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Abstract: In this study, we construct a non-commutative gauge theory of the modified structure of the gravitation-
al field using the Seiberg-Witten map and the general tetrad fields of Schwarzschild space-time to show that the non-
commutative geometry removes the singularity at the origin of the black hole, thus obtaining a non-singular Schwar-
zschild black hole. The geodetic structure of this black hole presents new types of motion next to the event horizon
within stable orbits that are not allowed by the ordinary Schwarzschild spacetime. The noncommutative periastron
advance of the Mercury orbit is obtained, and with the available experimental data, we find a parameter of non-com-
mutativity on the order of . This result shows that the new fundamental length, , is on the order of

.
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I.  INTRODUCTION

In general relativity, the study of geodesic motion of a
test particle in curved space-time is the best probe for un-
derstanding the physics and geometry of gravitational ob-
jects. It leads to the possibility of solving the problem of
Mercury perihelion,  which  is  considered  one  of  the  tri-
umphs of the general  theory of relativity.  The classifica-
tion of  stable  and  unstable  orbits  is  performed  by  draw-
ing effective potentials and checking their behavior at dif-
ferent points.

There  are  many  references  in  the  literature  that  are
concerned with  detailed  studies  of  the  geodesic  move-
ment of black holes, see for instance Refs. [1–25]. In this
paper,  we are interested in studying the geodesic motion
in non-commutative space-time by imposing further com-
mutation  relations  between  the  position  coordinates,
themselves. This non-commutativity leads to the modific-
ation  of  the  Heisenberg  uncertainty  relations  in  such  a
way that  prevents  measuring  positions  to  a  better  accur-
acy than the Planck length. Non-commutativity is mainly
motivated by string theory because of its limit in the pres-
ence  of  a  background field  [26–33].  This  idea  results  in
the  concept  of  quantum gravity  since  quantifying  space-
time leads  to  quantifying  gravity.  Quantum  gravity  ef-
fects  can  be  neglected  in  the  low-energy  limit,  while  in
the strong gravitational field of a black hole, these effects

have to be considered.
In  non-commutative  space-time  the  coordinate  and

momentum  operators  satisfy  the  following  commutation
relations 

[xµ, xν] = iΘµν , (1)

Θµν

h̄
xµ

where  is an  anti-symmetric  real  matrix,  which  de-
termines the fundamental cell discretization of space-time
much  in  the  same  way  as  the  Planck  constant, ,  which
discretizes the phase space. Moreover,  are the coordin-
ate operators in a non-commutative space-time defined by
the following transformations: 

x̂µ = xµ−Θµν pν . (2)

∗
f (x) g(x)

In the non-commutative theory, ordinary products are
changed to  star  (Moyal)  products  " ," which for  two ar-
bitrary functions,  and , is defined by 

( f ∗g)(x) = f (x)exp
[

i
2
Θµν
←−
∂ µ
−→
∂ ν

]
g(x) . (3)

There has recently been a lot of interest in studies that
investigate modifications introduced by non-commutativ-
ity on the geodesic structure in a black hole [34–45]. The
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treatment of gravity in the context of the non-commutat-
ive geometry approach can be studied by two theories. In
the first approach one adapts general relativity to the non-
commutative  setting  in  an  intuitive  way  [46, 47].  While
the second  theory,  it  is  based  on  axiomatically  develop-
ing noncommutative  versions  of  the  Riemannian  geo-
metry [46–50]. This study applies the first theory that de-
scribes  noncommutative  gravity  as  noncommutative
gauge theory. Here, we use a gravity gauge theory in non-
commutative  space-time  with  star  products  and  Seiberg-
Witten  maps  [51].  Non-commutative  gauge  gravity  is  a
theory of general relativity in curved space-time with pre-
servation  of  non-commutative  space-time  and  is  partly
based on implementing symmetries on flat  non-commut-
ative  space-time.  In  gauge  theory  of  gravity,  the  action
transforms under ordinary Lorentz transformations of the
ordinary  fields  since  these  ordinary  transformations,  via
the Seiberg-Witten map, induce the non-commutative ca-
nonical transformations of non-commutative fields under
which the noncommutative action is invariant [52–54].

Our work, in this context,  aims to write the geodesic
equation  that  arises  from  the  metric  tensor,  which  has
been  corrected  using  star  products  between  tetrad  fields
and  Seiberg-Witten  maps.  We,  additionally,  obtain  non-
commutative corrections  for  each of  the  effective  poten-
tials  and  the  deviation  angle  per  revolution  and  discuss
the issue of  the stability  of  circular  orbits  in  a  non-com-
mutative Schwarzschild geometry.

This  paper  is  organized  as  follows.  In  Sec.  II,  we
present  the  non-commutative  corrections  to  the  metric
field  using  star  products  between  tetrad  fields  and
Seiberg-Witten  maps.  In  Sec.  III,  we  calculate  the  non-
commutative geodesic equation and obtain the non-com-
mutative  effective  potentials  up  to  second  order  in  the
non-commutativity parameter, and we determine the con-
dition for the stability of the circular orbits of particles in
noncommutative Schwarzschild space-time. We then cal-
culate  the  non-commutative  adjustment  to  the  perihelion
rotation value and give an estimate for the non-commut-
ative parameter.  In  the  last  section,  we  present  our  con-
cluding remarks. 

