed geometry affects this class of orbits.
For this, we take the case of circular orbits (7 = 0), where
the corresponding effective potential must satisfy
Veir(r,©) = V2(r,0)— E* = 0. (59)

We can find the extreme of the non-commutative effect-
ive potential, given by the relation (57), in order to ob-
tain the stable and unstable orbits, by solving the equation

dVerr _ 0. (60)

dr
In NC space-time, a minimum value of Vg appears when
[> 0,1) which corresponds to the Newtonian case.
However, the existence of the maximum value of Vg re-
quires a condition on the angular momentum, /, namely
I > 2V3m. This corresponds to the relativistic case in
commutative space-time. It is shown that the gravitation-
al field gauge theory in NC Schwarzschild geometry us-
ing Seiberg-Witten maps is equivalent to the Newtonian
case and the relativistic case in commutative Schwarz-
schild geometry.

1) When [ = 0, in this case, the NC parameter play the role of angular momentum.

Table 1 shows the numerical solution of Eq. (60), rep-
resenting the variation of the unstable and the multiple
stable circular orbits as a function of the NC parameter ©.
The three types of circular orbits increase with increasing
©®. This behavior is represented in Fig. 3.

We conclude from Fig. 3 that as the NC parameter, ©,
increases, all the types of radii increase in (a), (b), and
(c). Therefore, the unstable circular orbital has a greater
radius in NC space as the parameter increases, indicating
a strong gravitational field. We also observe that when
the angular momentum, /, increases, the unstable and in-
ternal stable circular orbits decrease, while the external
stable circular orbit increases in (d), (e), and (f).

In astrophysics, the innermost stable circular orbit
(ISCO) has a significant importance in describing the mo-
tion of a test body around a compact object. This class of
orbits can be obtained from the stability condition given
by

d*Veg o
dr?

(61)

The numerical solution of these conditions show that
€. >6 in the commutative Schwarzschild space with
lerit, and we obtain two conditions of stability orbits (see
Fig. 4), ry < rh¢ <2.46729 and ¢ >6.00772, for a NC

7
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Schwarzschild space using Seiberg-Witten maps with the
parameter ® = 0.2, corresponding to multiple innermost
stable orbits.

We show in Fig. 4 the behavior of the composite con-
ditions given in Egs. (60) and (61) for fixed £ and for dif-
ferent values for the parameters I, m, and ®. As is clear
from the figure in the commutative space, we have just
one condition for the innermost stable circular orbit,
while the NC space increases this condition for the inner-
most stable circular orbit and adds a new condition for
the stable circular orbit near the event horizon of the stat-
ic black hole. Another note that can be seen from the fig-
ure is that when the mass of the black hole decreases, the
NC effect increases, suggesting that the NC correction

Table 1.

term is proportional to 1/m.

We show in Fig. 5 the behavior of the stability condi-
tion of circular orbits as a function of the mass, m, in (a)
and as a function of the NC parameter, ®, in (b). We no-
tice that when the mass increases, the two stability condi-
tions in the NC space-time increase, and similarly, when
the NC parameter increases, these two stability condi-
tions increase. From this behavior in Fig. 5, we can see
that the NC parameter, ®, plays the same role as the
mass, m, and this can be used to explain dark matter in
this universe.

In Table 2 we show the numerical solutions that are
obtained according to conditions given in Egs. (60) and
(61). Figure 4 represents the variation of the innermost

Some numerical values for the unstable circular orbit, ry,s, and the multiple stable circular orbits, ry,, in the commutative

and NC cases for different values of the parameter ® and with the fixed values E=0.998, [=4.2, m=1.

(C] 0 0.10 0.15 0.20 0.25 0.30
Ista(internal) 2.16349 2.21421 2.25862 2.29837 2.33435
Tuns 3.83278 3.83684 3.8419 3.84894 3.85791 3.86876
Ista(external) 13.8072 13.8074 13.8076 13.8078 13.8081 13.8086
25 (a) 4 (b) _ 13815 (¢)
= 247 §
€23 £3.9 ¢ 1381
E] = ©
<L 22t R
2.1t 3.8 13.805¢
0 01 02 03 04 05 0 01 02 03 04 05 0 0102 03 04 05
] © ]
(¢)
25, (d) 50 =2 ®)
©
3 247 0 g 15
s 23 e £ ol
L 22t 3
3r G
2.1 5
0 1 2 3 4 5 35 4 45 5 O35 4 45 5
I | I
Fig. 3. (color online) The behavior of the radius of the circular orbit for a particle in NC space-time. Unstable and multiple stable cir-

cular orbits as a function of ® for fixed /=42, E=0.998, and m =1 in (a), (b), and (c) and as function of / for fixed ® =0.2, E =0.998,

and m =1 in (d), (e), and ().

Fig. 4. (color online) The condition for stability of circular orbits for different ® and fixed other parameters: (a) E = 1, [, = 2 V3, and
m=1.b) E=1, luir= V3,and m=05.(c) E=1, l.q = 6V3/14, and m = 3/14.
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Fig. 5.

