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Abstract: Three typical Pauli blocking algorithms in quantum molecular dynamics type models are investigated in
the  nuclear  matter,  the  nucleus,  and  heavy  ion  collisions.  In  nuclear  matter,  the  blocking  ratios  obtained  with  the
three algorithms are underestimated by 13%-25% compared to the corresponding analytical values. For a finite nuc-
leus, spurious  collisions  occur  around  the  surface  of  the  nucleus  owing  to  the  defects  of  the  Pauli  blocking  al-
gorithms.  In  the  simulations  of  heavy  ion  collisions,  the  uncertainty  of  stopping  power  arising  from  the  different
Pauli blocking algorithms is less than 5%. Furthermore, the in-medium effects of nucleon-nucleon (NN) cross sec-
tions on the nuclear stopping power are discussed. Our results show that the transport model calculations with free
NN cross sections result in the stopping power decreasing with beam energy when the beam energy is less than 300
MeV/u. To increase or decrease the values of the stopping power, the transport model calculations need enhanced or
suppressed model dependent in-medium NN cross sections that are expected to be smaller than the true in-medium
NN cross sections.
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I.  INTRODUCTION

NN

NN

Heavy  ion  collisions  (HICs)  provide  crucial  insights
into  the  features  of  the  nuclear  equation  of  state  (EOS)
and the in-medium  cross sections for a wide range of
densities,  temperatures, and neutron-proton asymmetries.
However,  the  transient  states  of  compressed/expanded
nuclear matter during a reaction, such as the pressure and
density,  cannot  be  directly  measured  due  to  the  spatial-
temporal  scale  of  reaction  systems,  which  is  beyond  the
capability of measurement. To extract the EOS or in-me-
dium  cross  sections,  the  transport  models  used  to
simulate the HICs are indispensable.

NN

NN

Many transport codes have been developed to extract
the isospin asymmetric nuclear EOS and in-medium 
cross  sections  [1-21].  However,  the  model  dependences
of the constraints of symmetry energy [22-32] and in-me-
dium  cross sections [33-38] become apparent as dif-
ferent  conclusions  could  be  drawn  from  the  same  data.
This situation led to the idea of a systematic comparison
and evaluation of transport codes under controlled condi-
tions [39-42]. Previous studies in this direction were ded-

∆

icated  to  the  comparison  of  transport  model  predictions
for  Au+Au  collisions  [39],  and  for  benchmarking  the
treatment of  nucleon-nucleon collisions and Pauli  block-
ing  [40]  and  production  [41]  in  box  calculations  with
the  cascade  mode.  Comparisons  of  the  mean  field  have
been performed in box calculations with the Vlasov mode
[42].  Currently,  the  observed  differences  in  the  reaction
path  and  corresponding  observables  mainly  result  from
differences in the initialization of the systems and in the
treatment  of  Pauli  blocking effects.  The latter,  i.e.,  Pauli
blocking,  describes  the  statistical  ability  to  populate  the
final  states  in  a  fermionic  system in  the  gain  (loss)  term
of  the  transport  equation,  and it  is  crucial  for  simulating
the low-intermediate energy HICs in transport models.

The  Pauli  blocking  algorithms  in  the  Boltzmann-
Uehling-Uhlenbeck (BUU)  approach  and  quantum  mo-
lecular  dynamics  (QMD)  approach  are  different.  In  the
BUU approach,  Pauli  blocking  may  be  improved  by  in-
creasing  the  number  of  test  particles  to  infinity.  In  the
QMD approach, a fixed width of Gaussian wave packet is
used to represent a nucleon. This leads to a strong fluctu-
ation, which is important in physics for describing cluster
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formation and multifragmentation, but underestimates the
Pauli  blocking  effect  as  in  Ref.  [40].  Consequently,  one
can expect that the successful  collision rate could be
overestimated in the transport codes, and thus, the extrac-
ted model dependent in-medium  cross sections devi-
ate from their  real  values.  Moreover,  owing  to  the  diffi-
culties in the descriptions of Pauli  blocking in the QMD
approach,  different  Pauli  blocking  algorithms  have  been
developed in QMD codes [40]. Thus, studying the theor-
etical uncertainties in the transport model calculations is a
consensus  for  reliably  extracting  the  related  physics  and
improving the reliability of models.