II.  NON-COMMUTATIVE GAUGE GRAVITY
FOR SPHERICALLY SYMMETRIC METRIC

ea
µ a = 0,1,2,3

ωab
µ (x) = −ωba

µ (x) [ab] = [01],
[02], [03], [12], [13], [23]

Using the tetrad and spin connection formalism in the
gauge theory of gravity is unavoidable because of the re-
quirement to describe the spinor fields in this theory. We
denote  the  tetrad  fields  by ,  with ,  and  the
spin  connection  by ,  with 

.  Then  the  Ricci  scalar  is  given
by 

R = eµa eνb Rab
µν , (4)

eµa ea
µwhere  denotes  the  inverse  of  satisfying  the  usual

properties 

ea
µ eµb = δ

a
b , ea

µ eνa = δ
ν
µ , (5)

Rab
µνand  denotes the curvature tensor

 

Rab
µν = ∂µω

ab
ν −∂νωab

µ +
(
ωac
µ ω

db
ν −ωac

ν ω
db
µ

)
ηcd . (6)

The action of the pure gravity in the gauge theory reads 

S g =
1

16πG

∫
d4xeR =

1
16πG

∫
d4xeeµaeνbRab

µν , (7)

e = det(ea
µ) δS = 0

ea
µ

ea
µ

where . Using the variational principle, ,
for the action in (7) with respect to , we obtain the field
equation for the gravitational potentials , , in vacuum 

Ra
µ = 0 , (8)

Ra
µ = Rab

µνe
ν
bwith  being the Ricci tensor.

We consider  the  general  solution  for  the  equation  of
the gravitational field (8) in the case of static and spheric-
al symmetry with the metric 

ds2 = −A2(r)dt2+B2(r)dr2+ r2(dθ2+ sin2θdϕ2) , (9)

A(r) B(r)where  and  are functions which depend only on
the radius, r.  The tetrad formulation of  general  relativity
allows us to write the tetrad components as 

gµν = ea
µeaν . (10)

We choose a particular form of non-diagonal tetrad fields
satisfying the relation (10) as follows 

ea
µ =


A(r) 0 0 0

0 B(r) sinθcosϕ r cosθcosϕ −r sinθ sinϕ
0 B(r) sinθ sinϕ r cosθ sinϕ r sinθcosϕ
0 B(r)cosθ −r sinθ 0

 .
(11)

We  note  that  this  particular  form  of  tetrad  fields  can  be
used for a stationary observer at spatial infinity [40].

The  non-zero  components  of  the  spin  connection  for
this tetrad field are 

ω01
µ =

(
A′(r)
B(r)

sinθcosϕ,0,0,0
)
,

ω02
µ =

(
A′(r)
B(r)

sinθ sinϕ,0,0,0
)
, (12)
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ω03
µ =

(
A′(r)
B(r)

cosθ,0,0,0
)
,

ω12
µ =

(
0,0,0,

[
1− 1

B(r)

]
sin2 θ

)
, (13)

 

ω13
µ =

(
0,0,−

[
1− 1

B(r)

]
cosϕ,[

1− 1
B(r)

]
sinθcosθ sinϕ

)
, (14)

 

ω23
µ =

(
0,0,−

[
1− 1

B(r)

]
sinϕ,

−
[
1− 1

B(r)

]
sinθcosθcosϕ

)
. (15)

Rab
µν

Using Eq. (6), the spin connection, and the tetrads fields,
we  obtain  the  non-zero  components  of  the  curvature
tensor, , which are needed in the derivation of the ex-
pressions for the deformed tetrad fields
 

R01
01 =−

[
A′′(r)
B(r)

− A′(r)B′(r)
B2(r)

]
sinθcosϕ,

R01
02 =−

A′(r)
B2(r)

cosθcosϕ, (16)

 

R01
03 =

A′(r)
B2(r)

sinθ sinϕ,

R02
01 =−

[
A′′(r)
B(r)

− A′(r)B′(r)
B2(r)

]
sinθ sinϕ, (17)

 

R02
02 =−

A′(r)
B2(r)

cosθ sinϕ,

R02
03 =−

A′(r)
B2(r)

sinθcosϕ,

R03
02 =

A′(r)
B2(r)

sinθ, (18)

 

R03
01 =−

[
A′′(r)
B(r)

− A′(r)B′(r)
B2(r)

]
cosθ,

R12
23 =

[
1− 1

B2(r)

]
sinθcosθ, (19)

 

R12
13 =

B′(r)
B2(r)

sin2θ,

R13
12 =−

B′(r)
B2(r)

cosϕ,

R13
13 =

B′(r)
B2(r)

sinθcosθ sinϕ, (20)
 

R13
23 =−

[
1− 1

B2(r)

]
sin2 θ sinϕ,

R23
13 =−

B′(r)
B2(r)

sinθcosθcosϕ, (21)

 

R23
12 =−

B′(r)
B2(r)

sinϕ,

R23
23 =

[
1− 1

B2(r)

]
sin2 θcosϕ, (22)

A′(r) B′(r) A′′(r)where ,  and  denote  the  derivatives  of
first and second-order with respect to the r-coordinate.

êa
µ(x,Θ)

In  non-commutative  space-time,  in  order  to  find  the
deformed tetrad fields, ,  we use the Seiberg-Wit-
ten  map,  which  describes  the  tetrad  fields  as  a  power
series in Θ up to the second order [55] 

êa
µ(x,Θ) =ea

µ(x)− iΘνρea
µνρ(x)

+ΘνρΘλτea
µνρλτ(x)+O(Θ3) , (23)

where 

ea
µνρ =

1
4

[ωac
ν ∂ρe

d
µ+ (∂ρωac

µ +Rac
ρµ)e

d
ν]ηcd , (24)

 

ea
µνρλτ =

1
32

[
2{Rτν,Rµρ}abec

λ−ωab
λ (DρRcd

τν +∂ρR
cd
τν)e

m
ν ηdm

−{ων, (DρRτν+∂ρRτν)}abec
λ−∂τ{ων, (∂ρωµ

+Rρµ)}abec
λ−ωab

λ

(
ωcd
ν ∂ρe

m
µ +

(
∂ρω

cd
µ +Rcd

ρµ

)
em
ν

)
ηdm

+2∂νωab
λ ∂ρ∂τe

c
λ−2∂ρ

(
∂τω

ab
µ +Rab

τµ

)
∂νec
λ

−{ων, (∂ρωλ+Rρλ)}ab∂τec
µ−

(
∂τωµ+Rτµ

)
×

(
ωcd
ν ∂ρe

m
λ +

(
(∂ρωλ+Rρλ)

