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Abstract: The deformation and associated optimum/uniquely fixed orientations play an important role in the syn-
thesis of compound nuclei via cold and hot fusion reactions, respectively, at the lowest and highest barrier energies.
The choice of optimum orientation ( ) for the ‘cold or elongated’ and ‘hot or compact’ fusion configurations of
quadrupole ( ) deformed nuclei depends only on the +/- signs of -deformation [J. Phys. G: Nucl. Part. Phys. 31,
631-644 (2005)]. In our recent study [Phys. Rev. C 101, 051601(R) 2020], we proposed a new set of  (different
from the values reported for quadrupole deformed nuclei) after the inclusion of octupole deformation (up to ) ef-
fects. Using the respective  of -deformed nuclei for cold and hot optimum orientations, we analyzed the im-
pact  of  the  soft-  and  rigid-pear  shapes  of  octupole  deformed  nuclei  on  the  fusion  barrier  characteristics  (barrier
height  and barrier position ). This analysis is applied to approximately 200 spherical-plus-  deformed nucle-
ar partners, that is, 16O, 48Ca+octupole deformed nuclei. Compared with the compact configuration, the elongated fu-
sion configuration has a relatively larger impact on the fusion barrier and cross-sections owing to the inclusion of de-
formations up to .  Its  agreement with available experimental  data for the 16O+150Sm reaction ( =0.205, =-
0.055)  also improves  when the  optimum orientation degree of  freedom is  fixed in  view of  octupole  deformations.
This reinforces the fact that nuclear structure effects play an important role in the nuclear fusion process. Thus, octu-
pole deformed nuclei can be used for the synthesis of heavy and superheavy nuclei.
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I.  INTRODUCTION

In  a  nuclear  collision,  the  interaction  between  two
nuclei may lead to the formation of a compound nucleus
(CN) along with other competing mechanisms. However,
the fusion threshold barrier opposes the amalgamation of
two positively  charged  nuclei  owing  to  a  mutual  repuls-
ive Coulomb  potential.  If  a  projectile  nucleus  has  suffi-
cient kinetic energy, it may overcome/penetrate the barri-
er  posed  by  the  mutual  interaction  of  colliding  partners
and a new nuclear entity may be synthesized.

β3

The  fusion  barrier  characteristics  are  sensitive  to
mass/charge number, deformation, orientation, excitation
energy,  and  angular  momentum.  The  present  study  is
constrained to  analyze  the  impact  of  nuclear  deforma-
tions (up to ) and the related orientation degree of free-
dom in  terms  of  barrier  characteristics  and  the  con-
sequent effect on the fusion probability by selecting vari-
ous  spherical-plus-deformed  nuclei.  For  the  synthesis  of
heavy and superheavy elements, either of the two nuclear

β+2 β2 > 0

β+2

mechanisms,  namely  hot  and  cold  fusion  processes,  are
used [1-5]. These fusion phenomena have been described
successfully when either one or both of the colliding nuc-
lear  partners  are  deformed  [6-9]. For  these  types  of  tar-
get-projectile  combinations,  the  fusion  barrier  extracted
from the  total  interaction  potential  depends  on  the  de-
formation and orientation of  the  deformed nucleus  relat-
ive  to  the  direction  of  approach  of  the  colliding  partner
(spherical  or  deformed).  To  illustrate,  the  lowest  barrier
height and largest interaction distance between the collid-
ing nuclei exhibit the polar orientation (θ = 0° or 180°) of
a  prolate  (  or ) nucleus  and  leads  to  the  forma-
tion of a cold fusion configuration. On the other hand, the
highest barrier height and smallest interaction distance re-
lated to the equatorial orientation (θ = 90°) of  leads to
a  hot  fusion  process.  The  theories  used  to  illustrate  the
concept  of  hot  and  cold  fusion  processes  are  developed
based  on  the  uniquely  fixed  or  optimum  orientation  of
quadrupole deformed nuclei [10-12]. These optimum ori-
entations depend on the +/- signs of quadrupole deforma-
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tion.  As  a  consequence,  an  enhancement  is  observed  in
the fusion  probability  of  heavy/superheavy  nuclear  sys-
tems, with the inclusion of -deformed nuclei as the tar-
get,  projectile,  or  both  the  colliding  partners  [13-21].  In
addition,  the  relevance  of  higher-order  deformations
(with  axial-  and  reflection-symmetries)  is  also  analyzed
in  reference  to  the  fusion  barrier  characteristics  [22-26].
The  impact  of  the  reflection  symmetry-breaking  pear
shapes of  octupole  deformed  nuclei  requires  further  ex-
ploration  to  better  understand the  fusion  process.  Unlike
quadrupole deformed  nuclei,  there  are  very  few  experi-
mentally observed octupole ( ) deformed nuclei [27-34].
However, the exploration of octupole deformed nuclei is
important for extracting the appropriate nuclear structure
because significant  enhancements  can  be  found  in  elec-
tric dipole moments (EDMs) [27]. Also, in the nuclear fu-
sion  process,  it  has  been  observed  that  [35]  the  nonzero
EDMs in one of the fusion partners (16O+144Ba and 224Ra)
may  have  a  significant  impact  on  the  fusion  barrier  and
corresponding cross-sections.