NN

The goal of this work is to learn the systematic devi-
ation of the Pauli blocking ratio compared to the analytic-
al values  and  evaluate  the  uncertainties  of  nuclear  stop-
ping power  caused  by  different  Pauli  blocking  al-
gorithms  in  the  simulations  of  HICs,  which  are  mainly
used to extract the in-medium  cross sections. All the
calculations  are  performed  within  the  framework  of  the
improved  QMD  model  (ImQMD)  [3, 43-45],  but  the
Pauli blocking algorithms are replaced by three typical al-
gorithms.

NN

NN

NN

The  paper  is  organized  as  follows:  In  Sec.  II,  we
briefly describe  the  three  typical  Pauli  blocking  al-
gorithms in the market and the in-medium  cross sec-
tions we try to analyze. In Sec. III, the successful/attemp-
ted collision rates and Pauli blocking ratios obtained with
different Pauli blocking algorithms in the nuclear matter,
the finite  nucleus,  and  the  HICs  are  presented  and  dis-
cussed. Furthermore,  a  simple  discussion  on  the  influ-
ence  of  in-medium  cross  sections  on  the  stopping
power  is  also  presented.  We  do  not  compare  the  model
calculations with the data for extracting the real values of
in-medium  cross  sections  in  this  work,  because  the
Pauli  blocking  algorithms  still  need  to  be  improved.  A
summary and outlook are given in Sec. IV. 

II.  PAULI BLOCKING AND IN-MEDIUM NN
CROSS SECTIONS IN THE IMQMD MODEL

NN

In  this  section,  we  only  mention  the  three  typical
Pauli  blocking  algorithms  that  are  directly  related  to  the
Uehling-Uhlenbeck  factor  in  the  transport  equation,  and
the in-medium  cross sections that we used. There are
also  some  efforts  to  improve  the  Pauli  blocking  in  the
transport  codes  by  adding  additional  constraints  [10, 35,
46, 47],  but  we  do  not  discuss  those  in  this  work.  More
details about the mean field potential and the treatment of
nucleon-nucleon  collision  in  the  ImQMD  model  can  be
found in Refs. [3, 43-45]. 

A.    Pauli blocking algorithms
In the  QMD  type  models,  each  nucleon  is  represen-

ted by a Gaussian wave packet, 

ψi(r) =
1

(2πσ2
r )3/4

e
− (r−ri)2

4σ2
r
+ir·pi/h̄

, i = 1, · · · ,A (1)

σr riwhere  and  are  the  width  and centroid  of  the  wave
packet, respectively. Its Wigner density reads 

fW,i(r, p) =
1

(πh̄)3 e
− (r−ri)2

2σ2
r
− (p−pi)2

2σ2
p , (2)

σrσp = h̄/2
r p

p
|ψi(r)|2 r

|Ci(p)|2

where .  The  Wigner  density  expresses  the
probability density of the simultaneous values of  and 
for  the ith nucleon.  When  Eq.  (2)  is  integrated  with  re-
spect  to ,  the  correct  probability  in  coordinate  space

 is given; if we integrate Eq. (2) with respect to ,
the  correct  probability  in  momentum  space  can
also be verified [3].

i+ j→ i′+ j′

ri = r′i r j = r′j
pi+ p j→ p′i + p′j
p′i P(p′i)∑

j,i fW, j(r, p)
p′i

P(p′i)

In  the  treatment  of  the  collision  of  at  a
certain  time  step  in  the  code,  the  positions  of  particle i
and j are kept the same before and after the collision, i.e.,

, , while the momenta of particles i and j are
changed,  i.e., .  Thus,  the  probability  of
the final  state  occupied by other nucleons,  i.e., ,
can  be  calculated  based  on  in  the  phase-
space  cell  around .  In  the  following  discussions,  we
briefly  mention  the  methods  of  the  calculation  of ,
such as PB-Wigner, PB-Husimi, and PB-HSP, which are
adopted in the different QMD codes. 