)
em
ν

)
ηdm

]
ηcb ,

(25)
and 

{α,β}ab =
(
αacβdb+βacαdb

)
ηcd ,

[α,β]ab =
(
αacβdb−βacαdb

)
ηcd . (26)

 

DµRab
ρσ = ∂µR

ab
ρσ+

(
ωac
µ Rdb
ρσ+ω

bc
µ Rda
ρσ

)
. (27)

êa†
µ (x,Θ)The complex conjugate, ,  of the deformed tetrad

field is obtained from the Hermitian conjugate of the rela-
tion (23) 

êa†
µ (x,Θ) =ea

µ(x)+ iΘνρea
µνρ(x)

+ΘνρΘλτea
µνρλτ(x)+O(Θ3) , (28)
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and the real deformed metric is given by [52] 

g̃µν(x,Θ) =
1
2

[
êa
µ ∗ êb†

ν + êa
ν ∗ êb†

µ

]
ηab . (29)

êa
µ(x,Θ)

êa†
µ (x,Θ)

Θ0i = 0

Using the Seiberg-Witten map (25) we obtain the de-
formed tetrad field, , and its Hermitian conjugate,

, given by relations (23) and (28). To simplify the
calculations, we only consider space-space non-commut-
ativity, ,  due  to  the  known problem with  unitary;
hence,  we choose the following metric  for  the non-com-

Θµνmutativity parameter, 
 

Θµν =


0 0 0 0
0 0 0 Θ

0 0 0 0
0 −Θ 0 0

 , µ,ν = 0,1,2,3 , (30)

where Θ is a real positive constant.

êa
µ

The  non-zero  components  of  the  non-commutative
tetrad fields, , are

ê0
0 =A(r)+

Θ2

32B4(r)
{−4B(r)(4rB′(r)A′′(r)+A′(r)(2B′(r)+ rB′′(r))) +16rA′(r)B′2(r)+B3(r)(A′(r)B′(r)

+4A′′(r))+B2(r)(−3A′(r)B′(r) +4(A′′(r)+ rA′′′(r)))
}
sin2 θ+O(Θ3), (31)

 

ê1
1 =B(r) sinθcosϕ+

iΘ
4

B′(r) sinθ sinϕ+
Θ2

64B3(r)

{
8(2B′(r)−B(r)B′′(r)) sin2 θ +B3(r)B′′(r)(3+ cos2θ)

+B(r)(B′2(r)−B(r)B′′(r))(1+3cos2θ)
}
sinθcosϕ+O(Θ3) (32)

 

ê2
1 =B(r) sinθ sinϕ− iΘ

4
B′(r) sinθcosϕ+

Θ2

64B3(r)

{
8(2B′(r)−B(r)B′′(r)) sin2 θ +B3(r)B′′(r)(3+ cos2θ)

+B(r)(B′2(r) −B(r)B′′(r))(1+3cos2θ)
}
sinθ sinϕ+O(Θ3), (33)

 

ê3
1 =
Θ2 sin2 θ

32B3(r)

{
(8−3B(r))B′2(r)−B(r)B′′(r)(4+ (−3+B(r))B(r))

}
cosθ+B(r)cosθ+O(Θ3), (34)

 

ê1
2 =r cosθcosϕ− iΘ

4
[B(r)−1]cosθ sinϕ+

Θ2

32B4(r)

{
B4(r)B′(r)(−3+ cos2θ)

+sin2 θ
[
16rB′2(r)−B2(r)(B′(r)−4rB′′(r))−4B(r)(2B′(r)+2rB′2(r)+ rB′′(r))

]
−1

2
B3(r)B′(r)(−9+5cos2θ)

}
cosθcosϕ+O(Θ3), (35)

 

ê2
2 =r cosθ sinϕ+

iΘ
4

[B(r)−1]cosθcosϕ+
Θ2

32B4(r)

{
B4(r)B′(r)(−3+ cos(2θ))

+sin2 θ
[
16rB′2(r)−B2(r)(B′(r)−4rB′′(r))−4B(r)(2B′(r)+2rB′2(r)+ rB′′(r))

]
−1

2
B3(r)B′(r)(−9+5cos(2θ))

}
cosθ sinϕ+O(Θ3), (36)

 

ê3
2 =− r sinθ+

Θ2 sinθ
64B4(r)

{
sin2 θ

[
4B(r)B′(r)(4+B3(r))−32rB′2(r)+8rB(r)B′′(r)

]
B2(r)B′(r)(5−B(r)

+(−1+5B(r))cos(2θ))+8rB(r)(B(r)B′′(r)−2B′2(r))cos2 θ
}
+O(Θ3), (37)

 

ê1
3 =− r sinθ sinϕ− iΘ

4

[
(B(r)−1)cos2 θ− ((1− 1

B(r)
)+2

B′(r)
B2(r)

r) sin2 θ

]
sinθcosϕ

+
Θ2

32B4(r)

{
[+3B2(r)B′(r)+36rB′2(r)+8rB2(r)B′′(r)−B(r)(7B′(r)+16rB′2(r)

+12rB′′(r))] sin2 θ+2B3(r)B′(r)−2B4(r)B′(r)cos2 θ
}
(−sinθ sinϕ)+O(Θ3), (38)
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ê2
3 =r sinθcosϕ+

iΘ
4

[
(B(r)−1)cos2 θ− ((1− 1

B(r)
)+2

B′(r)
B2(r)

r) sin2 θ

]
(−sinθ sinϕ)

+
Θ2

32B4(r)

{
[+3B2(r)B′(r)+36rB′2(r)+8rB2(r)B′′(r)−B(r)(7B′(r)+16rB′2(r)