θopt.
β3

β3

β2
θopt. β2

θopt. β3
β3

In a recent study [36], we worked on the optimum ori-
entations ( )  after  the inclusion of  deformations up to

 for the ‘cold or noncompact’ and ‘hot or compact’ fu-
sion  configurations.  The  octupole  deformation  ( ),
which  distorts  the  spherically  symmetric  or  quadrupole
deformed ( ) nuclei into pear shapes, significantly modi-
fies ,  in  reference to  those  obtained for -deformed
nuclei.  The  selection  of  for -deformed  nuclei  is
sensitive  to  the  magnitude  as  well  as  the  sign  of -de-
formation; hence,  the  considered  octupole  nucleus  op-
tions belonging to different  mass-regions of  the Periodic
Table are categorized as (i) the nuclei with weak or little

|β2| > |β3|
|β2| ⩽ |β3|

VB
RB

octupole deformation  compared  to  quadrupole  deforma-
tion and (ii) the nuclei with strong octupole deformation.
The  first  type  of  configuration  is  called  the  soft-pear
shape  ( )  and  the  second  is  called  the  rigid-pear
shape ( ). The main objective of the present study
is to investigate in detail the influence of cold and hot op-
timum  oriented  octupole  deformed  nuclei  on  the  fusion
barrier characteristics (barrier height  and barrier posi-
tion ) and hence on the fusion cross-sections for ener-
gies across the Coulomb barrier. To study the ‘cold’ and
‘hot’ optimum cases of octupole deformed nuclei in nuc-
lear fusion  reactions,  the  static  deformations  are  con-
sidered. The dynamical effect of quadrupole, octupole, or
higher-order deformations will be explored for the fusion-
fission mechanisms in future research.

β2

VB RB
σfus

β3

The  deformation  and  orientation  degrees  of  freedom
are introduced in the interaction potential to obtain the re-
lated barrier characteristics through the spherical harmon-
ic function of nuclear radii terms (see [37, 38] and Eq. (6)
of  the  manuscript).  The  radius  of  a  nucleus  is  estimated
from  the  center  to  the  surface  region.  Unlike  spherical-
symmetric  quadrupole  ( )  deformed  nuclei,  the  center
point of the symmetry-breaking pear shape is not situated
exactly at  the center.  One can visualize (in the graphical
representation of Fig. 1) the change in the interaction dis-
tance between the centers of the spherical-octupole pairs
of colliding nuclei and that of spherical-quadrupole com-
bination for the cold/noncompact and hot/compact fusion
configurations.  This  point  motivates  us  to  observe  the
corresponding  effects  on  the  fusion  barrier  (  and )
as well as the fusion cross-sections ( ). To extract the
exclusive role of deformations up to octupole, the  res-

β22 = 0.069 β32 = −0.163
Fig.  1.    (color  online)  The  graphical  representation  of  the  ‘cold  or  elongated ’  and  ‘hot  or  compact ’  fusion  configurations  of  the
16O+280Ra  ( , )  reaction.  The  upper  panel  represents  the  spherical-plus-quadrupole  deformed  combination,  and
lower panel presents spherical-plus-octupole deformed colliding partners.
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ults  are  compared  with  the  corresponding -case.  For
heavy-ion induced  reactions,  the  total  interaction  poten-
tial  constitutes  the  repulsive  and  attractive  potential
terms;  these  contributing  potentials,  that  is,  the  long-
range  repulsive  Coulomb  and  centrifugal  potentials,  are
well known [39]. However, the short range attractive nuc-
lear  potential  can  be  obtained  using  microscopic  as  well
as phenomenological  approaches.  It  is  relevant  to  men-
tion that the optimum orientations obtained for deforma-
tions up to  in Ref. [36] are independent of the choice
in nuclear  potential  and  the  nuclear  radius  term.  There-
fore, in this study, we obtained the nuclear potential from
the ‘pocket formula’ by Blocki et al. [40].

β3
β22 = 0.205,

β32 = −0.055

This study  explores  the  effect  of  octupole  deforma-
tion and  the  related  optimum  orientations  on  approxim-
ately 200 spherical-octupole pairs of colliding nuclei. For
this  combination,  the  doubly  magic  nuclei 16O  and 48Ca
are used as projectiles to strike an octupole deformed tar-
get.  The  considered  options  for  the  soft-  and  rigid-pear
shapes  of  octupoles  belong  to  different  mass-regions  of
the Periodic  Table.  For  the  previously  mentioned  reac-
tions, Section II describes the formalism used to determ-
ine  the  fusion  barrier  and  cross-sections.  In  Section  III,
we discuss the calculation and results; it is observed that
the  cold  configuration  criteria  of  could  reproduce  the
experimental  data  of  the 16O+150Sm  (

) reaction [1] across the Coulomb barrier en-
ergies. Finally, in Section IV, a brief summary is given. 

II.  METHODOLOGY
 

A.    Determination of the fusion barrier for spherical-
plus-deformed nuclei

VT (R, θ2)

VT (R, θ2)
RB

VC VN
h̄ωB RB

VT (R, θ2)
h̄ωB = h̄[|d2VT (R, θ2)/dR2|R=RB

/µ]1/2

The total interaction potential  for spherical-
deformed pairs is defined as a function of the separation
distance R between  the  centers  of  colliding  nuclei.  To
find the fusion barrier, the  is calculated at a dis-
tance  (barrier  position )  where  a  repulsive  Coulomb
( )  and  an  attractive  nuclear  potential  ( ) are  bal-
anced. Note that the barrier curvature ( ) at  is eval-
uated by taking the second derivative of , that is,

.
For the  spherical-deformed  case,  the  repulsive  Cou-

lomb potential for co-planar nuclei is given as [39] 

VC =
Z1Z2e2

R
+Z1Z2e2

∑
λ=2,3

Rλ2(α2)

Rλ+1

βλY (0)
λ

×
[

3
2λ+1

+

(
12

7(2λ+1)

)
βλY

(0)
λ

]
, (1)

βλ Y (0)
λ R2(α2)where , ,  and  represent  the  deformation

parameter, spherical harmonic function, and nuclear radi-

λ = 2,3us terms for a target nucleus.  represent the quad-
rupole and octupole deformations, respectively, which are
taken from  the  Nuclear  Data  Table  of  ground-state  de-
formations [41].