1.    PB-Wigner

p′i
Pτ(p′i) = Pτ(ri, p′i)

For  the  PB-Wigner  algorithm,  the  probability  of  the
final  state  being occupied  by  other  particles  is  ex-
pressed as , 

Pτ(ri, p′i) =
1

2/h3

∑
j∈τ, j,i

fW, j(ri, p′i)

=4
A∑

j∈τ( j,i)

exp
[
−

(ri− r j)2

2σ2
r

]
× exp

− (p′i − pj)2

2σ2
p

 ,
(3)

τ = n 2/h3with  or p.  The  factor  results from  considera-
tion of the spin in the phase-space cell.

Pτ(p′i)

Pτ(ri, p′i) 1
Pτ(ri, p′i)

min(Pτ(ri, p′i),1)

 could be  larger  than  1,  because  of  the  fluctu-
ation and the semi-classical transport equation. If the oc-
cupation  probability  is  larger  than , the  occu-
pation  probability  is  replaced  by

. The  PB-Wigner  method  is  used  in  Im-
QMD [3, 43-45], IQMD-BNU [8], JAM [11, 12], JQMD
[13, 14], and UrQMD [6, 15, 35]. In the ImQMD and Ur-
QMD models,  additional  criteria  are  also  adopted  to  en-
hance  the  Pauli  blocking ratio  [35, 43], but  for  conveni-
ence, the effect will not be discussed in this paper. 
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2.    PB-Husimi

p′i

fH(r, p)

fW (r, p)

In the PB-Husimi algorithm, the probability of the fi-
nal  state  being occupied  by  other  particles  is  ex-
pressed  according  to  the  Husimi  function  [48].  The
Husimi function ensured to have a good property as prob-
ability  in  the  AMD  model  [48],  and  the  distribution  is
broader  than  the  Wigner  function.  In  detail,  the  Husimi
phase-space  distribution  function,  i.e., ,  in  the
QMD  is  related  to  the  Wigner  phase-space  distribution

 as in Refs. [49, 50], 

fH,i(r, p) =
∫

W(r, p |r′, p′) fW,i(r′, p′)dr′dp′, (4)

with 

W(r, p |r′, p′) = 1
(πh̄)3 exp

− (r′− r)2

2σ2
r
− (p′− p)2

2σ2
p

 . (5)

By using  Eqs.  (4)  and  (5),  we  obtain  the  Husimi  phase-
space distribution function as follows: 

fH,i(r, p) =
1
h3 exp

− (r− ri)2

4σ2
r
− (p− pi)2

4σ2
p

 . (6)

p= p′i r = ri

Pτ(p′i) = Pτ(ri, p′i)
Thus,  the  occupation probability  at  and  can
be obtained as , 

Pτ(ri, p′i) =
1

2/h3

∑
j∈τ, j,i

fH, j(ri, p′i)

=
1
2

A∑
j∈τ( j,i)

exp
[
−

(ri− r j)2

4σ2
r

]
× exp

− (p′i − pj)2

4σ2
p

 .
(7)

Pτ(ri, p′i)
1 Pτ(ri, p′i) =min(Pτ(ri, p′i),1)

Similarly, if the occupation probability  is larger
than , . 

3.    PB-HSP

Pτ(ri, p′i) Pτ(p′i) = Pτ(ri, p′i)
In  the  PB-HSP algorithm,  the  occupation  probability

 is calculated as : 

Pτ(ri, p′i) =
A∑

j∈τ( j,i)

(O(x)
i j /

4
3
πR3

x)(O(p)
i j /

4
3
πR3

p), (8)

O(x)
i j (O(p)

i j )
Rx(Rp)

where,  is  the  volume  of  the  overlap  region  of
hard spheres with the radius  of nucleons i and j in
coordinate  (momentum)  space.  As  the  volume  of  the