+12rB′′(r))] sin2 θ+2B3(r)B′(r)−2B4(r)B′(r)cos2 θ
}
(sinθcosϕ)+O(Θ3), (39)

 

ê3
3 =

iΘ
4B(r)2

[
(−B(r)+B(r)3+2rB′(r))

]
sin2 θcosθ . (40)

Then,  using  definition  (29),  we  obtain  the  non-zero

g̃µν

θ = π/2

components  of  the  non-commutative  metric, ,  up  to
the  second-order  in  Θ.  We  intend  to  analyze  a  geodesic
movement  over  a  plane .  Thus,  the  new  metric
will assume a simpler diagonal form

g̃00 =−A2(r)− A(r)Θ2

16B4(r)
{−4B(r)(4rB′(r)A′′(r)+A′(r)(2B′(r)+ rB′′(r))) +16rA′(r)B′2(r)+B3(r)(A′(r)B′(r)

+4A′′(r))+B2(r)(−3A′(r)B′(r) +4(A′′(r)+ rA′′′(r)))
}
+O(Θ3), (41)

 

g̃11 = B2(r)+
Θ2

16B2(r)

{
B′2(r) (8+B(r)(−1+9B(r)))+B′′(r)B(r)(−4+B(r) +9B2(r))

}
+O(Θ3), (42)

 

g̃22 = r2+
Θ2

16B4(r)
{
B′(r)

(−B(r)(1+B(r))+ (8+B(r)(−5+2B(r)+16rB′(r)))
) −4rB(r)B′(r)

}
r+O(Θ3), (43)

 

g̃33 =r2+
Θ2

16B4(r)

{
9B4(r)−2B3(r)(3− rB′(r))+40r2B′2(r)− rB(r)(B′(r)(11+32rB′(r))

+12rB′′(r))+B2(r)(1+27rB′(r)+16r2B′′(r))
}
+O(Θ3). (44)

Θ→ 0We can clearly see that if  we obtain the commutat-
ive metric (9). 

III.  GEODESIC EQUATION IN THE NON-COM-
MUTATIVE SCHWARZSCHILD SPACETIME

The  structure  of  space-time  in  the  non-commutative
case is given by the line element 

ds2 =g̃00(r,Θ)c2dt2+ g̃11(r,Θ)dr2

+ g̃22(r,Θ)dθ2+ g̃33(r,Θ)dϕ2 . (45)

A(r) = B−1(r) =
(1− (2m)/r)1/2

Inserting the Schwarzschild potential, 
, into Eqs. (41), (42), (43), and (44), we ob-

tain the deformed Schwarzschild  metric  with corrections
up to the second order in Θ

−g̃00 =

(
1− 2m

r

)
+


m

88m2+mr
−77+15

√
1− 2m

r

−8r2

−2+

√
1− 2m

r


16r4(−2m+ r)


Θ2+O(Θ3) , (46)

 

g̃11 =

(
1− 2m

r

)−1

+


m

12m2+mr
−14+

√
1− 2m

r

− r2

5+ √
1− 2m

r


8r2(−2m+ r)3


Θ2+O(Θ3) , (47)
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g̃22 = r2+


m

m10−6

√
1− 2m

r

− 8m2

r
+ r

−3+5

√
1− 2m

r


16(−2m+ r)2


Θ2+O(Θ3) , (48)

 

g̃33 = r2+


5
8
− 3

8

√
1− 2m

r
+

m
−17+5/

√
1− 2m

r


16r

+

m2

√
1− 2m

r
(−2m+ r)2


Θ2+O(Θ3) . (49)

r = 2m g̃00

From  these  expressions,  all  non-zero  components  of  the
metric acquire a singularity in the NC correction term at

,  as  well  as  the  component.  This  result  is  in
contrast  to  that  given  in  Ref.  [52], which  is  a  con-
sequence of using a general form of the tetrad field.

g̃tt = 0

The corresponding event horizon in the non-commut-
ative  Schwarzschild  black hole  can be obtain  by solving
the equation, . 

rNC
H = rH+

4
√

5+1

32
√

5

Θ+ 10+
√

5
128

 Θ2

rH
, (50)

rH = 2mwhere  is the event horizon of the Schwarzschild
black hole in commutative space-time.

rNC
H > rC

H
r = 0

r = 2m

a = rH

lP

r = a = rmin ∼ lP

As is  clear  from Fig.  1,  the  event  horizon in  the  NC
space-time  is  larger  than  that  in  the  commutative  space,

, where the singularity of the Schwarzschild solu-
tion at  is  now shifted by the non-commutativity  of
space to the finite radius, . Thus, the NC structure
of  space-time  gives  a  non-singular  black  hole.  This  is  a
new  result  and  is  in  contrast  to  the  works  published  in
Refs. [52, 56, 57] or in the theory of non-singularity black
holes  where the non-commutativity  eliminates  the point-
like gravitational source [41–45], the Hayward black hole
[58– 61].  However,  it  agrees  with  the  results  of  the
quantum-corrected black hole theory [62–64], but just in
the particular case where , with a in this theory be-
ing a minimal distance expected to be on the order of the
Planck length, . The result is obtained when the singu-
larity  of  the  black  hole  in  this  theory  is  shifted  to

;  hence,  it  is  not  a  natural  result  because
one  would  need  to  fix  the  parameter, a, for  a  particular
value in order to observe the same result as in Fig 1. This
is  contrary  to  our  results,  which  emerge  naturally  from
the quantum  structure  of  space-time  itself  when  we  im-
pose  the  NC  property  of  the  geometry  to  space-time,
without  the  need  to  impose  a  particular  value  to  the  NC
parameter,  Θ.  Then,  we  conclude  that  the  NC  geometry
removes the singularity at the origin of the black hole and

increases the radius of the event horizon.
The corresponding Lagrangian can be written accord-

ing to  the  non-commutative  spacetime  structure  de-
scribed by (45) as follows 