VN

VN

The nuclear proximity potential ( ) is obtained from
Blocki et  al. [40].  Here,  a  collective  formulation  for  the
deformed and coplanar oriented nuclei is considered [14,
26, 42-45], and  reads as 

VN = 4πR̄γbΦ(s0), (2)

VN 4πR̄γb

Φ(s0)

s0
R̄

Ri1 Ri2
ϕ = 0

where  is  a  product  of  two  terms;  one  [ ] de-
pends on the shape and geometry (relative orientation) of
the colliding nuclei and the other [ ] is a function of
a single  parameter,  that  is,  the  minimum  separation  dis-
tance  ( )  between  two  colliding  surfaces.  In  the  first
term,  the  mean  curvature  is  expressed  in  terms  of  the
radii  of  curvature  and , as  given  below  for  co-
planar nuclei ( ). 

1
R̄2
=

1
R11R12

+
1

R21R22
+

1
R11R22

+
1

R21R12
, (3)

R11 R12where the principal radii of curvature (  and ) for a
spherical projectile (i = 1) are given as 

R11(α1) =

[
R2

1(α1)+R
′2
1 (α1)

]3/2

R2
1(α1)+2R′2

1 (α1)−R1(α1)R′′

1(α1)
= R1(α1)

∵ R1(α1) = R01⇒ R
′

1(α1) = R
′′

1(α1) = 0,

R12(α1) =
R1(α1) sinα1

cos(π/2−α1−δ1)
=

R1(α1) sinα1

cos(π/2−α1− θ1+α1)

=R1(α1). (4)

δ1 = θ1−α1 θ1 = 0◦ α1 = 180◦Here, , , and .
i = 2

R21 R22

For the  deformed target  ( ),  the  principal  radii  of
curvature (  and ) are given as 

R21(α2) =

[
R2

2(α2)+R
′2
2 (α2)

]3/2

R2
2(α2)+2R′2

2 (α2)−R2(α2)R′′

2(α2)
,

R22(α2) =
R2(α2) sinα2

cos(π/2−α2−δ2)
. (5)

αi δi

R
′

i(αi) R
′′

i (αi)

Ri(αi) αi

The angles (  and ) for the deformed target (i = 2)
are depicted in Fig. 2, and further details may be seen in
references [36, 44]. In Eqs. (4) and (5),  and 
represent the  first  and  second  order  derivatives,  respect-
ively, of radius vector  with respect to the angle .

R1(α1) = R01

The nuclear  radius  parameter  for  the  spherical  pro-
jectile in Eq. (4) is , and that of the deformed
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R2 α2nuclei ( )  in  Eq.  (5)  is  described  in  terms  of  the
spherical harmonic function [37, 38], as given follows: 

R2(α2) = R02

1+ ∑
λ=2,3

βλY
(0)
λ (α2)

 . (6)

R0i = 1.28A1/3
i −0.76+0.8A−1/3

iHere, ( )  in  fm,  from  Ref.
[40], represents the radius of the equivalent spherical nuc-
leus.

In Eq. (2), the value of the surface thickness b = 0.99
fm and the surface energy constant term ‘γ’ is expressed
as follows for the axially symmetric nuclear shapes: 

γ = 0.9517
[
1−1.7826

(N −Z
A

)2]
MeVfm−2.

Further,  the  second  term  of  Eq.  (2)  is  the  Universal
function, given as 

Φ(s0) =


−1

2
(s0−2.54)2−0.0852(s0−2.54)3

−3.437exp
(
− s0

0.75

) , (7)

s0 ⩽ 1.2511 s0 > 1.2511 s0

R0i

respectively,  for  and .  Here,  is
defined in units of the surface diffuseness factor b. It is to
be  noted  that  the  optimum  orientations  obtained  in  Ref.
[36] for both the hot and cold fusion configurations of oc-
tupole  deformed  nuclei  are  independent  of  the  choice  in
nuclear potentials and the radius term ‘ ’.

s0

s0
s0

Different  iterative  methods  to  fix  ‘ ’  are  available
[42, 46].  In the proximity potential,  the shortest  distance

 is taken parallel to the separation distance R along the
collision  axis.  The  minimized  separation  distance  in
terms of nuclear radii is defined for the co-planar case as
follows: 

s0 =R−X1−X2 = R−R1(α1)cos(θ1−α1)
−R2(α2)cos(180+ θ2−α2), (8)

with the minimization conditions 

tan(θ1−α1) = tan(δ1) = −
R
′

1(α1)
R1(α1)

,

tan(180+ θ2−α2) = tan(δ2) = −
R
′

2(α2)
R2(α2)

. (9)

VB RB h̄ωBThe  fusion  barrier  characteristics  ( ,  and ),
as  a  function  of  deformation  and  orientation  degrees  of
freedom, derived with the help of Eqs. (1) to (9) are used
in  the  calculation  of  fusion  cross-sections,  as  discussed
below. 

B.    Fusion cross-sections as a function of the barrier
characteristics

VB RB

h̄ωB

To determine the fusion cross-sections for  the spher-
ical-deformed projectile-target combinations, we used the
well known Wong approach [39]. The effect of deforma-
tion and orientation is introduced via barrier characterist-
ics  (barrier  height ,  barrier  position  and  barrier
curvature ),  which  are  the  input  terms  of  the  Wong
formula, as given below. 

