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Abstract: In this study, we utilize a potentially versatile Bayesian parameter approach to compute the value of the
pion  charge  radius  and  quantify  its  uncertainty  from several  experimental  datasets  for  the  pion  vector  form
factor. We employ dispersion relations to model the pion vector form factor to extract the radius. Nested model se-
lection is used to determine the order of polynomial appearing in the form factor formulation that can be supported
by the data, adapting the computation of Bayes evidence and Bayesian effective complexity based on Occam's razor.
Our findings indicate that five out of six used datasets favor the nine-parameter model for radius extraction, and ac-
cordingly, we average the radii from the datasets. Despite some inconsistencies with the most updated radius values,
our approach may serve as a more intuitive method of addressing parameter estimations in dispersion theory.
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I.  INTRODUCTION

√
⟨r2

V⟩ = (0.659±0.004) fm

Experimental datasets for the pion vector form factor
have important  applications  in  elementary  particle  phys-
ics, notably providing input for a high precision determin-
ation  of  the  muon  anomalous  magnetic  moments,  which
is one of the prospective probes for a "new physics" dis-
covery [1]. The quantity in the limit of low energy can be
related to  the  pion  charge  radius,  an  observable  that  de-
scribes the  quantum  chromodynamics  (QCD)  confine-
ment of the pion. An accurate determination of the radius
provides  a  precision  test  in  the  realm  of  the  standard
model of particle physics at  low energy (e.g.,  chiral  per-
turbation  theory  and  lattice  QCD)  [2].  The  analyses  of
high  quality  data  for  the  pion  form  factor  also  yield  a
straightforward  computation  of  the  pion  charge  radius,
particularly  through  dispersion  theory  approaches  [2-4],
and  it  is  principally  cited  in  the  Particle  Data  Group
(PDG) booklet [5]. The PDG 2020 has published the fol-
lowing updated value: .

e+e−→ π+π−

In this study, we focus on analyzing the experimental
datasets for the modulus of the pion vector form factor to
extract  the  value  of  the  pion  charge  radius  within  a
Bayesian  framework.  The  datasets  were  obtained  from
the  measurements  of experiments  [6-11].
The phenomenological  fit  used  in  our  work  is  an  ap-
proach from the dispersion theory of the electromagnetic

structure  of  hadrons  described  in  [3].  Theoretically,  the
pion form factor formulated using this approach utilizes a
holomorphic function, colloquially called a "polynomial,"
whose corresponding  polynomial  order  terms  are  con-
strained specifically from the data fitting. The rapid pro-
gress in  high  performance  computing,  as  well  as  ad-
vanced numerical  algorithms dedicated  to  Bayesian  ana-
lysis, has created interest  toward Bayesian tools for ana-
lyzing and inferring data  in  hadron physics  [12]. Hence-
forth,  our  problems can be  solved using model  selection
techniques that  can  be  conducted  via  the  Bayesian  ap-
proach.

In addition to computing the Bayesian evidences, we
performed model comparisons based on Bayesian effect-
ive complexity to determine the effective number of mod-
el parameters  sufficient  for  describing  the  datasets.  Des-
pite the non-universal definition of effective model com-
plexity  in  the  Bayesian  framework  [13], this  work  em-
ployed  a  formalism  of  model  selection  in  terms  of  a
trade-off between a  goodness-of-fit  and  model  complex-
ity  proposed  in  the  context  of  physical  sciences  and
widely  used  in  cosmology  and  astrophysics  in  particular
[14-18].  The  complexity  attempts  to  break  degeneracy
among the competing models  (two or  more models  hav-
ing the same magnitude of Bayesian evidences) using Oc-
cam's razor to penalize the large volume of the "unused"
parameter space of the more complex model(s) [15]. 
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II.  BAYES FORMALISM

p(θ|y,M)
M θ = {θ1, θ2, ..., θm}

y
y = {y1,y2, ...,yk}

M

y

We specify  as  the  probability  that  a  model
denoted by  with a set of parameters  is
true,  given  a  dataset  that  has k data  points

 with any  background  information  incor-
porated in . This quantity is called a posterior, repres-
enting  the  updated  probability  of  the  model  parameters
after we observe the given dataset, . We express Bayes'
theorem as [19] 

p(θ|y,M) =
L(y|θ,M)π(θ|M)

p(y|M)
. (1)

L(y|θ,M) likelihood
y

M π(θ|M)
prior probability

p(y|M)
evidence

The  quantity  is  the , which  ex-
presses  the  probability  of  observing  the  dataset  if  the
model  is  true.  The  quantity  is  the

, which  accommodates  our  prior  know-
ledge of the model parameters before observing the data.
The  quantity  in  the  denominator, ,  is  called  the

,  which  serves  as  a  normalization  factor  and  is
given by the integral over the parameter space.

M1 M2

The Bayesian  model  selection  aims  to  directly  com-
pare the relative probability of two competing models fit-
ted  to  the  data.  Hence,  we  define  the Bayes  factor,
namely,  the  ratio  of  evidences  between  two  competing
models  and , as 

B12 ≡
p(y|M1)
p(y|M2)

. (2)

The Bayes factor describes whether the data permits a
sensible selection of a model if the order of magnitude of
the model evidence significantly exceeds the evidence of
other competing models.

Bayesian e f f ective complexity Cb

L(θ) = exp(−χ2(θ)/2) Cb

Generally, a  simple  model  that  can  provide  a  satis-
factory description of the data is more favored than more
complex  models  (i.e.,  models  with  many  parameters),
which is the essence of Occam's razor. Thus, we employ

,  denoted  as ,  which
measures  the  effective  number  of  model  parameters  that
the data can support [15, 17, 20]. The quantity is defined
in terms of  the Kullback-Leibler  divergence between the
posterior and  prior.  However,  assuming  that  the  likeli-
hood  function  of  our  model  can  be  expressed  as

,  can  be  expressed  in  a  compact
form [16, 17]: 

Cb = χ2(θ)−χ2 (̂θ). (3)

χ2(θ)where  is determined over the posterior distribution,
 

χ2(θ) =
∫

p(θ|y,M)χ2(θ)dθ. (4)

θ̂
The second term is a point-estimate of the likelihood

function  around  the  estimator  of  the  parameters, .  The
estimator is selected to be any of the sample statistics that
best represents the posterior distribution.

M1 M2
m1 < m2

In  principal,  the  Bayesian  effective  complexity
provides  a  tool  to  overcome  degeneracy  in  the  value  of
the  model  evidences  between  two  or  more  models.  For
example,  if  we  consider  two  models,  and ,  with
the  number  of  model  parameters , then  the  fol-
lowing scenario can be used to asses the models:
 

Cb(M2) ⩾ Cb(M1) p(y|M2)≫ p(y|M1)
(M2)

(i)  and :  the
most  complex  model  is  favored,  implying  that  the
extra parameters are permitted by the data.
 

p(y|M2) ≈ p(y|M1) Cb(M2) > Cb(M1)(ii)  and :  the
quality  of  the  data  does  not  significantly  improve  the
evidence  of  the  more  complex  model;  hence,  Occam's
razor demands the selection of a model with fewer para-
meters.
 

p(y|M2) ≈ p(y|M1) Cb(M2) ≈ Cb(M1)

Cb(M2) < m2.

(iii)  and :  the
data may not  be  sufficient  to  permit  the  additional  para-
meters, and  we  are  unable  to  make  any  conclusive  de-
cision as  to  whether  the  additional  parameters  are  re-
quired, unless 
 

Cb

EMCEE EMCEE

The  parameter  estimation  and  model  selection  based
on  can be performed using Markov chain Monte Carlo
(MCMC)  algorithms  to  provide  an  efficient  sampling  of
analytically  intractable  posterior  distributions1) [21].  We
employ  an affine  – invariant  ensemble  sampling intro-
duced by Goodman et  al.,  [22] and the improved imple-
mentation by Foreman-Mackey et al.  [23] is available as
a package called . In this study, we used  to
provide the sampling of the posterior distribution.

O(105)

Following the suggestion in [23], we initialized the al-
gorithm by beginning a set of walkers to explore a small
Gaussian  ball  in  the  parameter  space  around  a  certain
point (i.e., a set of initial values of the parameters with a
maximum  likelihood  probability).  The  walkers  diffused
to the surrounding parameter space to eventually explore
the  full  posterior  distribution.  We  initially  ran  a  chain
with hundreds  to  thousands  of  samples,  which  was  de-
termined via trial and error for each scenario, to achieve a
"burn-in" phase.  Thereafter,  the  desired  posterior  distri-
bution was computed by generating  samples. 