O(x)
i j

overlap region of hard spheres is used, we simply name it
HSP.  is calculated by
 

O(x)
i j =


0, L(x)

i j ⩾ 2Rx

4
3
πR3

x −πL(x)
i j

R2
x −

1
3

(
L(x)

i j

2
)

2 , L(x)
i j < 2Rx

(9)

L(x)
i j = |ri− r j| L(x)

i j L(p)
i j = |p′i − pj|

Rx Rp O(p)
ik Rx

Rp

4
3
πR3

x ·
4
3
πR3

p =
h3

2
Pτ(ri, p′i) 1

min(Pτ(ri, p′i),1)

where . By replacing  with 
and  with , one can obtain . Here, we take  =
3.367 fm,  = 112.5 MeV/c as in Ref. [40]. This meth-
od corresponds to the uniform phase-space density distri-
bution in coordinate and momentum space, i.e., one nuc-
leon  occupies  the  phase-space  cell  with  the  size

. Similarly,  if  the  occupation  probabil-
ity  is  larger  than ,  the  occupation  probability
should  be  replaced  by .  The  PB-HSP
method  is  adopted  in  QMD  [46],  LQMD  [9],  and
TuQMD [10, 47]1) 

NNB.    In-medium  cross sections
NN

NN
σmed

QMD σmed
QMD = R∗σfree

R = (1+η(Ebeam)ρ/
ρ0)
σmed

QMD σmed

In ImQMD, the isospin dependent  cross sections
and the differential cross sections in free space are taken
from Ref. [51]. The in-medium  cross sections in the
ImQMD  model  are  named ,  and ,
where  the  medium  correction  factor 

.  Here,  we  want  to  stress  that  the  model  dependent
 is not exactly the same as in true , and we will

show it in the nuclear matter calculations in Sec. IIIA. 

III.  RESULTS AND DISCUSSION

NN

In this section, we first evaluate the Pauli blocking al-
gorithms in nuclear  matter  in  cascade mode,  and then in
the finite  nucleus  and HICs.  Finally,  the  uncertainties  of
different Pauli blocking algorithms on the stopping power
and in-medium  cross sections are presented and dis-
cussed. 

A.    Pauli blocking in nuclear matter

NN

p′i dN/dp′

p′i Pτ(p′i)

During  the  HICs,  various  effects  interplay  and
propagate  during  the  reaction  process;  thus,  it  is  hard  to
evaluate the  Pauli  blocking  only  in  the  HICs.  To  disen-
tangle  the  interplay  between  mean  field  and  colli-
sions, we first analyze the nucleon number distribution of
the final state , i.e., , and the occupation probab-
ility of the final state , i.e.,  in the cascade mode,
i.e., without mean-field potential, in the nuclear matter.

To  simulate  the  nuclear  matter,  a  box  with  imposed
periodic  boundary  conditions  is  adopted.  The  periodic
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Lα
α ≡ x,y,z
Lx/2,Ly/2,Lz/2

ρ = 0.16 −3

0 Lα

f = 1/{1+
[(ϵ −µ)/T ]} ϵ = p2/2m

c2 µ
NN

boundary  conditions  are  the  same  as  those  in  Ref.  [40],
i.e.,  the  dimensions  of  the  cubic  box  are  =  20  fm,

,  and  the  position  of  the  center  of  the  box  is
( ). The box is initialized with a finite tem-
perature  in  uniform  nuclear  matter.  The  density  is

 fm  and  the  isospin  asymmetry  equals  zero,
which corresponds to 1280 nucleons (640 neutrons + 640
protons) in the box. In coordinate space, the positions of
nucleons  are  initialized  randomly  from  to . In  mo-
mentum  space,  the  momenta  of  nucleons  are  initialized
according  to  the  Fermi-Dirac  distribution, 
exp ,  with ,  nucleon  mass m =  938
MeV/ , chemical potential  = 36.84 MeV, and temper-
ature T = 5 MeV. The  collision cross sections are set
as 40 mb.