σfus(Ec.m., θ2) =
R2

Bh̄ωB

2Ec.m.
ln

[
1+ exp

(
2π

h̄ωB
(Ec.m.−VB)

)]
.

(10)

h̄ωℓB ≈ h̄ω0
B

RℓB ≈ R0
B VℓB ≈ V0

B+
h̄2ℓ(ℓ+1)

2µR0
B

2

ℓ = 0

VℓB RℓB h̄ωℓB

For  the  above  formula,  Wong  conducted ℓ-summa-
tion  under  several  approximations:  (i) ,

 and (ii) . Using these approx-

imations, the Wong formula (Eq. (10)) was expressed for
 case.  Further,  the  formula  was  modified  by  Gupta

and collaborators via explicit ℓ-summation [47].  In other
words, the  fusion  cross-sections  calculated  using  the  ex-
tended ℓ-summed Wong model is expressed as a function
of ℓ-dependent  barrier  characteristics  ( ,  and )
and is given as 

σfus(Ec.m., θ2) =
π

k2

ℓmax∑
ℓ=0

(2ℓ+1)T (Ec.m.), (11)

k =
√

2µEc.m.

h̄2

ℓmax

T (Ec.m.)
ℓth

T (Ec.m.)

where  and μ is  the  reduced  mass.  The
value  of  is  obtained  using  the  sharp  cut-off  model
[48]  for  the  above  barrier  energies  and  extrapolated  for
the below barrier energies.  is the quantum-mech-
anical  transmission  probability  for  the -partial  wave.
The  formulation  of  transmission/penetration  probability

 is expressed as 

 

Fig.  2.    Schematic  configuration  of  spherical-plus-octupole
axially  symmetric  deformed  and  oriented  nuclei  lying  in  the
same plane.
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T (Ec.m.) =
1+ exp

 2π
h̄ωℓB

(VℓB−Ec.m.)
−1

. (12)

θ2

Furthermore, to  observe  the  effect  of  octupole  de-
formed nuclei  over  all  orientations,  the  fusion cross-sec-
tions are integrated over , as follows: 

σint(Ec.m.) =
∫
θ2

σ(Ec.m., θ2) sinθ2dθ2. (13)

The  above  equation  is  for  coplanar  nuclei  of  reactions
that involve spherical projectiles and deformed targets. 

III.  CALCULATIONS AND RESULTS

β3
β2

θopt

β3
θopt VB

RB σfus
β2

The octupole deformation ( ) that distorts the quad-
rupole ( ) deformed nuclei into a (reflection symmetry-
breaking)  pear  shape  significantly  modifies  the  uniquely
fixed or optimized orientations ( ) for the hot and cold
fusion configurations [36]. Based on this observation, this
study  explores  the  impact  of  deformations  up  to  and
the  related  on  the  fusion  barrier  (barrier  height 
and barrier position ) and fusion cross-sections ( ),
in  reference  to  the  results  obtained  for -deformation.
The above analysis is applied to spherical+deformed pairs
of colliding nuclei in which 16O and 48Ca are used as pro-
jectiles and the octupole deformed nucleus is used as the
target.

β2 β3
β2 β3

β2
β3

β3
β2

There  are  approximately  700  deformed  nuclei  that
have  both  the  quadrupole  and  octupole  deforma-
tions [41]. The magnitude of the  and  deformations
shown  in Fig.  3 is  represented  by  the  open  triangle  and
solid  circle  symbols,  respectively.  From  this  figure,  one
can  identify  the  nuclei  that  have  a  larger  magnitude
than  magnitude (also called soft-pear shapes of the oc-
tupole). On the other hand, nuclei with larger or equal 
magnitudes than  are called rigid-pear shapes of the oc-
tupole. Most of the soft-pear shapes exist in the regions Z
=  53-60  and  76-88  with  a  mass  range  of A =  103-115,
140-150, 188-195, and 210-230. Its rigid counterparts are
found in abundance in the regions Z = 37-40, 59-68, and
>80 with the masses A = 124-131, 189-196, 215-224, and
272-291.  We  have  considered  these  pear  shapes  from
their respective regions1) in further calculations.

VT

|β2| > |β3| |β2| ≤ |β3|

Initially,  to  illustrate,  we  plotted  the  total  interaction
potential  (MeV) as a function of separation distance R
(fm)  in Fig.  4 for  the 16O+144Ba  (soft-pear  shape;

)  and 280Ra  (rigid-pear  shape; ) reac-
tions.  For  the  synthesis  of  a  compound  nucleus  via  cold
or hot fusion process, the orientation of a deformed nuc-
leus is  fixed  or  optimized  in  two  ways:  (i)  the  noncom-

pact (or elongated) configuration, which occurs owing to
the lowest barrier and largest interaction distance between
the centers of  two nuclei  and (ii)  the most-compact  con-
figuration occurs at the highest barrier and shortest inter-
action  distance.  The  steps  (i)  and  (ii)  correspond  to  the

 

Fig.  3.    (color  online)  The  magnitude  of  deformations
provided in the Nuclear Data Table of [41] for nuclei belong-
ing to different mass-regions of the Periodic Table.