III.  THEORETICAL FORMULATION

Below  the  inelastic  threshold,  namely  energy  less
than 1.0 GeV2,  we can employ Watson's theorem [24] to
parameterize  the  pion  vector  form  factor  expressed  as  a
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product of two functions: 

FV (s) = P(s)Ω(s), (5)

P(s) Ω(s)where  is an arbitrary holomorphic function, and 
is called Omnès function [25], defined as 

Ω(s) = exp
{

s
π

∫ ∞

4m2
π

dz
z

δ1(z)
z− s− iϵ

}
. (6)

ππ
Equation (5) is known as the Omnès representation of the
pion  form  factor  with  the  input  of  P-wave  phase
shifts.

P(s)

ρ−ω
ρ−ω

e+e−→ ππ

ω P(s)

Meanwhile,  the  holomorphic  function, ,  can  be
expressed as a polynomial  whose degree depends on the
high  energy  continuation  and  the  final  state  interactions.
Moreover, we consider the  mixing effect to explain
the  narrow  structure  in  the  mass  region  of  the

 data. We follow an ansatz proposed in [3] that
assumes form as a simple Breit-Wigner parameterization
of  the -channel  into  the  polynomial . Thus,  the  fi-
nal  form  of  the  polynomial  up  to  the  third  order  can  be
expressed as 

P(s) = (1+αs+βs2+γs3)+
κ1s

m2
ω− s− imωΓω

. (7)

mω Γω ω
κ1

Here,  and  are  the -mass  and  its  total  decay
width, respectively. A new parameter  is obtained via a
fit  to  the  data  for  the  pion  form  factor.  We  can  exclude
higher order terms when we are assured that  a lower or-
der polynomial can still explain the observed data.

⟨r2
V⟩

s = 0

The squared charge radius of the pion, , is associ-
ated with the first derivative of the pion form factor eval-
uated at : 

⟨r2
V⟩ ≡ 6

dFV (s)
ds

∣∣∣∣
s=0
. (8)

⟨r2
V⟩Using Eqs. (5) and (6),  can be expressed in terms

of the polynomial and Madrid parameters: 

⟨r2
V⟩ =

6
π

∫ ∞

4m2
π

δ1(z)
z2 dz+6

(
α+

κ1

m2
ω

)
. (9)

δ1

ππ Constrained
Fits to Data

1.42

1.42

Throughout this work, the phase shift, , used in Eq.
(6)  was  obtained  from  the  phenomenological  fits  to  the

 data  provided  in  [26]  known  as 
 (CFD)  set  (we  refer  to  this  formulation  as

Madrid  phase  shift)  in  an  energy range  up  to  GeV.
The parameterization of the phase shift is summarized in
Table  1 including their  pertinent  (symmetric)  uncertain-
ties. The continuation of the phase shift above  GeV
is possible using any smooth extrapolation that fulfills the

δ1(s)→ πasymptotic  condition .  Therefore,  we  propose
the following high-energy extension with an exponential
decay factor: 

c(s) =π− [
(π−b(sm))− (s− sm)b′(sm)

]
× exp

(
− (s− sm)2

T 2

)
Θ(s− sm). (10)

b′(sm) √
sm ⩽

π

sm ≈ 1.32 T ≈ 2.0

⟨r2
V⟩

Nρ δ
Nρ
1 (s)

Here,  is  the  first  derivative  of  the  Madrid  phase
shift  evaluated  at  the  matching  point,  1.42  GeV
(i.e.,  the  boundary  between  the  intermediate-energy  and
high-energy region). The other parameter (T) is a rate of
decay of the above extension that eventually converges to

 as the energy increases. Its value should be selected to
maintain a  continuous matching between the two energy
regions. To achieve the aforementioned property,  we se-
lect  GeV2 and  GeV2. We might be able
to consider the inclusion of the two parameters as a pos-
sible source of systematic uncertainty in the  values.
We refer to the Madrid phase shift with this type of high
energy continuation as phase shift , .

Nρ ππ

ρ

ρ(770) ρ−ω
GeV)2 FV

ρ−ϕ
ρ ρ(1450) ρ(1770)

ρ′ ρ′′

ρ

∆δ(s)

Nρ δ
Nρ
1

Wρ δ
Wρ
1 (s) ≡ δNρ

1 +∆δ(s)

Nρ

The formulation of the Omnès function in Eq. (6) and
hence the pion form factor in Eq. (5) only hold for purely
elastic interactions up to infinite energies (i.e.,  the phase
shift ). Physically, the inelasticity of the  scattering
for the P-wave is indicated by the experimental observa-
tions that indicate that, except for the existence of  res-
onance (or more precisely the  meson and the 
mixing) below (1.42 , the line shape of  at high-
er  energies  contains  structures  such  as  the  mixing
and other  resonances such as  and  (ex-
perimentally  denoted  as  and , respectively).  To  in-
corporate  the  effects  of  these  higher  resonances,  we
employ a parameterization of the pion vector form factor
introduced in [27]. Subsequently, we extract a phase shift
difference,  denoted  by ,  that  contains  information
about those high energy structures. The values can be ad-
ded into the original phase shift ,  to obtain phase
shift , formulated as  (Fig. 1). The
phase  shift  is  the  second  input  to  Eq.  (5),  which  can  be
useful in providing a comparative result with the compu-
tation via the phase shift . 

Table 1.    Fit parameters of the P-wave phase shift obtained
from the dispersive analysis of the Madrid group [26].

Parameter Value

mρ 773.69±0.90 MeV

B0 1.043±0.011

B1 0.19±0.05

λ1 1.39±0.18

λ2 1.70±0.49
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IV.  BAYESIAN FORMULATION OF THE PION
FORM FACTOR

 

A.    Datasets
e+e−→ π+π−

∆

∆ = 10
∆ = 10 ∆ = 5

∆ = 10
∆ = 2 500 MeV <

√
s ⩽ 1000 MeV

We  employed  data  from  six  different 
experiments  at  timelike  energies:  KLOE10,  KLOE12,
BESIII,  BABAR,  CMD2,  and  SND  [6-11]. More  pre-
cisely, we only used the pion vector  form factor  that  in-
cluded  vacuum  polarization  effects.  First,  KLOE10,
KLOE12, BESIII, and BABAR events were divided into
energy intervals (bins) with specific widths, . The num-
ber of data points and bin width included in our analysis
were 75 points  and  MeV for  KLOE10,  60 points
and  MeV for KLOE12, 60 points and  MeV
for BESIII, and 270 points,  MeV below 500 MeV,
and  MeV  for  for
BaBar. Therefore,  we must modify the expression of the
pion  form  factor  at  each  bin  according  to  the  following
formula: 

F̃V (si) =
1

2
√

si∆

(
√

si+∆/2)2∫
(
√

si−∆/2)2

FV (s)ds, (11)

F̃V (si)
si FV (s)

F̃V (si) = FV (si)

where  is the average value of the form factor at i-
th bin,  is the energy value at the bin center, and 
denotes the original formulation given in Eq. (5). In con-
trast, the  CMD2  (29  points)  and  SND  (45  points)  data-
sets were not divided into bins [10, 11].  The CMD2 and
SND data  are  the  simplest  among  the  six  datasets  be-
cause they have . 

B.    Formulation

⟨r2
V⟩

Nρ Wρ

P(s)
β = γ ≡ 0 α

We performed  the  parameter  inference  to  extract  the
values of the pion charge radius, , for a single dataset
in two separate scenarios. Each scenario involved differ-
ent types of phase shifts (  and ) as the input to the
Omnès function  in  Eq.  (6).  Next,  we  compared  the  for-
mulation of the form factor under the two scenarios with
varying options of the degree of the polynomial . Se-
lecting  and a non-zero value of , we acquired a

α β

⟨r2
V⟩ κ1 α β

γ
ω mω Γω

θM = (mρ,B0,B1,λ1, and λ2)

linear  polynomial.  Meanwhile,  a  quadratic  polynomial
was obtained by maintaining non-zero values of  and ;
and the cubic polynomial permitted the three coefficients
to  be  non-zero.  Therefore,  the  number  of  considered
scenarios  in  each  dataset  was  six,  three  for  each  phase
shift scenario. In addition to the values of , , , ,
and , other nuisance parameters were considered in our
analysis:  mass  ( )  and  its  total  width  ( ),  both  of
which are parameters in the Breit-Wigner function in Eq.
(7). Moreover, parameters in the Madrid phase shift (i.e.,
Table 1), denoted as , were also
considered to be the nuisance parameters.