(b) different ® and fixed m = 0.50.

(color online) The condition for the stability of circular orbits for fixed E = 1. (a) different m, I =2 V3m, and fixed © = 0.2.

Table 2. Numerical solutions for the radius condition of the innermost stable circular orbit with different parameters ® and fixed
E=1, Ig=2V3m,andm.(a) m=1,(b) m=0.5, and (c) m =3/14.
(€] 0 0.10 0.15 0.20 0.25 0.30
T(aymin > 6 6.00127 6.00286 6.00507 6.00792 6.01138
r's <K F(aymin < 2.39118 2.48542 2.5655 2.63613 2.69974
T(b)min > 3 3.00254 3.00569 3.01008 3.01566 3.02241
Ty <K F(b)min < 1.28275 1.34987 1.40569 1.45373 1.49587
T(c)min = 1.28571 1.29157 1.29869 1.3083 1.32011 1.33377
rs K I(b)min < 0.616476 0.657125 0.688445 0.713273 0.733258
stable circular orbit radius as function of ®, which is
found to increase with increasing ®. We see here that the 61 T T
NC space predicts a new stable circular orbit near the o N
event horizon, which is absent in the commutative space. 41 / AN
This is shown in Fig 6. / N\
From the two Tables 1 and 2, we conclude that the / '\.\
. . . . + /
NC space increases the radius of the stable circular orbits 2 / \
and adds a possibility of multiple stable circular orbits / |
near the event horizon of a static black hole. 011 |
. |
B. Orbital motion \'\_ /
In order to obtain the analytic formula for the peri- —21 \‘\_ /."
astron advance, we need to obtain the equation of motion AN /
(56) as a function of ¢. To achieve this, we use the angu- —4 1 N\ i
lar momentum Eq. (54) to write r = r(¢) N e
dr drdg | dr . —61, # e # #
dr  dpdr  §sp(r.0)dg’ -6 -4 -2 0 2 4 6
Fig. 6. (color online) Position of the innermost stable circu-
We substitute this into Eq. (56), and we obtain lar orbit with E=1, m=1, h=1, and L =2V3. The circle
with a solid line represents ISCO for the Schwarzschild black
dr\2 §2 (r,®) hole (black disk in center) in the commutative case, ® = 0. The
(d_¢) = —M)l—z Ve (1,0), (63) dashed line represents the NC event horizon, the dot lines rep-

where we use relations (56) and (57) in the case of a
massive particle, h = mJ.

resent the new ISCO in internal region (near the event hori-

zon), and the dot-dashed lines represents ISCO in external re-
gion for the Schwarzschild black hole in the NC case ® =0.3.
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We define a new variable, u = 1/r; thus, we find

(du )2 B (E*- m%cz) N 2mm?c?

0
do 2 [

u—u*+2mu’ - ©° {—u4(1 —2mu)(5

5 3 1
__(E2+(—1+2mu)(m%c2+lzu2))X(g—g 1—2mu+ Emu(—17+

. (Ezmu3(64u2m2 +mu(=49 + 13 V1 = 2mu) +2(13-3V1 - 2mu)))

1612(1 = 2mu)?

mu(m3c? + Pu)(120m? + mu(—=14 + V1= 2mu) — (5 + V1 -2mu))
+

812(1 = 2mu)

Using the fact that mu < 1, we rewrite the above
equation in a linear form stopping at 3™ order in u, and
hence, we find

u—u®+2mu’

du\> (E%- m(z)cz) 2mm(2)c2
@ - 2 + 2
2

¢
+ Y {(E2 —mécz)u2 + m(Sm(z)c2 - 4E2)u3} . (65)

Taking the derivative of the above equation with respect
to ¢ yields

d’u mmgcz T P
d7¢2+u=l—2+3mu +ﬁ{(E —myc u
3
+.éE@n%c2-4E2nﬂ}, (66

which is the non-commutative geodesic equation.
In Fig. 7, we plot the geodesic Eq. (65) for a massive

1-2 +1 (17+ > )+ mu )
=== VN1-2mu +—mu|- 5
8 8 16 VI=2mu) (1 -2mu):
5 )+ m2u? )
VI—2mu) (1-2mu):
}+O(®4).
(64)

particle around a NC Schwarzschild Black Hole, for dif-
ferent values of / and E and with a fixed black hole mass,
m=3/14. As is clear from (a) and (b), the non-commut-
ativity of space-time decreases the major semi-axis of the
particle orbit, which remains stable. This signifies that the
NC effects are responsible for increasing the strength of
the gravitational field.

C. Periastron advance of Mercury orbit

Let us write this equation into perturbation form of
the Keplerian trajectory equation

d2
L L {C))

w TR ©n

-20 -15 -10 -5 0 5 10

Fig. 7.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

(color online) Time-like geodesic for a test particle, 2 =1, around a non-commutative Schwarzschild Black-Hole with differ-

ent values of ® and for fixed values of the parameters in the planed = n/2: (a) M =3/14, [=1.586, and E =0.993. (b) M =3/14, [=0.915,

and E =0.975.
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2
g(u) = 3mu® + ;D?{(E2 —mgcz)u+ 37m X (Sméc2 —4E2)u2}.