 

VT

β22 = 0.163 β32 = −0.124
β22 = 0.069

β32 = −0.163 θ
β2
opt θ

β3
opt

β2 β3

Fig.  4.    (color online) The  total  interaction  potential 
(MeV)  as  a  function  of  separation  distance R (fm)  is  shown
for  the  cold  and  hot  fusion  configurations  in  panels  (a)  and
(b),  respectively,  for  the 16O+144Ba  ( , )
reaction,  and  in  (c)  and  (d)  for  the 16O+280Ra  ( ,

)  reaction.  and  represent  the  optimum
angles for deformations  and up to .
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1) Note that, the calculations done in the present work are for  shape of octupole. Since the Nuclear Data Table of ground state deformations for nuclei of dif-
ferent mass-region has the negative value of . The results anticipated for  are same as that obtained for , in the coplanar case.
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θ
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β3
θ
β2

opt = θ
β3

opt =

θopt β2

θ
β3

opt = ± β3

β3

θ
β2

opt β3

VB RB

‘optimum cold’ and ‘optimum hot’ fusion configurations,
respectively. By considering  in the targets of the above
reactions,  the  cold  optimum  orientation  occurs  at  either

0° or  180°.  However,  by  including  deformation  up
to ,  the  noncompact  or  cold  fusion  configuration  does
not  occur  at 180°  but  at 0°  because  the  pear-
shape  or  octupole  deformed  nucleus  does  not  have  the
same configuration at angles 0° and 180° (see Fig. 1). For
the  hot  optimum  case,  the  corresponding  for  oc-
curs  at  90°;  however,  this  situation  is  justified  at  angles

75 2°  and  180°  due  to  a  small  in  soft-pear
shapes  and  the  strong  contribution  of  in  rigid-pear
shapes,  respectively  (see  Ref.  [36]).  The  above  analysis
shown  in  panels  (a)-(d)  of Fig.  4 illustrates  that  the
change in  owing to inclusion of  also has a signi-
ficant  influence  on  fusion  barrier  characteristics.  For  the
soft-pear shapes, these remarkable effects can be seen on

 and , mainly for the noncompact fusion configura-
tion, as shown in Fig. 4(a) and (b). However, by consider-
ing the rigid-pear shape, a significant impact is observed
on the  fusion  barrier  of  both  the  compact  and  noncom-
pact fusion configurations (see panels (c) and (d) of Fig.
4). For further calculations, this analysis is applied to ap-
proximately 200  pear  shapes  of  octupole  deformed  nuc-
lei  that  belong  to  different  mass-regions  of  the  Periodic
Table. 

β3A.    Impact of deformations up to octupole ( ) on fu-
sion barrier at cold and hot optimum orientations

β2 β3

VB
RB β3

β2
VB(β2)−VB(β2,β3) RB(β2)−RB(β2,β3)

β2 β3
β2

β3
|β2| − |β3|

VB(β2) VB(β2,β3)
VB(β2,β3) VB(β2)

β3 β2 |β2| − |β3| → 0

VB(β2)−VB(β2,β3)
|β2| − |β3| → 0

RB(β2) RB(β2,β3)

The soft-pear  shapes belonging to  regions Z =  53-60
and 76-88 have different values of  and  and are con-
sidered  targets  in 16O-induced  reactions.  Furthermore,  to
observe the  impact  of  this  shape on the  fusion barrier  at
both the hot and cold optimum orientations, we observed
the  change  in  the  barrier  height  and  barrier  position

 owing to the inclusion of deformations up to  from
that  of . Figure  5 shows  the  variation  of

 and  for the cold op-
timum case  in  panels  (a)  and  (b),  respectively,  with  re-
spect to the difference in the magnitude of the  and 
deformations. The soft-pear shapes have a larger  mag-
nitude  than  magnitude;  therefore,  the  difference

 is  greater  than  zero.  In Fig.  5(a),  the  positive
values  obtained  from -  illustrate the  ex-
tent with which  decreases from . For the
soft-pear  shapes  of  mass-regions A =  103-115  (open
square)  and  140-150  (open  circle)  belonging  to Z =  53-
60, the difference increases to 3.5 MeV as the magnitude
of  becomes  comparable  to  (that  is, ).
On the other  hand,  for  the heavy-mass regions A =  188-
195  (solid  circle)  and  210-230  (stars)  of Z =  76-88,  the
difference  reaches  5.5  MeV  for

. In the lower panel of Fig. 5, the difference
between  and  is  depicted  for  the  above

RB(β2)−RB(β2,β3)
β3

β2
RB(β2)−RB(β2,β3)

VB RB β3
β2

fusion  configuration  and  mass-regions.  The  negative
value obtained from  indicates  that  the
inclusion of  enlarges the interaction distance between
the centers of two colliding nuclei, in reference to that of

. A large negative value of up to 0.8 fm is obtained for
 as one goes from lighter to the heavier

mass systems. It is clear to see from this discussion that,
for the cold optimum orientation of heavy-mass soft-pear
shapes, there is a significant impact on the fusion barrier
height  and  barrier  position ,  particularly  when 
approaches the -value.

VB(β2)−VB(β2,β3) RB(β2)−RB(β2,β3)

VB(β2,β3) VB(β2)
|β2| − |β3|

VB(β2)−VB(β2,β3)

RB(β2)−RB(β2,β3)

β3 β2
VB(β2,β3) VB(β2)

Further, in Fig. 6, the negative and positive values ob-
tained  for  and , re-
spectively, represent the case of the hot optimum orienta-
tion of soft-pear shapes belonging to the previously men-
tioned  mass-regions.  In Fig.  6(a),  for  mass-regions A =
103-115 and 140-150 belonging to Z = 53-60, the change
in  from  increases  to  0.75  MeV  as

 approaches  zero.  On  the  other  hand,  for A =
188-195 and 210-230,  gives a value of
approximately  1.5  MeV.  In  the  case  of  barrier  position,
the  positive  value  of  increases  up  to
0.2 fm for heavy mass systems, which is relatively high-
er than that of lighter-mass soft-pear nuclei,  as shown in
Fig. 6(b). In the other words, for the hot or compact con-
figuration,  the  interaction  distance  becomes  shorter  with
the  inclusion  of  deformations  up  to  than  that  of ,
which  in  turn  increases  from . The  res-
ults obtained for both the cold and hot fusion configura-
tions  of  the 16O+soft-pear  shape  combinations  in Fig.  5