θ
(i)
M

To maintain a low computational cost of the numeric-
al calculation of the Omnès function within the Bayesian
integration, we approximated the expression of the Mad-
rid  phase  shift  in  Taylor  series  only  to  the  first  order
about the quoted mean values of Madrid parameters .
We assumed that those parameters only sway around the
mean  values  within  the  small  parameter  space  volume
(with  a  radius  measured  from their  standard  deviations).
Thus, we obtained 

∣∣∣∣Ω(s, θ(i)
M )

∣∣∣∣2 ≈ |Ω(s, θ
(i)
M)|2

∣∣∣∣∣∣exp
(

s
π

(θ(i)
M − θ

(i)
M)

∫
dz

D(i)(s)
z(z− s)

)∣∣∣∣∣∣2 ,
(12)

D(i)(s)
θ(i)

M

where  denotes  the  partial  derivative  of  the  phase
shift with respect to the parameter .

y ≡ |F2
V |

yi
σi

For simplicity,  we  further  assumed  that  the  experi-
mental  data  were  obtained  from  a  Gaussian  distribution
(independent  observations)  with  diagonal  covariance
matrices.  The  probability  for  the  data ,  where
each data point is denoted as  with the measurement er-
ror ,  to  occur  under  the  assumption  of  the  pion  form
factor of Equation (5), i.e., the likelihood, is expressed as 

lnL
(
y|⟨r2

V⟩,α,β,γ,κ,mω,Γω, θM

)
∝

−1
2

∑
k

 |F̃V (si, ⟨r2
V⟩,α,β,γ,κ,mω,Γω, θM)|2− yi

σi

2

. (13)

N(θM ,σθM
)

θM

σθM

π(θM)

We propose a normal distribution, , to ex-
press our prior beliefs of all parameters used in the Mad-
rid phase shift whose central values are  and errors are

.  More  precisely,  the  total  prior  probability  of  all
Madrid parameters, , can be expressed as 

π(θM) ∼
5∏

j=1

N(θM, j,σθM, j
), (14)

mω ΓωMoreover, we considered  and  to be nuisance para-
meters and  assume  normal  distributions  with  mean  val-

 

ππ

δWρ δNρ

Fig.  1.    Comparison  of  two  different  scattering  phase
shifts (  and ) with respect to energy s.
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ues  and  errors  obtained  from  PDG  [5]. We  also  em-
ployed a Gaussian prior for the pion charge radius, and its
mean  and  uncertainty  were  also  obtained  from  PDG
2020.

κ1 β γ

κ1 β γ
πA πB

On the  contrary,  it  is  rather  unclear  how to  establish
prior  beliefs  for , ,  and .  However,  we  argue  that
both "informative" and "uninformative" priors can still be
used for , , and . To avoid cluttering the notation, we
denote  and  as  the  informative  and  uninformative
priors for the three parameters, respectively [28].
 

πA● Informative priors, 
 

κ1

ω

κ1 = (1.99±0.36)×10−3

κ1 N(κ1,σκ1
)

β γ

γ
β γ πγ ≈ N(µ = 0
GeV−6,σ = 0.5 GeV−6)

β

πβ ≈ N(µ = 0 GeV−4,

σ = 0.2 GeV−4)
πβ ≈ N(µ = 0 GeV−4 σ = 0.3 GeV−4)

πβ ≈ N(µ = 0 GeV−4,

σ = 0.4 GeV−4)
πA

The fit values of  have been explored in [3] and [4].
Hanhart et al. provided an estimate of this quantity via the
experimental  value  of  the  total  decay  width  of  ob-
tained from PDG. In this study, we used their formula to
obtain . Therefore, we set the pri-
or  for  as  based  on  that  value.  Meanwhile,
we imposed a zero-mean Gaussian prior for  and  and
its  variance  was  deduced  from  preliminary  MCMC
sampling.  After  several  experimentations,  we  concluded
that the width distribution for  was relatively larger than

.  Thus,  we  set  the  following  prior  for : 
 for  the  remainder  of  our  analyses

(i.e.,  using  the  same  prior  regardless  of  the  data  being
used). In contrast, we propose the following priors for :
1)  the  BABAR  data  uses 

,  2)  the  KLOE10  and  KLOE12  data  use
, ,  and  3)  the  CMD2,

SND,  and  BESIII  data  use 
.  The  joint  distribution  for  "informative"

prior  beliefs, ,  is  simply  determined  by  the  total
product of the above priors: 

πA = π(θM)π(mω,Γω, ⟨r2
V⟩) πA(κ)πA(β)πA(γ). (15)

πB● Uninformative priors, 
 

unin f ormative priors

β γ
−1 GeV−4 ⩽ β ⩽ 1 GeV−4 −1 GeV−6 ⩽ γ ⩽

1 GeV−6

To  alleviate  criticism  over  the  selected  prior  and
provide additional  diagnosis  of  the  results,  we  addition-
ally assigned the  to the fit paramet-
ers.  For  the  KLOE10,  KLOE12,  and  BABAR  datasets,
we selected the priors for  both  and  to be flat  within
the  ranges  and 

 and then appended an exponential fallof beyond
the given range: 

π(x) ∼ exp
(
|x| −1
λ

)
. (16)

λ 0.1 GeV−4 β 0.5 GeV−6 γ
γ

Here  is set to  for  and  for , re-
flecting our vague understanding of parameter . We em-
ployed the same priors for CMD2, SND, and BESIII ex-

κ1
τ = 10−3

κ1

cept  that  their  range was selected from –2.0 units  to  2.0
units  because  the  preliminary  MCMC  computations
demonstrated  that  their  distributions  are  wider  than  the
other datasets. Meanwhile, the fit values of  are always
observed  to  be  in  order .  Therefore,  we  may
place  the  following  exponential  distribution  as  the  prior
for : 

π(κ1) =


1
τ

exp
(
−κ1

τ

)
, if κ1 > 0,

0, otherwise.
(17)

πBThe  joint  prior, ,  is  also  determined  by  the  total
product of the individual priors.

α

⟨r2
V⟩ α

Owing to the strict relation in Equation 9, we can ig-
nore  completely from our analysis and set the pion vec-
tor  form factor  as  a  function  of  instead  of .  Next,
the  posterior  distribution  can  be  formulated  via  Bayes'
theorem  (Equation  1)  and  computed  via  MCMC
sampling. 

V.  RESULT
 

A.    Parameter inference

⟨r2
V⟩

1σ

After the MCMC walker chains were established, we
computed the  estimate-measure  of  the  marginalized  dis-
tribution of  to obtain the radius value. In this paper,
we opt to quote the "68.3% rule" used in [2] in the sense
of  a frequentist  approach,  stating  that  the  percentage  of
the values within the band around the mean value defines
a  one-standard  deviation,  (Fig.  2).  Normalizing  the
parameter distribution,  we  imposed  the  following  condi-
tion: 

∫ θi+δ
+

θi−δ−
p(θi |y,M)θi dθi = 68.3%, (18)

δ+ δ−and solved it to obtain the upper and lower errors,  and .

 

⟨r2
V ⟩

ρ πA

ρ

Fig. 2.    (color online) Marginal distribution of  obtained
via the A-W  fit (i.e., applying the prior  and including the
higher  resonances) using the BaBar data. The 68.3% confid-
ence interval (CI) is marked by the two dashed lines.
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ρ

πA κ β γ δ
Wρ
1

ρ ρ

πA δ
Nρ
1 ρ′

ρ

πB δ
Wρ
1 ρ

We  established  four  different  "fits"  for  our  analyses
based  on  the  notation  in  the  tables.  The  first  fit  A-W
corresponded to the analysis using the informative priors
( ) for , , and  as well as the phase shift  ("with"
higher  resonances).  The  fit A-N  employed  the  same
prior  but used the phase shift  ("no" higher  res-
onances).  The  fit B-W  considered both  the  uninformat-
ive priors  and the . The final fit B-N  with the flat
distributions excluded the resonances.

We only  show two prominent  examples  here:  BaBar
and BESIII analysis, presented in Table 2 and 3, since the
conclusions  from  KLOE10,  KLOE12,  CMD,  and  SND
were  similar  to  that  of  BaBar,  while  the  BESIII  result
provided an "outlier" compared with the others. The first
column of each table provides the estimated values of the

squared  pion  charge  radius  including  their  uncertainties,
indicated in bracket(s). The symmetric error is shown as a
number inside a single bracket. The values inside double
brackets denote the upper and lower uncertainties (asym-
metric  errors),  which  clearly  suggest  a  non-Gaussian
nature  of  the  marginal  distribution  of  the  parameters  of
interest.