2L = g̃tt(r,Θ)c2 ṫ2+ g̃rr(r,Θ)ṙ2+ g̃ϕϕ(r,Θ)ϕ̇2 , (51)

where the dots represent the derivative with respect to the
affine parameter, τ, along the geodesic.  Using the Euler-
Lagrange equation 

d
ds

(
∂L
∂ẋµ

)
− ∂L
∂xµ
= 0 , (52)

and using the fact that L is independent of t and ϕ, we ob-
tain two conserved quantities 

E0 = pt = c2g̃tt(r,Θ)ṫ⇒ ṫ =
E0

c2g̃tt(r,Θ)
, (53)

 

l = pϕ = g̃ϕϕ(r,Θ)ϕ̇⇒ ϕ̇ = l
g̃ϕϕ(r,Θ)

. (54)

g̃µνUµUν ≡ −hUsing the invariance1) of , together with

 

g̃ttFig.  1.    (color online) Behaviors  of  for a  stationary  ob-
server  at  spatial  infinity  in  the  non-commutative  space-time
with a given Θ.
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ṙ2
relations (53) and (54), we obtain the explicit relation for
 

ṙ2 = −
E2

0

c2g̃tt(r,Θ)g̃rr(r,Θ)
− 1

g̃rr(r,Θ)

(
l2

g̃ϕϕ(r,Θ)
+hc2

)
, (55)

h = m2
0where we shall consider  for massive particles.

O(Θ3)

Substituting (46),  (47),  and  (49)  into  (55),  and  ex-
panding in Θ up to , equation (55) can be written as
 

ṙ2+Veff(r,Θ) = 0 , (56)

where

Veff(r,Θ) =
(
1− 2m

r

)(
l2

r2 +hc2
)
−E2+Θ2


− l2

r4


5
8
− 3

8

√
1− 2m

r
+

m
−17+5/

√
1− 2m

r


16r

+

m2

√
1− 2m

r
(−2m+ r)2

+E2


m

64m2+m
−49+13

√
1− 2m

r

r+2
13−3

√
1− 2m

r

r2


16r5

(
1− 2m

r

)2



+

(
l2

r2 +hc2
)

m
12m2+m

−14+

√
1− 2m

r

r−
5+ √

1− 2m
r

r2

8r5

(
1− 2m

r

)


+O(Θ4) . (57)

Θ→ 0It  is  clear  that  when  we  restore  the  commutative
effective potential for the Schwarzschild metric 

Veff(r,Θ = 0) =
(
1− 2m

r

)(
l2

r2 +hc2
)
−E2 . (58)

E≪ 1

We show in Fig. 2 the influence of the parameters Θ,
m, E, and l on  the  effective  potential  for  a  massive
particle.  From  this  figure,  we  observe  that,  in  the  NC
space-time, all the extremes of the effective potential are
located  outside  the  event  horizon  for  any  value  of  the
used  parameters.  This  deformed  geometry  adds  a  new
minimum to this effective potential, which gives us mul-
tiple stable circular orbits. In Fig. 2(a), when Θ increases,
the  maximum  peak  of  the  curve  decreases  and  shifts  a
little off  the  event  horizon.  We note  here  that  the  diver-
gence  around  the  event  horizon  is  a  consequence  of  the
non-commutative  geometry,  which  plays  the  role  of  a
barrier preventing high-energy particles from falling into
the  event  horizon.  In Fig.  2(b), we  observe  that  the  in-
crease of mass shifts the effective potential off the event
horizon  and  increases  the  depth  of  the  potential  well  in
NC space-time. As we observe from Fig. 2(c), the effect-
ive potential depends on the energy of the test particle in
NC space-time (57). Then, the increase in energy leads to
an  increase  in  the  level  of  the  effective  potential  and  an
increase  in  the  depth  of  the  potential  well.  For  low-en-
ergy particles, ,  the new minimum of the effective

lcrt > 2
√

3m

potential disappears and hence such particles fall into the
event horizon. In Fig. 2(d), it is worth mentioning that in
the NC space-time, there always exists a minimum of the
effective  potential  near  the  event  horizon  whatever  the
value  of  the  orbital  momentum;  when l increases,  the
depth  of  the  potential  well  decreases  and  shifts  towards
the event horizon. The other extremes of the effective po-
tential are restored when .

In this scenario, the NC geometry plays the role of the
potential well near the event horizon when all matter ab-
sorbed  by  the  black  hole  is  compressed  into  this  region
before entering the event horizon. This leads to the form-
ation of an accretion disk with high density and high tem-
perature  around  the  black  hole,  which  becomes  very
bright.  This  is  known  as  "Black  Hole  Accretion  Disk
Theory" (see Refs.  [65–68]) and is  also known in  astro-
nomy as "Quasar" (see Refs. [69, 70]).

The new minimum appearing in the behaviors of  the
effective  potential  in Fig.  2 can  also  be  found  in  other
theories  such  as  Reissner-Norström  charged  black  hole
theory  [71, 72],  or  the  non-singularity  black  hole  theory
[60, 61].  While  these  theories  have  a  problem  with  this
minimum being located inside the event horizon and thus
cannot  be  interpreted  as  a  stable  circular  orbit,  in  our
work,  the  non-commutativity  shifts  the  new  minimum
outside of the event horizon, thus giving a possibility to a
stable circular orbit near the event horizon. We elaborate
on this in the following section. 