 

VB

RB β2

β3 VB(β2)−VB(β2,β3) RB(β2)−RB(β2,β3)
β2

β3

Fig. 5.    (color online) The difference in barrier height  and
barrier  position  obtained  owing  to  deformations  up  to 
and , that is, (a)  and (b) ,
shown  with  respect  to  the  difference  in  the  magnitude  of 
and . Note that the above analysis is performed for the ‘cold
or  noncompact ’  fusion  configuration  of 16O+soft-pear  shape
combinations.
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VB RB

and Fig. 6 indicate that the octupole deformation of soft-
pear shapes has a significant impact on  and  mainly
for the cold fusion configuration.

β3 β2

β2

VB(β2)−VB(β2,β3) RB(β2)−RB(β2,β3)
|β2| − |β3|

β3 β2

|β2| − |β3|

VB(β2)−VB(β2,β3)
|β2| − |β3|

VB(β2)−VB(β2,β3)

RB(β2)−RB(β2,β3)

Moreover, we considered the rigid-pear shapes of the
octupole  (with  stronger  values  of  than ) as  the  tar-
get in 16O-induced reactions to observe their correspond-
ing effects  on  the  fusion  barrier,  in  reference  to  the  res-
ults obtained for  deformation. The considered options
for  rigid-pear  shapes  belong  to  mass-regions A =  124-
131, 189-196, 215-225, and 272-291 of Z = 37-40, 59-68,
and  >80  (see Fig.  3).  Furthermore,  the  variation  of  the
differences  and  is
shown with respect to  for the cold fusion config-
uration  of 16O+rigid-pear  shape  combinations  in  panels
(a)  and  (b)  of Fig.  7,  respectively.  In  rigid-pear  shapes,
the  magnitude  of  is  greater  or  equal  to  that  of ;
therefore,  the  difference  is  less  than  zero.  For
mass-regions A =  124-131  (open  square)  and  189-196
(open  circle)  of Z =  37-40  and  59-68,  respectively,  the
positive  value  of  increases  to  4  MeV,
irrespective of the choice of . On the other hand,
for  heavy-mass  regions A =  215-224  (solid  circle)  and
272-291  (stars)  of Z =  80-88  and  85-102,  respectively,

 increases up to 7 MeV (see Fig. 7(a)).
In  the  case  of  barrier  position,  the  negative  value  of  the
difference  for  the  cold  optimum  case
reaches nearly 1.5 fm as one goes from lighter to heavy-
mass regions, as shown in Fig. 7(b).

VB(β2,β3)
VB(β2)

VB(β2)−VB(β2,β3)

In the case of hot or compact fusion configuration, the
rigid-pear shapes show a change in  of approx-
imately  2  MeV from  for  the  lighter  mass-region.
For heavy-mass regions, the difference 

RB(β2)−RB(β2,β3)

|β2| − |β3|
|β3| ⩾ |β2|

increases to 6.5 MeV, as  shown in Fig.  8(a).  In the case
of  barrier  position,  the  negative  value  of  the  difference

 reaches nearly 0.8 fm with an increase
in the mass of  the rigid-pear  shape.  The results  obtained
from Figs.  5-8 for  the 16O+deformed  reactions  signify
that, irrespective of the choice of , the rigid-pear
shapes with  have a relatively stronger influence
on the fusion barrier for hot and cold optimum cases than
that of soft-pear shapes. The above analysis has also been
repeated  for 48Ca+deformed  pairs  of  colliding  nuclei,
which involve the octupoles of soft- and rigid-pear shapes

 

Fig.  6.    (color online) Same  as Fig.  5, but  for  ‘hot  or  com-
pact’ fusion configuration.

 

Fig. 7.    (color online) Same as Fig. 5, but for 16O+rigid-pear
shape combinations.

 

Fig. 8.    (color online) Same as Fig. 5, but for the hot fusion
configuration of 16O+rigid-pear shape combinations.
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as  targets.  As  a  consequence,  we  have  observed  similar
results as that of 16O-induced reactions for both the com-
pact and noncompact fusion configurations. 

B.    Impression of the octupole deformed target in 16O-
and 48Ca-induced fusion reaction cross-sections

β3

β2

β3

Ec.m.

VB RB

h̄ωB

σfus

σfus Ec.m. = VB

So far, the role of octupole deformation ( ) has been
analyzed  for  fusion  barrier  characteristics  by  employing
the  cold  and  hot  optimum  orientations.  This  analysis
tested for 16O, 48Ca+soft- and rigid-pear shape reactions is
compared  with  the  results  obtained  for  quadrupole  ( )
deformations. In addition, we calculated the fusion cross-
sections to address the exclusive role of -deformations.
For  the  calculation  of  fusion  cross-section,  which  is  a
function  of  the  center  of  mass  energy  and  barrier
characteristics (barrier height , barrier position , and
barrier  curvature ),  we used the Wong formula [39].
As  we  know,  the  fusion  barrier  parameters  are  sensitive
to  the  deformation  and  orientation  degrees  of  freedom;
therefore,  the  fusion  cross-sections  ( )  are  illustrated
as  a  collective  effect  of  the  barrier  characteristics  of  the
spherical-plus-octupole deformed  pairs  of  colliding  nuc-
lei. In view of this, we plotted  (mb) at  for
the  above  fusion  configurations  of  the 16O, 48Ca+octu-
pole deformed nucleus reactions.