δ
Wρ
1

δ
Nρ
1

ρ′−ρ′′

Our  first  observation  was  that  when  using ,  the
extracted radii for all considered polynomials were larger
than that of . This indicated that a larger radius value
may be caused by the net "positive" effect from the phase
shift with  phase. Moreover, it came as no surprise
that the uncertainties increased as the degree of the poly-
nomial  increases  because  the  extra  prior  coalescing  into
the  existing  posterior  also  further  stretched  the  marginal

ρ ρ ρ ρTable 2.    Bayesian analysis of the BaBar data employing four "fits", denoted by A-W , A-N , B-W , and B-N  as the combination of
the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2 κ×10−3 β −4/GeV γ −6/GeV p(y|M) Cb

πA

ρFit A-W

L (9) 0.4491(11) 1.86(5) 0∗ 0∗ 9.02 9.63

Q (10) 0.4446(26) 1.95(6)(6) 0.08(4) 0∗ 5.47 10.16

C (11) 0.4452(51) 1.95(7)(7) 0.07(7) 0.00(8) 1.00 10.32

ρFit A-N

L (9) 0.4417(11) 1.89(5) 0∗ 0∗ 21.44 9.33

Q (10) 0.4390(25) 1.94(6) 0.09(7) 0∗ 4.28 9.86

C (11) 0.4359(48) 1.92(7) 0.05(4) −0.05(6) 1.00 10.13

πB

ρFit B-W

L (9) 0.4492(11) 1.86(5) 0∗ 0∗ 54.46 9.48

Q (10) 0.4448(26) 1.95(6) 0.08(4) 0∗ 16.02 10.01

C (11) 0.4455(47) 1.95(7) 0.07(7) 0.00(8) 1.00 10.45

ρFit B-N

L (9) 0.4418(11) 1.89(5) 0∗ 0∗ 151.20 9.13

Q (10) 0.4391(24)(25) 1.93(6) 0.05(4) 0∗ 12.45 9.54

C (11) 0.4366(46)(45) 1.95(7) 0.07(7) 0.01(7) 1.00 10.83

ρ ρ ρ ρTable 3.    Bayesian analysis of the BESIII using fit A-W , A-N , B-W , and B-N .

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2 κ×10−3 β −4/GeV γ −6/GeV p(y|M) Cb

πA

ρFit A-W

L (9) 0.4430(35)(33) 1.81(14) 0∗ 0∗ 0.89 7.28

Q (10) 0.4232(93)(96) 1.81(15)(14) 0.18(8) 0∗ 1.82 8.09

C (11) 0.4050(216)(213) 1.87(15) 0.5(3) −0.2(3) 1.00 8.54

ρFit A-N

L (9) 0.4328(31) 1.79(14) 0∗ 0∗ 1.94 7.13

Q (10) 0.4185(91) 1.83(14) 0.13(8) 0∗ 1.11 7.98

C (11) 0.3976(219)(215) 1.84(14) 0.5(3) −0.3(3) 1.00 8.40

πB

ρFit B-W

L (9) 0.4423(35)(33) 1.73(15) 0∗ 0∗ 3.27 7.37

Q (10) 0.4230(95)(97) 1.79(16) 0.05(5)(4) 0∗ 1.13 7.92

C (11) 0.3577(371)(373) 1.80(16) 0.2(2) −0.1(1) 1.00 7.78

ρFit B-N

L (9) 0.4321(34) 1.71(15) 0∗ 0∗ 9.62 7.39

Q (10) 0.4148(94)(92) 1.76(15) 0.1(1) 0∗ 0.91 8.24

C (11) 0.3493(365)(371) 1.77(16) 1.2(6)(5) −0.9(5)(4) 1.00 8.13
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κ1distribution  of  the  radius.  Interestingly,  the  values  of 
barely changed significantly in all fits referring to a single
dataset,  and  the  values  were  consistent  with  the  results
from [3, 4]. 

B.    Comparing the value of the model evidence

nested models
(m+1) M2

M1 M2
M2

θ(2) = (ψ,θ(1))
M1 ψ = 0

B12

Model selection is performed by estimating the Bayes
factor  for ,  which  means  that  we  seek  to
compare  a -parameter  model  to  a  simpler m-
parameter  model ,  namely  a submodel of  when
one parameter of  is fixed. We denote the parameters
of the complex model as , where the simpler
model  is  obtained  by  setting . We  further  as-
sume that the prior is also separable. Thus, we can prove
that  the  Bayes  factor  can  be  easily  obtained  here
simply by computing the following ratio [15]: 

B12 =
p(ψ|y,M2)
π(ψ|M2)

∣∣∣∣∣
ψ=0

. (19)

p(ψ|y,M2)
π(ψ|M2)

Here,  is  the  marginal  posterior  of  the  more
complex model while  is the prior density of this
more complex model. In Bayesian literature, this expres-
sion  is  known  as  the  Savage-Dickey  density  ratio
(SDDR)  [16, 29, 30].  This  method  is  suitable  for  our
scenario,  in  which  we  only  introduced  one  additional
parameter  into  the  original  model  to  construct  a  more
complex  model,  namely,  from  the  linear  model  to  the
quadratic one or from the quadratic to the cubic one.

p(γ|Mγ)

Kernel Density Estimation

p(γ = 0|Mγ)
γ

π(γ = 0|Mγ)

The general prescription to calculate the value of the
evidence  of  the  three  models  begins  from  the  marginal
distribution  of  the  cubic  model  parameter  ob-
tained from the normalized MCMC sampling and normal-
ized  to  unity.  Practically,  we  can  use  a  non-parametric
method, such as , to investigate
the distribution of a particular density plot to estimate the
probability  evaluated  at  the  zero  parameter  value  (i.e.,

).  We  pluged  the  result  into  Eq.  (19),  where
the  prior  of  was  also  computed  at  the  zero  parameter
value,  to obtain the Bayes factor between the

Bβγquadratic model and the cubic one, . The Bayes factor
enabled us to calculate the model evidence using Eq. (2)
as follows: 

p(y|Mβ) = Bβγ × p(y|Mγ), (20)

p(y|Mγ) ≡ 1

p(y|Mα)

where we assigned any arbitrary value to the cubic mod-
el evidence. For simplicity, we set , since we
sought  only  to  compare  the  relative  magnitude  of  each
model. We subsequently continued the same prescription
to compute the evidence of the linear model , be-
ginning  from  the  quadratic  model.  The  final  expression
was similarly expressed as 

p(y|Mα) = Bαβ×Bβγ × p(y|Mγ). (21)

πA πB

πA
πB

The origin of the difference in the values of the evid-
ences  obtained  from  the  priors  and  are  shown  in
Tables 2 and 3, respectively. This can be explained more
intuitively using the definition of the SDDR in Eq. (19).
The informative distribution  was slightly peaked com-
pared  with  the  uninformative  prior, ;  hence,  the  ratio
between  the  marginal  distribution  and  the  prior  in  Eq.
(19) was also directly affected.

β γ

β γ
πA

πB

πB

We  depict  the  SDDR  computation  using  the  BaBar
analysis  for  both  and  in Fig.  3.  Here,  the  resulting
marginal posteriors  for  the  two  choices  of  prior  had  al-
most  similar  positions  (the  height  difference  was  also
negligible), implying  that  the  priors  only  moderately  af-
fected  the  posteriors.  However,  the  height  ratio  between
the posterior and the prior at the zero  or  value (blue
dashed lines) using  (black curve) was smaller than the
ratio using  (red curve) because the Gaussian prior was
slightly  higher  (i.e.,  more  peaked)  than  the  flat  prior.  If
we  further  stretched  the  range  of  the  parameter  value  in
the  flat  prior ,  the  distribution  height  also  decreased;
hence, the ratio in Eq. (19) increased because the posteri-
or  was  relatively  stable  against  the  selected  prior.  The
same conclusion  also  held  if  we  selected  a  larger  vari-

β γ δ
Wρ
1Fig. 3.    (color online) Marginal distributions of  and  in the BaBar analysis with . The results are compared using two different

choices of priors. The height ratio between the marginal distribution and the prior evaluated at zero value (black and red dots on the
blue line) illustrates the computation of the SDDR in Eq. (19).
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ance for a Gaussian prior. 

C.    Criterion based on the effective complexity
Cb

χ2 θ̂

We required the efficient Bayesian complexity, , to
provide a means of inferring the number of free paramet-
ers the  data  could  still  constraint.  The  quantity  is  ex-
pressed by Eq. (3) where  and  were approximated us-
ing  a  estimator  describing  the  resulting  MCMC  chain.
However,  a  good  estimator  for  non-Gaussian  posterior
distributions is difficult to obtain and is consdiered to be
the main problem in some references [17, 18]). Therefore,
we utilized  various  estimators  (i.e.,  maximum  a  posteri-
ori,  posterior  mean,  posterior  median,  and  posterior

Cb

mode) or combinations of those quantities to obtain sens-
ible values of .