Geodesic equation in non-commutative gauge theory of gravity Chin. Phys. C 46, 105101 (2022)
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A.    Stability condition

ṙ = 0

In  what  follows,  we  treat  the  circular  orbits  and  the
stability  condition  in  the  NC  space-time  in  order  to  see
how  the  deformed  geometry  affects  this  class  of  orbits.
For this, we take the case of circular orbits ( ), where
the corresponding effective potential must satisfy 

Veff(r,Θ) = V2(r,Θ)−E2 = 0 . (59)

We can find the extreme of the non-commutative effect-
ive potential,  given  by  the  relation  (57),  in  order  to  ob-
tain the stable and unstable orbits, by solving the equation 

dVeff

dr
= 0 . (60)

Veff
l ⩾ 0,

Veff

lcrt > 2
√

3m

In NC space-time, a minimum value of  appears when
1) which  corresponds  to  the  Newtonian  case.

However, the existence of the maximum value of  re-
quires  a  condition  on  the  angular  momentum, l,  namely

.  This  corresponds  to  the  relativistic  case  in
commutative space-time. It is shown that the gravitation-
al field gauge theory in NC Schwarzschild geometry us-
ing  Seiberg-Witten  maps  is  equivalent  to  the  Newtonian
case and  the  relativistic  case  in  commutative  Schwarz-
schild geometry.

Table 1 shows the numerical solution of Eq. (60), rep-
resenting  the  variation  of  the  unstable  and  the  multiple
stable circular orbits as a function of the NC parameter Θ.
The three types of circular orbits increase with increasing
Θ. This behavior is represented in Fig. 3.

We conclude from Fig. 3 that as the NC parameter, Θ,
increases,  all  the  types  of  radii  increase  in  (a),  (b),  and
(c).  Therefore,  the  unstable  circular  orbital  has  a  greater
radius in NC space as the parameter increases, indicating
a  strong  gravitational  field.  We  also  observe  that  when
the angular momentum, l, increases, the unstable and in-
ternal  stable  circular  orbits  decrease,  while  the  external
stable circular orbit increases in (d), (e), and (f).

In  astrophysics,  the  innermost  stable  circular  orbit
(ISCO) has a significant importance in describing the mo-
tion of a test body around a compact object. This class of
orbits  can be obtained from the stability  condition given
by 

d2Veff

dr2 ⩾ 0 . (61)

rC
min ⩾ 6

lcrit

rs≪ rNC
min ⩽ 2.46729 rNC

min ⩾ 6.00772

The  numerical  solution  of  these  conditions  show  that
 in  the  commutative  Schwarzschild  space  with

, and we obtain two conditions of stability orbits (see
Fig.  4),  and ,  for  a  NC

E = 0.998 m = 1 l = 4.2
E = 0.998 Θ = 0.2 l = 4.2m m = 1 Θ = 0.2 l = 4.2

E = 0.998 Θ = 0.2 m = 1

Fig. 2.    (color online) The behaviors of the effective potential for a massive particle. (a) different Θ and fixed: , , .
(b) different m and fixed: , , and . (c) different E and fixed: , , and . (d) different l and fixed:

, , and .
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Θ = 0.2
Schwarzschild space using Seiberg-Witten maps with the
parameter ,  corresponding  to  multiple  innermost
stable orbits.

lcrit

We show in Fig. 4 the behavior of the composite con-
ditions given in Eqs. (60) and (61) for fixed E and for dif-
ferent values for the parameters , m, and Θ. As is clear
from  the  figure  in  the  commutative  space,  we  have  just
one  condition  for  the  innermost  stable  circular  orbit,
while the NC space increases this condition for the inner-
most  stable  circular  orbit  and  adds  a  new  condition  for
the stable circular orbit near the event horizon of the stat-
ic black hole. Another note that can be seen from the fig-
ure is that when the mass of the black hole decreases, the
NC  effect  increases,  suggesting  that  the  NC  correction

1/mterm is proportional to .
We show in Fig. 5 the behavior of the stability condi-

tion of circular orbits as a function of the mass, m, in (a)
and as a function of the NC parameter, Θ, in (b). We no-
tice that when the mass increases, the two stability condi-
tions in the NC space-time increase, and similarly, when
the NC  parameter  increases,  these  two  stability  condi-
tions  increase.  From this  behavior  in Fig.  5,  we  can  see
that  the  NC  parameter,  Θ,  plays  the  same  role  as  the
mass, m,  and  this  can  be  used  to  explain  dark  matter  in
this universe.

In Table  2 we  show the  numerical  solutions  that  are
obtained  according  to  conditions  given  in  Eqs.  (60)  and
(61). Figure  4 represents  the  variation  of  the  innermost

runs rsta

E = 0.998, l = 4.2, m = 1
Table 1.    Some numerical values for the unstable circular orbit, , and the multiple stable circular orbits, , in the commutative
and NC cases for different values of the parameter Θ and with the fixed values .

Θ 0 0.10 0.15 0.20 0.25 0.30

rsta(internal) 2.16349 2.21421 2.25862 2.29837 2.33435

runs 3.83278 3.83684 3.8419 3.84894 3.85791 3.86876

rsta(external) 13.8072 13.8074 13.8076 13.8078 13.8081 13.8086

l = 4.2 E = 0.998 m = 1 Θ = 0.2 E = 0.998

m = 1

Fig. 3.    (color online) The behavior of the radius of the circular orbit for a particle in NC space-time. Unstable and multiple stable cir-
cular orbits as a function of Θ for fixed , , and  in (a), (b), and (c) and as function of l for fixed , ,
and  in (d), (e), and (f).

 

E = 1 lcrit = 2
√

3

m = 1 E = 1 lcrit =
√

3 m = 0.5 E = 1 lcrt = 6
√

3/14 m = 3/14

Fig. 4.    (color online) The condition for stability of circular orbits for different Θ and fixed other parameters: (a) , , and
. (b) , , and . (c) , , and .
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stable  circular  orbit  radius  as  function  of  Θ,  which  is
found to increase with increasing Θ. We see here that the
NC  space  predicts  a  new  stable  circular  orbit  near  the
event horizon, which is absent in the commutative space.
This is shown in Fig 6.