dN/dp′

t = 1
NN

dN/dp′

dN/dp′

In Figs. 1(a), (b) and (c), we present  after the
evolution of  the  first  time step,  i.e.,  at  fm/c, to  un-
derstand how many nucleons participate in the  colli-
sions at a certain momentum. The reason why we choose
the first time step, i.e., t = 1 fm/c, is that the momentum
space distribution at the first time step is still governed by
the  initialized  Fermi-Dirac  distribution.  Thus,  one  can
evaluate the Pauli  blocking algorithms by comparing the
occupation probability with the Fermi-Dirac distribution.
The observed differences in the distribution reflect the ac-
curacy  of  different  treatments  of  Pauli  blocking.  Panels
(a),  (b),  and  (c)  are  for  the  cases  of  PB-Wigner,  PB-
Husimi,  and  PB-HSP,  respectively.  A  total  of  10,000
events are performed at T = 5 MeV. The  of PB-
Wigner,  PB-Husimi,  and  PB-HSP  are  almost  the  same,
because  the  momenta  of  nucleons  in  the  initial  state  are
sampled  within  the  same  Fermi-Dirac  distribution  and
only  one  time  step  is  considered.  increases  with
momentum, reaches a maximum around 220 MeV/c, and
then decreases.

Figures 1(d), (e), and (f) show the occupation probab-

⟨P(p′)⟩
⟨(P(p′)−⟨P(p′)⟩)2⟩1/2

⟨ (P(p′),1)⟩
⟨ (P(p′),1)⟩

⟨P(p′)⟩ P(p′)
(P(p′),1)

ility for the Pauli blocking algorithms of PB-Wigner, PB-
Husimi,  and  PB-HSP,  respectively.  The  mean  values  of
the  occupation  probability,  i.e., , and  their  stand-
ard  deviations,  i.e. ,  are  shown  as
blue curves and blue error bars.  The actual averaged oc-
cupation  probabilities  used  in  the  ImQMD  calculations,
i.e., min , are shown as black curves. The actu-
al  occupation  probability min  is  always
slightly lower than  due to the truncation of 
by  using  min .  The  red  lines  are  the  analytical
values of occupation probability, i.e., the Fermi-Dirac oc-
cupation  probability.  Among  these  three  Pauli  blocking
algorithms, PB-Husimi  has  the  smallest  standard  devi-
ations due to the large width in Eq. (7). Furthermore, all
the  algorithms  used  in  the  QMD codes  deviate  from the
theoretical values as discussed in Ref. [40]. It underestim-
ates the  Pauli  blocking  probability  in  the  lower  mo-
mentum region and overestimates  the blocking probabil-
ity in the high momentum region due to the strong fluctu-
ation.

dNatt.
coll

dt
dNsuc.

coll.

dt
Rblock

Rblock

To quantitatively  evaluate  the  Pauli  blocking  al-

gorithms,  we present  the  attempted  collision  rate ,

successful  collision rate ,  and Pauli  blocking ratio
 as  a  function  of  temperature  in Figs.  2(a) and (b),

respectively. Here,  is defined as 

Rblock = 1−
dNsuc.

coll.

dt

/dNatt.
coll.

dt
. (10)

The temperature T is from 2 MeV to 10 MeV, which
corresponds  to  the  low-intermediate  energy  HICs.  The
black line  is  the  result  for  the  averaged  attempted  colli-
sion rate, which is calculated by an analytical formula as
in Ref. [40], i.e., 

Fig. 1.    (color online) Panels (a), (b), and (c) are the momentum distributions of the final state of nucleon-nucleon collisions at t = 1
fm/c. Panels (d), (e), and (f) are the occupation probabilities for different Pauli blocking algorithms, i.e., PB-Wigner, PB-Husimi, and
PB-HSP, respectively. Red lines denote the analytical values of occupation probability (see text for more details).
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⟨dNatt.
coll.

dt

⟩
=

1
2

Aρ⟨vrelσ
med⟩. (11)

ρ vrel

σmed

NN σmed = 40

Here, A is the nucleon number,  is the density,  is the
relative velocity between two colliding nucleons,  is
the  in-medium  cross  section,  and  mb.
Equation (11) corresponds to the case of no Pauli block-
ing. As illustrated in Fig. 2(a), the analytical values of av-
eraged attempted collision rate (black line) increase with
increasing temperature.