Cb

C0 Cb = C0

Cb C0

Cb

C0

C0

We summarize the results  in Figs.  4 and 5.  The left-
hand figures plot the  against the real number of para-
meters .  The line  is  an  auxiliary  to  check the
consistency  between  the  obtained  effective  number  of
parameters  ( )  with .  A  good  inference  is  indicated
by  the  points  that  do  not  deviate  significantly  from  the
line until  a  certain critical  point  at  which  is  constant.
The turning  point  indicates  that  adding  parameters  bey-
ond the critical  is not  necessarily  required.  This  con-
clution  must  be  supported  by  the  evidence  plots  (right-
hand  figures)  in  which  additional  parameters  (i.e., 

A-Nρ

C0 = 9

Fig. 4.    (color online) Summaries of the KLOE10, KLOE12, and BaBar analyses using fit . The plots in the left-hand column de-
pict the complexity against the number of parameters meanwhile the ones in the right-hand column are the logarithm of the evidence as
a function of the number of parameters. The red lines indicate that  (linear polynomial) is favored by the three data.
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beyond the red dashed line) do not contribute to a larger
value of posterior distributions. 

1.    KLOE10 and KLOE12

A-Nρ

C0(C) = 11
p(y|M)

Referring  to Figs.  4(a) and 4(b) for  KLOE10,  we
could still incorporate at least the second order polynomi-
al in our analysis although we observed that the fit 
may oppose this. However, the data were consistently un-
able to support  the cubic polynomial,  as  all  the obtained
complexities  were  smaller  than . When  evid-
ence  was  used in  our  analysis,  we observed that
the data demonstrated high preference for the linear-poly-

C0(L)≫C0(Q) C0(L)≫C0(C)
ρ

p(y|ML) ≈ p(y|MQ) ≈ p(y|MC)

C0(L)
C0(Q)

nomial  scenario,  and .  The
results  held  in  all  fits  except  the  fit A-W  where  the
Bayesian  evidence  had  only  a  slight  preference  for  the
linear model owing to . We
also made the same inference for the KLOE12 data as we
observed that  the effective complexity could only penal-
ize the cubic polynomial (Figs. 4(c) and 4(d)). Moreover,
the  evidence-based  computation  also  indicated  that  the
linear scenario was also favored, regardless of the priors.
The conclusion based on these values in KLOE12 analys-
is may be weaker compared with the KLOE10 data since
the  in the KLOE12 scenario was only a few times
larger than . 

A-NρFig. 5.    (color online) Summaries of the CMD2, SND, and BESIII analyses using fit . The plots for CMD2 consistently favor the
linear model. Following Occam's razor, the plateau region within both the log-evidence and the complexity plots for SND implies that
the  linear  model  should  be  selected.  BESIII  plots  provide  an  inconclusive  answer  owing  to  the  apparent  inconsistency  between  the
complexity plot and the log-evidence plot.
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2.    BaBar

β γ
σ

A  significant  decrease  in  the  model  probability  was
also  observed  for  the  BaBar  results  (Table  2 and Figs.
4(e) and 4(f)) while the effective complexity increased at
a low rate — a similar behavior that we observed in the
previous KLOE10 and KLOE12 analyses. Thus, we sim-
ilarly  neglected  the  more  complex  models  and  retained
the linear polynomial in our pion form factor analysis. In
addition,  all  fits  for  the  KLOE10,  KLOE12,  and  BaBar
data undoubtedly  supported  the  selection  of  linear  poly-
nomial, which was apparent from the fitted values of both

 and  tabulated  in  the Table  2,  i.e.,  the  values  were
consistent with zero within 1 . 

3.    CMD2 and SND

The  Bayesian  analysis  on  the  CMD2  data  revealed
that the linear scenario might be the desired one: the com-
plexity  increased  gradually  but  the  probability  did  not
(Figs. 5(a) and 5(b)). In contrast, the evidence of the SND
analysis  retained  the  same  magnitude  in  all  considered
polynomials  (Figs.  5(c) and 5(d)). Incorporating  the  ef-
fective  complexity,  we  selected  the  simplest  model  with
the  smallest  number  of  free  parameters,  i.e,  the  linear
polynomial  because  the  quality  of  fit  was  inadequate  to
offset the Occam's razor penalty factor. 

4.    BESIII

Cb < C0

p(y|M)

ρ
ρ
ρ

ρ ρ

α

An  apparent  discrepancy  was  observed  between  the
complexity and number of parameters in the BESIII ana-
lysis as the argument  held in all fits (Table 3 and
Figs.  5(e) and 5(f)). The  complexity  increased  signific-
antly  slower  than  that  of  the  previous  data,  indicated  by
the  constant  values  of  the  evidence . The  inclu-
sion of the higher order terms seldom improved the mod-
el  evidence by any means.  The fit B-N  may be exemp-
ted  from this  problem,  but  the  fit A-N  implied  that  the
difference of the evidence to the fit B-N  suggested that
the calculation may depend on the prior we consider. Re-
member  that  the  results  obtained  from  different  priors
(with  also  slightly  different  inputs)  ought  to  agree  to
provide  the  same  inference.  This  was  not  observed
between  fits A-N  and B-N ;  thus,  we  cannot  provide  a
conclusive answer  solely  from  the  evidence.  Addition-
ally,  we  performed  a  diagnosis  to  examine  whether  the
BESIII  data  was  unable  to  constraint  nine  or  more  free
parameters in  our  approach  by  considering  a  reformula-
tion of the charge radius in terms of , namely 

κ1 = m2
ω

(
1
6
⟨r2

V⟩−α−
1
π

∫ ∞

4m2
π

δ1(z, θM)
z2 dz

)
. (22)

M8
α M8

Thus,  we  had  an  eight-parameter  scenario, ,  in
which the value of  was set to zero. The analysis of 

B89

P(s)
κ1

α

might be used to observe the possible value of the effect-
ive complexity of the BESIII data. We denote the Bayes
factor  as a  ratio  between  the  eight-parameter  scen-
ario (without any polynomial ) and the nine-paramet-
er scenario (the linear polynomial) with  eliminated in-
stead of (Table 4).  The conclusion still  holds:  a  seven-
parameter model might be favored by the BESIII data.

Γω (8.49±0.08)

ω

κ1
πA

We further augmented the analysis of the complexity
by performing "additional fits" to construct two addition-
al  models:  an  eight-parameter  model  and  a  seven-para-
meter  model.  First,  we  set  the  value  of  the  total  width
( )  to  MeV  (the  average  values  from  the
PDG  [31]) to  obtain  the  eight-parameter  model.  Sub-
sequently,  a  seven-parameter  model  was  formulated  by
fixing the value of  mass using the PDG value. We con-
tinued the SDDR procedure, beginning from the results of
the  linear  scenario  (the  nine-parameter  model),  to  infer
the  eight-parameter  and  seven-parameter  scenarios.  We
only  demonstrate  the  analysis  in  which  the  prior  for 
was selected to be from . We note that the complexity
based  analysis  for  BESIII,  depicted  in Fig.  5(e),  also
favored the  seven-parameter  scenario.  This  confirms our
previous analysis in Table 3. 

D.    Total average value of the pion charge radius

ρ ρ
npoints = 12

ρ ρ

wi

We only quote the radii of the linear scenario, which
was  favored  by  the  previous  model  selection  procedure.
First,  we  considered  averaging  the  radii  obtained  from
each  prior  selection  in  one  dataset,  and  each  value  from
the  data  was  considered  to  be  a  "separate  experiment"
(i.e., we generated two radius values for each dataset: one
from W  and the other from N ). Therefore, we achieved
12  measured  points, , for  each  phase  shift  in-
put: N  and W . The radii were then combined using the
weighted average formula from which we could also ex-
tract the error via the "weights,"  [31]. If we assume in-
dependent  (uncorrelated)  measurements,  the  expression
becomes 

⟨r2
V⟩ave =

∑
i

wi⟨r2
V⟩i∑

i

wi

, wi = (1/ϵi)2, (23)

ϵi ithwhere  denotes  the  individual  uncertainty  of  the 

πA ⟨r2
V ⟩

M8 B89

M8 M9

Table 4.    Complexity and evidence of the BESIII data using
the prior  with  formulated via Eq. (22). The evidences
are  evaluated  for  the  eight-parameter  scenario, .  de-
notes the Bayes factor between  and  (the linear case).