From Fig.  5,  by  considering  soft-pear  shapes  as  the
target  in 16O-  and 48Ca-induced  reactions,  we  discover  a

β3 β2 |β2| − |β3| → 0
σfus

145,146,148Nd 149,150Sm

σfus β3 β2
σfus(β2,β3) σfus(β2)

145,146,148Nd
β2 β3

|β22| − |β32| ≤ 0.112

β3

β2

relatively higher impact on the fusion barrier as the mag-
nitude of  becomes comparable to  or .
Thus,  in  the calculation of , we considered the octu-
pole  deformed  nuclei  and ,  which
are  stable  in  nature  [49]  and  can  also  be  used  for  future
fusion  experiments.  For  the  cold  or  noncompact  fusion
configuration, shown in panels (a) and (c) of Fig. 9, there
is  an  enhancement  in  owing  to  from  that  of .
The change in  from  is relatively high-
er for the octupole deformed targets ( ), which
have small differences in magnitude of the  and -de-
formations, that is, . This analysis holds
true  for  both  the 16O-  and 48Ca-induced  reactions,  as
shown in panels (a) and (c) of Fig. 9. On the other hand,
in the case of the compact or hot fusion configuration of
soft-pear shapes, the change observed in the fusion barri-
er  is  relatively  less.  As  a  consequence,  the  fusion  cross-
sections  obtained  owing  to  the  weak  of  soft-pear
shapes  differ  by  a  smaller  amount  when  compared  with
the -case, as shown in panels (b) and (d) of Fig. 9. Fur-
thermore,  the  nuclei 147Eu  and 223Ra  of  the  rigid-pear
shapes  with  sufficient  half-lives  [49] are  considered  tar-
gets  of 16O, 48Ca-induced  reactions  and  are  studied  for
their  corresponding  effects  on  fusion  cross-sections.  As
observed in section III.A, the rigid-pear shapes have a rel-
atively  higher  impact  on  the  fusion  barrier  of  both  the
cold  and  hot  fusion  configurations  than  the  soft-pear
shapes. Consequently, there is a corresponding impact on

145,146,148Nd 149,150Sm Ec.m. = VB

Fig. 9.    (color online) The fusion cross-sections calculated using the Wong formula [39] for the (a), (c) cold and (b), (d) hot fusion
configurations of the 16O, 48Ca+soft-pear shape (  and ) reactions, at .
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σfus(β2,β3) σfus(β2)
the fusion  cross-sections.  The  maximum  change  ob-
served  in  from  for  the  cold  and  hot
fusion configurations is approximately 400mb and 15mb,
respectively, which is larger than that of soft-pear shapes.
In future experiments, it would be interesting to use octu-
pole deformed nuclei (soft- and rigid-pear shapes) in nuc-
lear fusion reactions to form new nuclei or isotopes.

β22 = 0.205 β32 = −0.055

β3

Ec.m. = VB

ℓ = 0

T (Ec.m.)
T (Ec.m.) Ec.m.

T (Ec.m.)

β3

T (Ec.m.)

In  [1],  the  experimentally  determined  fusion  cross-
sections are given across the Coulomb barrier energy for
the 16O+150Sm ( , ) reaction, which
has an octupole deformed target of the soft-pear shape. In
view of this, we calculated the fusion cross-sections with
the inclusion of  higher-order  deformation (up to )  and
compared the results with the experimental values. In this
discussion,  the Wong formula is  used for the calculation
of fusion cross-sections at  because Wong con-
ducted ℓ-summation  under  several  approximations  and
produced  the  formula  for  the  case.  Further,  the ℓ-
summation is performed explicitly in [47], which is called
the  extended ℓ-summed  Wong  model.  The  fusion  cross-
section  determined  using  this  extended  version  of  the
Wong formula is expressed in terms of quantum-mechan-
ical transmission probability (see Eq. (11)). First,
we analyzed the variation in  with respect to 
for the above reaction. In Fig. 10(a), one can see the be-
havior of  across the Coulomb barrier energies for
the hot and cold fusion configurations of the above reac-
tion. Across the Coulomb barrier energies, there is a relat-
ively larger possibility of penetration due to the inclusion
of deformations up to .  On the other hand,  for  the hot
or  compact  fusion  configuration  of  the  spherical-de-
formed combination, there is a highly nominal value ob-
served for , especially below and near the barrier
energies.  The  above  observation  is  further  analyzed  in

σfus
σfus

β2 β3

β2
β3

σfus
β3

terms of fusion cross-sections ( ) using the extended ℓ-
summed  Wong  model.  The  calculation  of , per-
formed  with  the  inclusion  of  and  up  to -defomra-
tions for  both  the  hot  and  cold  configurations,  are  com-
pared with the available data,  as  shown in Fig.  10(b).  In
Fig. 10, the target 150Sm is a soft-pear shape of the octu-
pole nucleus;  hence,  the  results  obtained  for  the  hot  fu-
sion configuration either with the involvement of  or up
to  are  similar  and  show hindrance  from the  data.  On
the other hand, the  obtained at the cold optimum ori-
entation of  provides better results than that of quadru-
pole  deformation.  In  other  words,  the  fusion  cross-sec-
tions calculated for the cold or noncompact fusion config-
uration  of  the  octupole  deformed  target  (150Sm) effect-
ively reproduce  the  experimental  data  across  the  Cou-
lomb barrier energies.