The  red  lines  with  different  symbols  in Fig.  2(a) are
the averaged successful collision rates obtained with PB-
Wigner (squares), PB-Husimi (circles), and PB-HSP (tri-
angles).  The  green  line  represents  the  result  of  the  Pauli
blocker, which is fixed to the initialized Fermi-Dirac dis-
tribution  for  given  temperatures,  i.e.,  PB-FD.  It  is  used
for evaluating how well  the Pauli  blocking algorithms is

in  the  nuclear  matter.  Similar  to  the  results  in  Ref.  [40],
the  averaged  successful  collision  rates  from PB-Wigner,
PB-Husimi,  and  PB-HSP  are  larger  than  the  analytical
successful collision rates from PB-FD. Among these, the
results  from  PB-HSP  are  closer  to  those  of  PB-FD  than
the others.

⟨Rblock⟩

⟨Rblock⟩

⟨Rblock⟩

⟨Rblock⟩

σmed
QMD σmed

QMD < σ
med

T = 10 σmed
QMD/σ

med ≈
σmed ≈ 2 ∼ 2.7σmed

QMD

In Fig.  2(b),  we  plot  the  averaged  blocking  ratios
 as a function of T,  which are calculated over the

time interval 60-140 fm/c and from 200 events. The val-
ues  of  from  different  Pauli  blocking  algorithms
decrease  with  increasing  temperature.  Furthermore,  the

 obtained  with  PB-Wigner,  PB-Husimi,  and  PB-
HSP  are  smaller  by  approximately  13%-25%  than  the
analytical values, i.e.,  obtained with PB-FD. This
means that the different Pauli blocking algorithms used in
the  transport  codes  overestimate  the  successful  collision
rate.  Thus,  to  obtain  the  same  successful  collision  rate
from the Pauli blocking algorithms adopted in QMD and
from the  analytical  Pauli  blocking,  one  can imagine  that

 is  smaller  than  its  true  values,  i.e., .
For example,  at  MeV,  37-50% (or,

) for the selected three Pauli blocking
algorithms based on Eqs. (10) and (11). 

B.    Pauli blocking in a finite nucleus
One should notice that the Pauli blocking effect in the

nuclear matter is not exactly the same as that in the finite
size system due to the boundary effect.  Thus, we further
check it  in  a  finite  nucleus  where  the  mean-field  poten-
tial  is  also  considered for  binding the  nucleons  together.
In  the  following  calculations,  the  interaction  parameter
set of SkM* is adopted.

NN⟨dNsuc.
coll.

dtdr

⟩As a test  of Pauli  blocking in the finite nucleus, Fig.
3(a) shows the successful  collision rate as a function

of  radial  distance r,  i.e.,  from  1000  events,  in

 

⟨dNatt.
coll.

dt

⟩ ⟨dNsuc.
coll.

dt

⟩

⟨Rblock⟩

Fig.  2.    (color  online)  Panel  (a):  Averaged  attempted  colli-

sion  rate  and  successful  collision  rate  as

functions of temperature. The red lines with different symbols
are from different Pauli blocking algorithms. Panel (b): Aver-
aged  blocking  ratio  for  different  Pauli  blocking  (see
text for more details).

124

124

Fig. 3.    (color online) Panel (a): Successful collision rates as functions of radial distance for Sn. Panel (b): Density distribution of
Sn. Panels (c), (d), and (e): Momentum distribution of scattered nucleons. Panels (f), (g), and (h): Occupation probability. They cor-

respond to different Pauli blocking algorithms, i.e., PB-Wigner, PB-Husimi, and PB-HSP, respectively (see the text for details).
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124Sn

⟨dNsuc.
coll.

dtdr

⟩ ⟨dNsuc.
coll.