Fit B89 Cb

ρA-W 23.63 7.05

ρA-N 36.10 7.05
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δ⟨r2
V⟩measurement. The combined error, , is expressed as 

δ⟨r2
V⟩ =

∑
i

wi

−1/2

. (24)

S =
∑

i

wi(⟨r2
V⟩ave−⟨r2

V⟩i)2

S = npoints−1

S/S

(S/S ) > 1

scaling f actor
√

S/(npoints−1)

Wρ Nρ ⟨r2
V⟩Wρ =

(0.4472±0.0015) fm2 ⟨r2
V⟩Nρ = (0.4394±0.0016) fm2

We  can  also  compute  and
compare it with the quantity , i.e., S value if
the  measurements  are  obtained  from  a  perfect  Gaussian
distribution.  The  ratio  indicates  the  extent  to  which
we may  select  the  average  value  to  represent  the  com-
bined  measurements.  In  all  our  scenarios,  we  had

,  implying  that  we  could  still  use  the  average
value, but we had to increase the error stated in Eq. (24)
by  a  defined  as  [31]. Be-
cause of the insufficient support for the BESIII result de-
duced  via  our  model  selection  approach,  we  omitted  the
result from the BESIII analysis in averaging the radii. We
obtained  the  radii  from  fits  and  as 

 and ,
respectively.

⟨r2
V⟩

ρ ρ

⟨r2
V⟩ = (0.4436±0.0039) fm2

√
⟨r2

V⟩

We further unified the extracted value of  by av-
eraging the two values from W  and N , respectively, in
the  linear  scenario.  Excluding  the  results  of  the  BESIII
analysis,  we obtained ,  where
a scaling factor of 3.6 was applied for the uncertainty. We
could  compare  this  with  the  individual  values  in Fig.  6.
Finally, the pion charge radius  became
 √

⟨r2
V⟩ = (0.6660±0.0029) fm. (25)

σ
0.659±0.004

The  value  was  consistent  within  1  with  the  recent
PDG average value ( ) fm. 

VI.  COMPARISON WITH THE EXISTING
RESULTS

As  of  2020,  the  most  updated  radius  values  in  the
PDG were  contributed  from the  systematic  and  compre-
hensive result by Colangelo et al. that included both time-
like  and  space-like  datasets  for  the  analysis  [4].  Their
value reads 

⟨r2
V⟩Colangelo = (0.429±0.004)fm2. (26)

2σ

Colangelo's  value  is  also  consistent  with  the  early
value obtained by Ananthanarayan et al., which utilized a
rigorous optimization technique and Monte Carlo simula-
tions [2]. However, our obtained value is too close to the
edge of  of their  value,  implying an inconsistency in-
dicated by Colangelo et al. owing to some apparent chal-
lenges  in  formulating  our  problem.  One  of  them  is  the

simplified and  outdated  version  of  the  Omnès  formula-
tion of the pion vector form factor.

sin = (mπ+mω)2

s = sin

Based on the discussion by Colangelo et al., the poly-
nomial described in our approach must describe how the
inelasticities  are open above . This  is  de-
scribed  by  a  branch-cut  singularity  at .  Therefore,
the  polynomial  part  in  Eq.  (7)  must  be  generalized  as  a
conformal polynomial instead of a simple polynomial ex-
pansion. It is expressed as 

Pin(s) = 1+
N∑

k=1

ck(zk(s)− zk(0)), (27)

ck

z(s)
where  denotes  fit  parameters  where N must be  spe-
cified. Moreover, s is conformally transformed into  as 

z(s) =
√

sin− sc−
√

sin− s
√

sin− sc+
√

sin− s
, (28)

sc

ρ−ω

s = 9m2
π

where  is  an  auxiliary  variable  selected  to  be  varied
from  −0.5  GeV2 to  −2.0  GeV2.  Furthermore,  the 
mixing effect  must  be  revised  to  include  a  correct  right-
hand cut behavior at  [4], i.e., 

Gω(s) = 1+
s
π

∫ ∞

9m2
π

Imgω(s′)
s′(s′− s)


1− 9m2

π

s′

1− 9m2
π

m2
ω


4

, (29)

 

Fig. 6.    (color online) Total average values of the squared pi-
on charge radius in which the BESIII radius is excluded. This
value are compared with the ones from the other datasets (in-
cluding the BESIII value). The thick horizontal lines indicate
the total mean value.
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gωwhere  resembles  a  somewhat  similar  Breit-Wigner
parameterization  that  we  discussed  in  Eq.  (7),  which
reads as 

gω(s) = 1+ κ1
s(

mω−
i
2
Γω

)2

− s

. (30)

Hence, we performed an additional computation that em-
ployed a more sophisticated formulation of the pion vec-
tor form factor described by Colangelo et al. 

FV (s) = Pin(s)Gω(s)Ω(s). (31)

WρFor a quick comparison, we only input the phase shift 
into Eq. (31).

N > 3

Pin(s)
N = 2 N = 3
N = 3

s = sin c1 = −
∑N

k=2 kck

N −1 = 1
N −1 = 2

c2 ⟨r2
V⟩

c2 = f (⟨r2
V⟩)

As  dictated  by  Colangelo  et  al.,  using  a  polynomial
order  does not provide a good estimate for the radi-
us  computation  because  the  oscillation  of  the  complex
phase  of  the  conformal  polynomial  becomes  larger  as N
increases. This should be possible to investigate using the
previous  Bayesian  model  selection  technique  we  used.
However,  since  we  are  only  interested  in  providing  a
simple and somewhat intuitive comparison with the exist-
ing  results,  we  only  discuss  the  result  for  with

 and . We consider the polynomial only up to
 (cubic term). To retrieve the correct P-wave beha-

vior  near ,  we  should  have .  Thus,
we  only  require  to  asses  two  models,  namely 
(quadratic)  and  (cubic).  In  addition,  we  can
equivalently parameterize  one  of  the  polynomial  coeffi-
cients, for example , with  using the sum rule from
Eq. (8), i.e.,  where f is some function. Hence,

c2

c3 = 0
we can ignore  completely from our discussion and set

 instead when we refer to the quadratic model.

c3 β γ

c3

ck

FV

sc

π(sc) ∼ 1 −2.0 ⩽ sc ⩽ −0.5

Moreover, we place only an uninformative prior onto
 in a similar fashion to the parameters  or . The up-

per  and  lower  limits  of  to define  a  flat  prior  are  ob-
tained  from  the  results  in  Colangelo et  al.  The  prior
should be combined with a constraint for  obtained via
the  Eidelman –Łukaszuk  (EŁ)  bound  [32].  However,  in
this paper,  we  aim to  make  a  simple  and  rapid  observa-
tion to compare radii obtained from the new  formula-
tion; hence, we assume the fit values in [4] are sufficient
for  our  objective.  We  utilize  a  simple  flat  prior  for :

 for  and append a decay behavi-
or beyond this range.

FV

c3

1σ

We performed  the  Bayesian  parameter  inference  us-
ing this new  formulation. The results are summarized
in Table 5. We observed that our fitted  values corrob-
orated  with  the  results  of  Colangelo et  al.  within .
Moreover,  the  radius  values  generally  increased  for  the
cubic  model  than  the  quadratic  model  except  for  the
KLOE12 result.  We  also  observed  relatively  larger  val-
ues  for  KLOE10,  KLOE12,  and  BESIII  compared  with
values from the previous formulation (see Fig. 6 and the
supplemental  tables).  Despite  the  apparent  difference  in
the phase shift input between Colangelo's result and ours,
we must  further  explore  in  a  future  analysis  whether  the
new formulation  (i.e.,  the  conformal  polynomial  and  the
isospin factor) or the phase shift contributes mostly to the
results.  To  check  the  latter,  we  could  directly  use  the
Regge based formulation described in [33] for the input.
Another approach  would  be  to  incorporate  a  new exten-
ded Madrid phase shift  in  [34] that  may provide a  testa-
ment for better radius extractions in the framework of the
Bayesian inference.  The results  from the current  and the

N −1 = 1
N −1 = 2

Table 5.    Parameter estimation using the pion vector form factor formulated in Eq. (31) using fits for the quadratic ( ) and cu-
bic model ( ).

Data N −1 ⟨r2
V ⟩/fm

2
κ×10−3 c3

KLOE10
1 0.4764(26) 1.20(4) −

2 0.4878(29)(26) 1.21(4) 0.1(1)

KLOE12
1 0.4869(29)(26) 1.21(10)(9) −

2 0.4526(77)(64) 1.03(8) −0.2(1)

BaBar
1 0.4420(12)(13) 1.33(3) −

2 0.4482(53)(45) 1.33(3) −0.06(6)

CMD2
1 0.4365(21)(23) 1.18(5) −

2 0.4539(11)(9) 1.17(5) −0.2(1)

SND
1 0.4400(17) 1.30(4) −

2 0.4697(13)(11) 1.28(4) −0.3(1)

BESIII
1 0.4810(29)(26) 1.23(11) −

2 0.4716(32)(27) 1.22(10) −0.5(4)
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θM

previous analysis demonstrate that the Gaussian assump-
tion of the marginal distribution of Madrid parameters 
might  not  be always correct.  This  is  particularly true for
more complex model(s), i.e., quadratic and/or cubic mod-
els.  This  should  be  addressed  by  permitting  non-Gaussi-
an  priors  for  the  Madrid  parameters.  The  nature  of  non-
Gaussian errors of these parameters are also discussed in
[35] and will be investigated further in our future analys-
is.