β3
σfus

σfus θ2

β2
β3

θopt
β3

Also,  we  explored  the  average  effect  of  deforma-
tion in terms of  for the 16O+150Sm reaction by integ-
rating  over  the  orientation ,  as  shown  in Fig.  11.
This  shows  a  relatively  better  comparison  with  the  data
than that of the -case (see Fig. 11(a)). However, we no-
tice  fusion  hindrance  even  after  the  inclusion  of -de-
formation.  In  this  case,  extra  energy  is  required  to  fuse
such  systems,  called  extra-push  energy.  In  view  of  this,
many  authors  have  implemented  this  idea  and  analyzed
the  influence  of  different  factors  (such  as  channel-coup-
ling effects,  dynamical  deformations,  and  phenomenolo-
gical  model),  which  in  turn  provides  extra-push  energy
below the barrier region to address fusion hindrance [50-
55].  In  our  study,  the  main  aim  is  to  find  the  exclusive
role of the optimum orientations ( ) related to the stat-
ic  deformations  of  octupole  ( )  deformed nuclei  on  the
barrier  characteristics  and  subsequently  on  the  fusion
cross-sections; this is in reference to the results obtained

T (Ec.m.) Ec.m.

β22 = 0.205,β32 = −0.055
Fig. 10.    (color online) (a) The transmission probability  calculated as a function of the center of mass energy (MeV), and
(b) fusion cross-sections obtained using the extended ℓ-summed Wong model [47] for the 16O+150Sm ( ) reaction
[1] at both the hot and cold optimum orientations [36] related to quadrupole and octupole deformations across the Coulomb barrier en-
ergies.
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β2

θopt

γ0 ks

VB

RB

β3

β2

β2

with the inclusion of static quadrupole ( ) deformations
and the related .  In this context,  the fusion hindrance
is addressed by employing a modified version of Prox77,
that is, Prox88 [56]. Due to different values of the coeffi-
cient ,  = 1.2496 MeV fm-2, and 2.3 used in Prox88,
the  barrier  height  decreases  and  the  barrier  position

 increases from that  in  Prox77.  Consequently,  the  in-
tegrated fusion  cross-sections  obtained  owing  to  the  in-
clusion of deformations up to  within the Prox88 poten-
tial  produce  a  better  fit  to  the  experimental  data  of  the
16O+150Sm  reaction  (see  in Fig.  11(b))  than  the -case.
The fusion cross-sections  shown in Figs.  10 and 11 rep-
resent the case for soft-pear targets of the 16O-induced re-
action because its experimental data is available. The ex-
clusive  role  of  octupole  deformation  on  the  rigid-pear
shape will be more prominent in reference to the -case.
However, we have not shown this type of comparison for
rigid-pear nuclei  owing to unavailability of experimental
data. 

IV.  SUMMARY

VB

RB

For  the  synthesis  of  a  compound  nucleus  via  either
cold  or  hot  fusion  processes,  information  on  the  fusion
barrier characteristics (barrier height  and barrier posi-
tion )  is  extracted  from the  total  interaction  potential,

θopt

θopt β2

β3 θopt

σfus
→145,146,148 Nd 149,150Sm

→147 Eu σfus
β3

β22 = 0.205 β32 = −0.055

σint
β2 β3

β3 σint
β2

β3

which depends  on  the  deformation  and  orientation  de-
grees of  freedom.  The  octupole  deformation,  which  dis-
torts the spherical-symmetric quadrupole deformed nucle-
us into a symmetry-breaking pear shape, produces differ-
ent  values  of  optimum  orientations  ( )  for  the  ‘ com-
pact or hot’ and ‘elongated or cold’ fusion configurations,
in  reference  to  obtained  for .  In  view of  this,  this
study  shows  the  influence  of  higher  order  deformations
up to  and the related  on fusion barrier parameters.
The  elongated  configuration  of  an  octupole  deformed
nucleus  has  a  significant  impact  on  the  fusion  barrier
compared to the most compact case. Similar results have
been  observed  in  the  estimation  of  fusion  cross-sections
( )  for 16O, 48Ca+octupole  deformed  nuclei  (soft-pear
shapes , ,  and  rigid-pear  shapes

, 223Ra).  The  calculation  of  with the  inclu-
sion of deformations up to  at a cold optimum orienta-
tion reproduces  the  experimental  data  across  the  Cou-
lomb barrier for the 16O+150Sm ( , )
reaction  using  the  extended ℓ-summed  Wong  model.
Also,  we  integrated  the  fusion  cross-sections  ( )  over
all orientations, by including  and then -deformation
of the deformed target in the above reaction. Even though
the inclusion of deformations up to  enhances  from
that of , we noticed fusion hindrance at the below-bar-
rier  region,  where  extra-push  energy  is  required  to  fuse
such  systems.  In  view  of  this,  a  modified  version  of
Prox77, that  is,  Prox88  is  employed,  which  has  a  relat-
ively lower barrier height and larger barrier position. As a
consequence,  the  involvement  of -deformation  within
the Prox88 potential  gives  better  agreement  with  the  ex-
perimental data for the 16O+150Sm reaction. Thus, nuclear
potentials  such  as  Prox88,  which  give  a  lower  barrier
height, provide extra-push below the Coulomb barrier en-
ergies to account for fusion hindrance.

β3

β4

We conclude that octupole deformed nuclei in fusion
reactions can be used for the synthesis of new isotopes of
heavy  and  super-heavy  nuclei.  The -induced  optimum
orientations play  an  important  role  in  addressing  the  be-
havior of barrier characteristics and the associated fusion
cross-sections.  The  orientation  criteria  for  the  fusion  of
quadrupole-plus-octupole  and  octupole-plus-octupole
pairs  of  colliding  nuclei  will  be  investigated  in  the  near
future. Additionally, it would be of interest to investigate
the  impact  of  the  choice  in  different  nuclear  potentials
and  hexadecapole  deformations  ( )  in  view  of  the  hot
and cold optimum orientations of fusion processes.
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