From  the  two Tables  1 and 2,  we  conclude  that  the
NC space increases the radius of the stable circular orbits
and  adds  a  possibility  of  multiple  stable  circular  orbits
near the event horizon of a static black hole. 

B.    Orbital motion

r = r(ϕ)

In order  to  obtain  the  analytic  formula  for  the  peri-
astron advance, we need to obtain the equation of motion
(56) as a function of ϕ. To achieve this, we use the angu-
lar momentum Eq. (54) to write  

dr
dτ
=

dr
dϕ

dϕ
dτ
=

l
g̃ϕϕ(r,Θ)

dr
dϕ
. (62)

We substitute this into Eq. (56), and we obtain 

(
dr
dϕ

)2

= −
g̃2
ϕϕ(r,Θ)

l2
Veff(r,Θ) , (63)

h = m2
0

where  we  use  relations  (56)  and  (57)  in  the  case  of  a
massive particle, .

E = 1, lcrit = 2
√

3m m = 1 m = 0.5 m = 3/14

Table  2.    Numerical  solutions  for  the  radius  condition  of  the  innermost  stable  circular  orbit  with  different  parameters  Θ and fixed
, and m. (a) , (b) , and (c) .

Θ 0 0.10 0.15 0.20 0.25 0.30

r(a)min ⩾ 6 6.00127 6.00286 6.00507 6.00792 6.01138

rs ≪ r(a)min ⩽ 2.39118 2.48542 2.5655 2.63613 2.69974

r(b)min ⩾ 3 3.00254 3.00569 3.01008 3.01566 3.02241

rs ≪ r(b)min ⩽ 1.28275 1.34987 1.40569 1.45373 1.49587

r(c)min ⩾ 1.28571 1.29157 1.29869 1.3083 1.32011 1.33377

rs ≪ r(b)min ⩽ 0.616476 0.657125 0.688445 0.713273 0.733258

(a) (b)

E = 1 lcrit = 2
√

3m Θ = 0.2

m = 0.50

Fig. 5.    (color online) The condition for the stability of circular orbits for fixed . (a) different m, , and fixed .
(b) different Θ and fixed .

 

 

E = 1 m = 1 h = 1 lcrit = 2
√

3

Θ = 0

Θ = 0.3

Fig. 6.    (color online) Position of the innermost stable circu-
lar  orbit  with , , ,  and .  The  circle
with a solid line represents ISCO for the Schwarzschild black
hole (black disk in center) in the commutative case, . The
dashed line represents the NC event horizon, the dot lines rep-
resent the  new  ISCO  in  internal  region  (near  the  event  hori-
zon), and the dot-dashed lines represents ISCO in external re-
gion for the Schwarzschild black hole in the NC case .
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u = 1/rWe define a new variable, ; thus, we find (
du
dϕ

)2

=
(E2−m2

0c2)

l2
+

2mm2
0c2

l2
u−u2+2mu3−Θ2

{
−u4(1−2mu)

(
5
8
− 3

8

√
1−2mu +

1
16

mu
(
−17+

5
√

1−2mu

)
+

m2u2

(1−2mu)
3
2

)
− 2u2

l2
(
E2+ (−1+2mu)(m2

0c2+ l2u2)
)
×
(

5
8
− 3

8

√
1−2mu+

1
16

mu
(
−17+

5
√

1−2mu

)
+

m2u2

(1−2mu)
3
2

)

+

E2mu3(64u2m2+mu(−49+13
√

1−2mu)+2(13−3
√

1−2mu))
16l2(1−2mu)2


+

mu3(m2
0c2+ l2u2)(12u2m2+mu(−14+

√
1−2mu)− (5+

√
1−2mu))

8l2(1−2mu)

+O(Θ4) .

(64)

mu≪ 1
rd

Using  the  fact  that ,  we  rewrite  the  above
equation in  a  linear  form stopping at  3  order  in u,  and
hence, we find 

(
du
dϕ

)2

=
(E2−m2

0c2)

l2
+

2mm2
0c2

l2
u−u2+2mu3

+
Θ2

2l2
{
(E2−m2

0c2)u2+m(5m2
0c2−4E2)u3

}
. (65)

Taking the derivative of the above equation with respect
to ϕ yields 

d2u
dϕ2 +u =

mm2
0c2

l2
+3mu2+

Θ2

2l2

{
(E2−m2

0c2)u

+
3m
2

(5m2
0c2−4E2)u2

}
, (66)

which is the non-commutative geodesic equation.
In Fig. 7, we plot the geodesic Eq. (65) for a massive

m = 3/14

particle around a NC Schwarzschild Black Hole, for dif-
ferent values of l and E and with a fixed black hole mass,

.  As is clear from (a) and (b),  the non-commut-
ativity of space-time decreases the major semi-axis of the
particle orbit, which remains stable. This signifies that the
NC effects  are  responsible  for  increasing  the  strength  of
the gravitational field.
 

C.    Periastron advance of Mercury orbit

Let  us  write  this  equation  into  perturbation  form  of
the Keplerian trajectory equation
 

d2u
dϕ2 +u =

m
l̃2
+

g(u)
l̃2
, (67)

l̃ =
l

m0c
where , and
 

h = 1
θ = π/2 M = 3/14 l = 1.586 E = 0.993 M = 3/14 l = 0.915

E = 0.975

Fig. 7.    (color online) Time-like geodesic for a test particle, , around a non-commutative Schwarzschild Black-Hole with differ-
ent values of Θ and for fixed values of the parameters in the plane : (a) , , and . (b) , ,
and .
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g(u) = 3mu2+
Θ2

2l2

{
(E2−m2

0c2)u+
3m
2
× (5m2

0c2−4E2)u2
}
.