Several  problems  with  our  values  may  relate  to  our
oversimplified  data  considerations.  We  omitted  the  off-
diagonal covariance matrices for BaBar and KLOEs from
our  analysis  to  simplify  our  likelihood  formulation  (i.e.,
Eq.  (13)).  Next,  we  ignored  the  outlier  analysis  of  the
datasets which may be important in this scenario because
Colangelo et al. performed the fits by considering poten-
tial outliers on the data as one of the of systematic errors.
In addition, the data with undressed vacuum polarization
effects included in the sets must be addressed in a future
analysis using this Bayesian approach. 

VII.  CONCLUDING REMARKS

e+e−

In  this  study,  we  employed  a  Bayesian  inference  to
extract  the  value  of  the  pion  charge  radius  based  on  the
dispersion  relations,  utilizing  several  experimental 
datasets.  We  used  two  phase  shifts  for  the  pion  vector
form,  and  they  differ  slightly  in  terms  of  continuation
function above 1.3 GeV2. Our Bayesian inference is con-
structed upon two types of priors, namely informative and
non-informative  priors,  which  are  useful  to  avoid  bias
from any particular  choices of  the prior  distribution.  We
computed  the  posterior  distribution  numerically  for  each
prior information by using the MCMC algorithm to infer

model  parameters  in  the  pion  form  factor,  including  the
pion charge radius.

In addition, the nested model problem was addressed
using  Bayesian  model  selection  to  compare  the  model
evidences  of  the  polynomial  choices.  An  economically
straightforward approach to compute the evidence of the
nested models involved the use of SDDR with the exist-
ing MCMC samples of the posterior distribution. This can
also be achieved through nested sampling [36] for gener-
al non-nested models. In practice, we computed the mod-
el  evidence  via  the  MULTINEST  algorithm,  which  is  a
popular  multimodal  nested  sampling  method  developed
by  Feroz et  al.  [37];  the  conclusion  drawn  from  the
SDDR method agrees with the computations from MUL-
TINEST that favors the linear polynomial. Moreover, ef-
fective complexity was used to infer the number of para-
meters  permitted  by  the  data  combined  with  the  model
evidences. However,  a  more  robust  approach  that  in-
volves Bayesian dimensionality introduced by Handley et
al.  [18] may  provide  an  alternative  to  compute  the  im-
proved version of the effective complexity. Our analyses
reveal that  the nine-parameter model (linear polynomial)
of the pion vector form factor is more favored to extract
the pion charge radius.

In addition to the comparison of our result with of the
most  updated values  from Colangelo et  al., we must  ad-
dress the  computational  burden  of  our  Bayesian  ap-
proach despite having a more intuitive applicability in ad-
dressing  parameter  estimation  (radius  extraction)  and
model selection  (determine  polynomial  order).  Our  pos-
terior  sampling  may  be  expensive  to  compute,  and  thus
hinder the  wider  applications  of  this  framework  to  im-
prove the  fitting  procedure  used  in  the  dispersion  rela-

πA

πB ρ Wρ ρ Nρ

ρ ρ ρ ρ

Table 6.    Bayesian analysis of the KLOE10 data employing two different priors: informative and uninformative (denoted by  and
) and two different phase shift inputs with higher  resonances ( ) and without higher  resonances ( ). To avoid cluttering the

notation, we establish the "fits" A-W , A-N , B-W , and B-N  to denote the combination of the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2
κ×10−3 β −4/GeV γ −6/GeV AIC BIC p(y|M) Cb

πA

A-WρFit 

L (9) 0.4412(22) 1.71(7) 0∗ 0∗ 88.2 109.0 9.35 9.36
Q (10) 0.4352(44) 1.76(8) 0.08(5) 0∗ 91.7 114.9 3.83 9.56

C (11) 0.4332(116) 1.76(8) 0.1(2) 0.0(1) 97.7 123.2 1.00 9.90

A-NρFit 

L (9) 0.4328(22) 1.71(7)(7) 0∗ 0∗ 87.9 108.8 55.90 8.96
Q (10) 0.4307(42) 1.73(8) 0.03(5) 0∗ 91.7 114.9 3.39 9.38

C (11) 0.4245(114)(117) 1.73(8) 0.1(2) 0.0(1) 94.3 119.8 1.00 10.00

πB

B-WρFit 

L (9) 0.4409(22) 1.68(7) 0∗ 0∗ 87.9 108.8 80.00 9.50
Q (10) 0.4368(39)(42) 1.73(8) 0.05(5)(4) 0∗ 103.7 126.9 7.63 9.90

C (11) 0.4311(132) 1.74(8) 0.01(2) 0.0(2)(1) 93.7 119.2 1.00 10.15

B-NρFit 

L (9) 0.4325(23) 1.69(7) 0∗ 0∗ 88.0 108.8 202.10 9.51
Q (10) 0.4335(34) 1.73(8)(7) 0.00(3)(4) 0∗ 89.5 112.7 7.86 9.69

C (11) 0.4249(118)(101) 1.71(8) 0.1(1)(2) 0.0(1) 120.3 145.8 1.00 10.10
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tions.  However,  we  argue  that  an  approximate  Bayesian
computation (APC) could serve as a faster and lighter al-
ternative  method  to  our  conventional  approach  [38-40].
In addition,  high-peformance  parallel  optimization  tech-
niques  for  Bayesian  methods  that  may  permit  for  faster
hyperparameter tunings in a grander scale in the realms of
particle physics research should be developed (for an in-
teresting example, refer to Ref. [41]). 
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Supplemental Tables

C′
FV

⟨r2
V⟩

κ β γ

The  following  tables  summarize  the  results  from  all
fits  for  different  numbers  of  parameters  denoted  by 
(i.e., 9, 10, and 11) using the original formulation of .
We only indicate the parameter inference for the pion ra-
dius  charge  ( )  and  three  "polynomial  parameters"
(i.e., , , and ), including their uncertainty. The model
evidences  and  effective  complexities  presented  in  the
tables were obtained from the SDDR based procedure to
solve the nested model problem in our analysis. The val-
ues  of  the  Akaike  Information  Criterion  (AIC)  and
Bayesian  Information  Criterion  (BIC)  are  shown here  to
achieve completeness.

πA

πB ρ Wρ ρ Nρ

ρ ρ ρ ρ

Table 7.    Bayesian analysis of the KLOE12 data employing two different priors: informative and uninformative (denoted by  and
) and two different phase shift inputs with higher  resonances ( ) and without higher  resonances ( ). To avoid cluttering the

notation, we establish the "fits" A-W , A-N , B-W , and B-N  to denote the combination of the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2
κ×10−3 β −4GeV γ −6/GeV AIC BIC p(y|M) Cb

πA

A-WρFit 
L (9) 0.4451(21) 1.61(11) 0∗ 0∗ 85.2 104.0 13.03 9.28

Q (10) 0.4382(50)(52) 1.64(12) 0.08(6)(5) 0∗ 87.2 108.2 3.36 9.67
C (11) 0.4310(130) 1.63(12) 0.2(2) 0.0(1) 90.4 113.4 1.00 10.08

A-NρFit 
L (9) 0.4372(22) 1.62(11) 0∗ 0∗ 84.0 102.8 16.65 9.20

Q (10) 0.4352(46)(50) 1.63(12) 0.03(6)(5) 0∗ 85.6 106.5 2.38 9.61
C (11) 0.4220(128)(130) 1.61(12) 0.2(2) −0.1(1) 89.9 112.9 1.00 9.94

πB

B-WρFit 
L (9) 0.4448(21) 1.54(12) 0∗ 0∗ 84.4 103.3 18.24 9.32

Q (10) 0.4407(42)(48) 1.56(12) 0.05(5)(4) 0∗ 105.0 125.9 6.00 9.81
C (11) 0.4263(144) 1.55(13) 0.2(2) −0.1(1) 100.3 123.3 1.00 10.44

B-NρFit 
L (9) 0.4370(22) 1.54(12) 0∗ 0∗ 84.0 103.0 59.4 9.29

Q (10) 0.4355(46)(49) 1.56(16) 0.02(6)(5) 0∗ 86.9 107.8 3.71 9.18
C (11) 0.4170(142)(141) 1.52(12) 0.3(2) −0.2(1) 97.2 120.3 1.00 10.15