Following the same steps as in Ref. [73], we obtain the

deviation angle after one revolution

Ag = % (68)
dg(u)

du lu=1/b . . .
b =ma(1 —e*), with & and e denoting the major semi-axis

and the eccentricity of the movement. Using relation (68),
we find the deviation angle in the NC space

where g =

, and the distance, b, is defined by

62GM E2/c2 — m2e?
Ap=—" +7r®2[—( o/ =)

“Za(l-e2) 2ma(l —e?)
6(m2c? — E2 /2 3m2c2
(mge o/c) mge . 69)
a2(1-e2)? 2a2(1-¢2)?

We have thus found a result that is quite close to that
found in Ref. [40], where just the star product was used,
while in our work, we used the Seiberg-Witten map. Us-
ing the relativistic relation of dispersion, we find
67GM [ mgvie?
= +7

a(l-e?) 2GMa(l - e?)

2.2 2.2
6m0v 3mge ]

A¢

T2 2a2(1-p (70)

It is clear that the first term represents the well-known
predictions of general relativity, as well as a correction
that is dependent on the NC parameter.

For a numerical application, we take the case of the
planet Mercury. We find that the NC perihelion shift is
given by

| 6onc |= (1.96689 % 10°)@%Kg? s . (71)

The general relativity prediction and the observed perihe-
lion shift for Mercury are given in Ref. [74] by

OPobs = 27 (7.98734 +0.00037) X 1078 rad/rev, (72)

Spor = 271(7.98742) x 1078 rad/rev . (73)

Comparing the NC correction to the observable data
(] 6¢nc 1= 6dhops ), We estimate the value of ® to be

®~1.597x10s-Kg ™', (74)

or equivalently
ViO ~ 1.029x 107°m. (75)

We can then define a lower bound for ® using

| Spnc| < 10¢GR — Opobs | & 2m(1 x 107'?) rad/rev.  (76)

Thus, we get

®<5.0553x1078s-kg™!, (77)
or equivalently
ViO <5.7876 x 103 'm. (78)

It is clear that the NC parameter, O, is very small, and it
is remarkable that our result is very close to that obtained
in Refs. [37, 38], where classical mechanics in NC flat
space is used. We note that our result has a difference on
the order of 107! relative to the result obtained in Ref.
[38], which occurs because we used a curved space-time.
Furthermore, the result of Ref. [37] includes a new de-
gree of freedom, y, and for the specific value of y used
therein, one obtains the same result as ours. This result
leads us to the same conclusion arrived at in Ref. [38],
that planetary systems are very sensitive to the NC para-
meter. In this way the NC parameter plays the role of a
fundamental constant of the system to describe the micro-
structure of space-time in this region. Thus any small
change in ® implies a sensible change to our system at a
large scale.

Comparing our result with the Planck length, we find
VA® > Lp. The NC parameter also has a lower bound,
which is the Planck scale, Lp

Vi® < (3.5808 x 101)Lp. (79)

Using natural units, we obtain the upper bound of the en-
ergy

3.39x10"GeV <

1
, (80)
VhO
which also has an upper bound given by Planck energy
Ep.

IV. CONCLUSIONS

In this study, we investigated the geodesic motion of
a test particle in NC Schwarzschild space-time. By using
the Seiberg-Witten map and a general form of the tetrad
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field for the Schwarzschild black hole, we showed that all
the non-zero components of the deformed metric,
2,0(r,0), acquire a singularity in the NC correction term
at the value r =2m, which are absent in Ref. [52]; this
singularity in the componentggremoves the singularity at
the origin, r =0, of the black hole. This result emerged
naturally from the NC structure of space-time, itself. We
then obtained a non-singular black hole and we showed
that the event horizon in NC space-time is bigger than in
the commutative case, rhC > r; thus, the Schwarzschild
radius plays the role of the radius of the compact object
inside the NC black hole.

The NC effective potential of the particles in the NC
Schwarzschild space-time was calculated and through de-
tailed analysis, new stable circular orbits appear near the
event horizon. Therefore, the geodetic structure of this
black hole presents new types of motion next to the event
horizon within stable orbits that are not allowed by

Schwarzschild space-time. This difference around the
event horizon is a result of the non-commutative geo-
metry, which acts as a barrier to prevent particles from
falling into the event horizon. As in NC space-time, the
commutativity parameter plays the same role as the mass
of black hole, which can be used to explain dark matter.
Finally, we found that the NC space-time decreases
the major semi-axis of the particles orbit. This indicates
that the effects of the non-commutativity increase the
strength of the gravitational field. Then, we obtained the
NC periastron advance of Mercury's orbit and compared
it with experimental data to obtain a value for the ® para-
meter on the order of 107>s-kg™!, which gives observ-
able deviation in the perihelion shift of Mercury. The
lower bound to Vi® shows that the NC propriety ap-
pears before the Planck length scale. However, for a bet-
ter comparison, it will be necessary to study in a non-
commutative curved space with the presence of torsion.
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