Following  the  same  steps  as  in  Ref. [73],  we  obtain  the
deviation angle after one revolution 

∆ϕ =
πg1

l̃2
, (68)

g1 =
dg(u)

du

∣∣∣∣
u=1/b

b = mα(1− e2)

where , and the distance, b, is defined by
, with α and e denoting the major semi-axis

and the eccentricity of the movement. Using relation (68),
we find the deviation angle in the NC space 

∆ϕ =
6πGM

c2α(1− e2)
+πΘ2

[
(E2

0/c
2−m2

0c2)

2mα(1− e2)

+
6(m2

0c2−E2
0/c

2)

α2(1− e2)2 +
3m2

0c2

2α2(1− e2)2

]
. (69)

We have thus found a result that is quite close to that
found in Ref. [40], where just the star product was used,
while in our work, we used the Seiberg-Witten map. Us-
ing the relativistic relation of dispersion, we find 

∆ϕ =
6πGM

c2α(1− e2)
+πΘ2

[
m2

0v2c2

2GMα(1− e2)

−
6m2

0v2

α2(1− e2)2 +
3m2

0c2

2α2(1− e2)2

]
. (70)

It  is  clear  that  the  first  term  represents  the  well-known
predictions  of  general  relativity,  as  well  as  a  correction
that is dependent on the NC parameter.

For  a  numerical  application,  we  take  the  case  of  the
planet  Mercury.  We  find  that  the  NC  perihelion  shift  is
given by 

| δϕNC |=
(
1.96689×1043

)
Θ2Kg2 · s−2

. (71)

The general relativity prediction and the observed perihe-
lion shift for Mercury are given in Ref. [74] by 

δϕobs = 2π (7.98734±0.00037)×10−8 rad/rev , (72)
 

δϕGR = 2π (7.98742)×10−8 rad/rev . (73)

| δϕNC |≈ δϕobs

Comparing  the  NC  correction  to  the  observable  data
( ), we estimate the value of Θ to be 

Θ ≈ 1.597×10−25s ·Kg−1 , (74)

or equivalently 

√
h̄Θ ≈ 1.029×10−29m . (75)

We can then define a lower bound for Θ using 

| δϕNC | ≤ |δϕGR−δϕobs | ≈ 2π(1×10−12) rad/rev . (76)

Thus, we get 

Θ ≤ 5.0553×10−28s ·kg−1 , (77)

or equivalently 

√
h̄Θ ≤ 5.7876×10−31m . (78)

10−1

It is clear that the NC parameter, Θ, is very small, and it
is remarkable that our result is very close to that obtained
in  Refs.  [37, 38],  where  classical  mechanics  in  NC  flat
space is used. We note that our result has a difference on
the  order  of  relative  to  the  result  obtained  in  Ref.
[38], which occurs because we used a curved space-time.
Furthermore,  the  result  of  Ref.  [37] includes  a  new  de-
gree  of  freedom, γ, and  for  the  specific  value  of γ used
therein,  one  obtains  the  same  result  as  ours.  This  result
leads  us  to  the  same  conclusion  arrived  at  in  Ref.  [38],
that planetary systems are very sensitive to the NC para-
meter.  In  this  way  the  NC parameter  plays  the  role  of  a
fundamental constant of the system to describe the micro-
structure  of  space-time  in  this  region.  Thus  any  small
change in Θ implies a sensible change to our system at a
large scale.
√

h̄Θ > LP

LP

Comparing our result with the Planck length, we find
.  The  NC  parameter  also  has  a  lower  bound,

which is the Planck scale,  

√
h̄Θ ≤ (3.5808×104)LP . (79)

Using natural units, we obtain the upper bound of the en-
ergy 

3.39×1014GeV ≤ 1
√

h̄Θ
, (80)

EP

which  also  has  an  upper  bound  given  by  Planck  energy
. 

IV.  CONCLUSIONS

In this study, we investigated the geodesic motion of
a test particle in NC Schwarzschild space-time. By using
the Seiberg-Witten map and a general  form of the tetrad
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g̃µν(r,Θ)
r = 2m

g̃00
r = 0

rNC
H > rC

H

field for the Schwarzschild black hole, we showed that all
the  non-zero  components  of  the  deformed  metric,

,  acquire a  singularity in the NC correction term
at  the  value ,  which  are  absent  in  Ref.  [52];  this
singularity in the component removes the singularity at
the  origin, ,  of  the  black  hole.  This  result  emerged
naturally from the NC structure of space-time, itself. We
then  obtained  a  non-singular  black  hole  and  we  showed
that the event horizon in NC space-time is bigger than in
the  commutative  case, ;  thus,  the  Schwarzschild
radius  plays  the  role  of  the  radius  of  the  compact  object
inside the NC black hole.

The NC effective potential of the particles in the NC
Schwarzschild space-time was calculated and through de-
tailed analysis, new stable circular orbits appear near the
event  horizon.  Therefore,  the  geodetic  structure  of  this
black hole presents new types of motion next to the event
horizon  within  stable  orbits  that  are  not  allowed  by

Schwarzschild  space-time.  This  difference  around  the
event horizon  is  a  result  of  the  non-commutative  geo-
metry,  which  acts  as  a  barrier  to  prevent  particles  from
falling  into  the  event  horizon.  As  in  NC space-time,  the
commutativity parameter plays the same role as the mass
of black hole, which can be used to explain dark matter.

10−25 s ·kg−1

√
h̄Θ

Finally,  we  found  that  the  NC  space-time  decreases
the  major  semi-axis  of  the  particles  orbit.  This  indicates
that  the  effects  of  the  non-commutativity  increase  the
strength of the gravitational field.  Then, we obtained the
NC periastron advance of  Mercury's  orbit  and compared
it with experimental data to obtain a value for the Θ para-
meter  on  the  order  of , which  gives  observ-
able  deviation  in  the  perihelion  shift  of  Mercury.  The
lower  bound  to  shows that  the  NC  propriety  ap-
pears before the Planck length scale. However, for a bet-
ter  comparison,  it  will  be  necessary  to  study  in  a  non-
commutative curved space with the presence of torsion.
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