πA πB

ρ Wρ ρ Nρ

ρ ρ ρ ρ

Table 8.    Bayesian analysis of the BESIII data employing two different priors: informative and uninformative (denoted by  and )
and two different phase shift inputs with higher  resonances ( ) and without higher  resonances ( ). To avoid cluttering the nota-
tion, we establish the "fits" A-W , A-N , B-W , and B-N  to denote the combination of the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2
κ×10−3 β −4/GeV γ −6/GeV AIC BIC p(y|M) Cb

πA

A-WρFit 
L (9) 0.4430(35)(33) 1.81(14) 0∗ 0∗ 58.2 77.1 0.89 7.28

Q (10) 0.4232(93)(96) 1.81(15)(14) 0.18(8) 0∗ 57.5 78.4 1.82 8.09
C (11) 0.4050(216)(213) 1.87(15) 0.5(3) −0.2(3) 58.1 81.2 1.00 8.54

A-NρFit 
L (9) 0.4328(31) 1.79(14) 0∗ 0∗ 57.2 76.0 1.94 7.13

Q (10) 0.4185(91) 1.83(14) 0.13(8) 0∗ 57.3 80.5 1.11 7.98
C (11) 0.3976(219)(215) 1.84(14) 0.5(3) −0.3(3) 57.8 83.3 1.00 8.40

πB

B-WρFit 
L (9) 0.4423(35)(33) 1.73(15) 0∗ 0∗ 58.4 77.2 3.27 7.37

Q (10) 0.4230(95)(97) 1.79(16) 0.05(5)(4) 0∗ 57.4 78.3 1.13 7.92
C (11) 0.3577(371)(373) 1.80(16) 0.2(2) −0.1(1) 55.4 78.5 1.00 7.78

B-NρFit 
L (9) 0.4321(34) 1.71(15) 0∗ 0∗ 57.0 75.8 9.62 7.39

Q (10) 0.4148(94)(92) 1.76(15) 0.1(1) 0∗ 57.2 80.7 0.91 8.24
C (11) 0.3493(365)(371) 1.77(16) 1.2(6)(5) −0.9(5)(4) 56.5 82.0 1.00 8.13
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πA πB

ρ Wρ ρ Nρ

ρ ρ ρ ρ

Table 9.    Bayesian analysis of the BaBar data employing two different priors: informative and uninformative (denoted by  and )
and two different phase shift inputs with higher  resonances ( ) and without higher  resonances ( ). To avoid cluttering the nota-
tion, we establish the "fits" A-W , A-N , B-W , and B-N  to denote the combination of the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2
κ×10−3 β −4/GeV γ −6/GeV AIC BIC p(y|M) Cb

πA

ρFit A-W
L (9) 0.4491(11) 1.86(5) 0∗ 0∗ 219.5 251.8 9.02 9.63

Q (10) 0.4446(26) 1.95(6)(6) 0.08(4) 0∗ 220.2 256.2 5.47 10.16
C (11) 0.4452(51) 1.95(7)(7) 0.07(7) 0.00(8) 223.4 263.0 1.00 10.32

ρFit A-N
L (9) 0.4417(11) 1.89(5) 0∗ 0∗ 219.4 251.8 21.44 9.33

Q (10) 0.4390(25) 1.94(6) 0.09(7) 0∗ 220.4 256.4 4.28 9.86
C (11) 0.4359(48) 1.92(7) 0.05(4) −0.05(6) 223.6 266.8 1.00 10.13

πB

ρFit B-W
L (9) 0.4492(11) 1.86(5) 0∗ 0∗ 219.5 251.8 54.46 9.48

Q (10) 0.4448(26) 1.95(6) 0.08(4) 0∗ 218.8 254.7 16.02 10.01
C (11) 0.4455(47) 1.95(7) 0.07(7) 0.00(8) 227.1 266.6 1.00 10.45

ρFit B-N
L (9) 0.4418(11) 1.89(5) 0∗ 0∗ 219.4 251.8 151.20 9.13

Q (10) 0.4391(24)(25) 1.93(6) 0.05(4) 0∗ 219.5 255.5 12.45 9.54
C (11) 0.4366(46)(45) 1.95(7) 0.07(7) 0.01(7) 221.9 261.5 1.00 10.83

πA

πB ρ Wρ ρ Nρ

ρ ρ ρ ρ

Table 10.    Bayesian analysis of the CMD2 data employing two different priors: informative and uninformative (denoted by  and
) and two different phase shift inputs with higher  resonances ( ) and without higher  resonances ( ). To avoid cluttering the

notation, we establish the "fits" A-W , A-N , B-W , and B-N  to denote the combination of the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2
κ×10−3 β −4/GeV γ −6/GeV AIC BIC p(y|M) Cb

πA

ρFit A-W
L (9) 0.4505(37) 1.71(7) 0∗ 0∗ 50.3 62.6 4.47 9.25

Q (10) 0.4425(75)(78) 1.75(8) 0.07(7) 0∗ 53.2 66.9 1.12 9.45
C (11) 0.4157(225)(219) 1.74(8) 0.4(3) −0.2(2) 53.3 68.3 1.00 10.16

ρFit A-N
L (9) 0.4412(37) 1.71(7) 0∗ 0∗ 50.6 62.9 6.16 9.46

Q (10) 0.4400(71)(73) 1.72(8) 0.01(7) 0∗ 52.6 66.3 0.77 9.50
C (11) 0.4078(212)(217) 1.71(8) 0.4(3) −0.3(2) 52.5 67.5 1.00 10.18

πB

ρFit B-W
L (9) 0.4500(37)(36) 1.71(7) 0∗ 0∗ 50.3 62.6 23.39 9.20

Q (10) 0.4426(74)(77) 1.75(8) 0.08(7)(6) 0∗ 57.3 71.0 1.49 9.58
C (11) 0.4200(206)(208) 1.74(8) 0.3(3) −0.2(2) 55.3 70.4 1.00 9.53

ρFit B-N
L (9) 0.4407(37) 1.71(7) 0∗ 0∗ 50.6 62.9 11.00 9.24

Q (10) 0.4404(72)(75) 1.72(8) 0.01(7) 0∗ 52.6 66.3 0.42 9.49
C (11) 0.3828(281)(289) 1.70(8) 0.8(4) −0.5(2) 53.8 68.8 1.00 9.58

πA πB

ρ Wρ ρ Nρ

ρ ρ ρ ρ

Table 11.    Bayesian analysis of the SND data employing two different priors: informative and uninformative (denoted by  and )
and two different phase shift inputs with higher  resonances ( ) and without higher  resonances ( ). To avoid cluttering the nota-
tion, we establish the "fits" A-W , A-N , B-W , and B-N  to denote the combination of the prior and the phase shift.

Prior Resonance M C0 ( ) ⟨r2
V ⟩/fm

2
κ×10−3 β −4/GeV γ −6/GeV AIC BIC p(y|M) Cb

πA

ρFit A-W
L (9) 0.4469(27) 1.78(6) 0∗ 0∗ 84.4 100.7 0.16 9.26

Q (10) 0.4339(60)(64) 1.88(7) 0.15(7)(6) 0∗ 84.6 102.7 0.37 9.19
C (11) 0.4030(160)(158) 1.86(7) 0.6(2) −0.3(2) 80.2 100.0 1.00 9.30

ρFit A-N
L (9) 0.4382(28)(27) 1.79(6) 0∗ 0∗ 85.5 101.7 0.54 8.48

Q (10) 0.4310(57)(60) 1.84(7) 0.08(6) 0∗ 86.9 105.0 0.16 9.46
C (11) 0.3949(156) 1.83(7) 0.6(2) −0.4(2) 81.9 101.8 1.00 9.85

πB

ρFit B-W
L (9) 0.4469(27) 1.76(6) 0∗ 0∗ 84.7 101.0 0.45 9.00

Q (10) 0.4339(59)(63) 1.88(7) 0.15(7) 0∗ 81.7 99.8 0.46 9.36
C (11) 0.4070(154) 1.86(7) 0.7(2) 0.4(2) 84.7 104.6 1.00 9.61

ρFit B-N
L (9) 0.4379(28) 1.79(6) 0∗ 0∗ 85.5 101.7 4.55 9.44

Q (10) 0.4310(57)(60) 1.84(7) 0.08(6) 0∗ 84.1 102.2 0.23 9.83
C (11) 0.3984(151)(147) 1.82(7) 0.5(2) −0.3(2)(1) 80.8 100.6 1.00 10.26
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