dt

⟩
. The  lines  with  different  colors  represent  the  res-

ults  obtained  with  PB-Wigner  (black  line),  PB-Husimi
(red line), and PB-HSP (green line), respectively. Similar
to  the  calculations  in  nuclear  matter,  the  values  of

 are obtained at 1 fm/c, and the values of 

are approximately 0.9-1.6 c/fm. Among the three kinds of
Pauli  blocking,  the  calculation  with  PB-HSP  gives  the
smallest successful collision rate. The differences in suc-
cessful  collision  rate  between  the  three  kinds  of  Pauli
blocking cannot  be  as  clearly  observed as  in  the  nuclear
matter.  The reasons are:  1)  the  finite  system has  a  small
nucleon number, and 2) the density distribution is a kind
of  Woods-Saxon  form,  which  leads  to  more  nucleons
with low momentum distribution of the initial nuclei.

NNIn addition, most of the successful  collisions oc-
cur at approximately r = 5.2 fm, which is close to the sur-
face  of  the  nucleus  as  found  in  the  density  distribution
plots in panel (b). This can be mainly attributed to the de-
fects of the Pauli  blocking algorithms in the QMD mod-
els,  because  the  system  only  evolves  by  one  time  step.
Some ad hoc methods to overcome this defect are presen-
ted  in  Refs.  [46, 47],  but  a  consistent  improvement  of
Pauli blocking near the surface of the nucleus or reaction
system is still a theoretical challenge.

dN/dp′

NN

⟨P(p′)⟩
⟨ (P(p′),1)⟩

⟨min(P(p′),1)⟩ ⩽ ⟨P(p′)⟩
P(p′)

Panels (c), (d), and (e) show  of the final state
of  collisions  in  different  Pauli  blocking  algorithms,
i.e.,  PB-Wigner,  PB-Husimi,  and  PB-HSP,  respectively,
and it clearly illustrates the importance of Pauli blocking
within the Fermi momentum. The mean values of occupa-
tion probability  and mean actual occupation prob-
ability min  at  1  fm/c are  shown  by  the  blue
and black curves in panels (f)-(h), respectively. Similar to
the  finding  in  the  nuclear  matter,  there  is  also

 in the  finite  nucleus.  The  stand-
ard deviation of the occupation probability  is indic-
ated by blue error bars, and it shows that PB-Wigner has
the largest fluctuation among the three Pauli blocking al-
gorithms. The values obtained with PB-HSP are closer to
1 at  low  momentum  than  those  of  the  other  two  al-
gorithms. 

C.    Pauli blocking on stopping power

in heavy ion collisions

vartl

Nuclear  stopping  governs  the  amount  of  dissipated
energy under the competition between the mean field po-
tential and nucleon-nucleon collisions,  and can be meas-
ured  by  the  ratio  between  transverse  and  longitudinal
components  of  kinematical  observables  [52-54]. For  ex-
ample, the  ratio  of  the  variances  of  the  transverse  rapid-
ity distribution  to  that  of  the  longitudinal  rapidity  distri-
butions of emitted particles, which is named as  [53], 

vartl =
⟨y2

t ⟩
⟨y2

z ⟩
. (12)

RE
Rp

NN

NN

The  energy-based  isotropy  ratio  [52] and  the  mo-
mentum-based isotropy ratio  [54] are also used in ex-
periments to measure the stopping power. These quantit-
ies measure the transfer of momentum from the entrance
direction  to  the  transverse  direction,  and  thus,  they  are
closely related to the successful  collision rate. There-
fore,  a  study  of  the  nuclear  stopping  observable  can
provide an insight into the in-medium  cross sections
and Pauli blocking effects.

NN

σfree
nn/pp = 60 σfree

np = 180 plab < 0.3
Elab < 50 NN

⟨ρvrelσ
free
NN ⟩
ρ = 0.16 −3

Elab >∼ 100
NN

40

σfree
nn/pp,np

Before  discussing  the  stopping  power  in  HICs,  we
first  present  the  free  cross  sections  [51]  used  in  the
ImQMD calculations  and  the  corresponding  mean  at-
tempted collision rate  in Figs.  4(a) and (b),  respectively.
As  shown  in  panel  (a),  both  the  cross  sections  of nn/pp
(black line) and np (red line) decrease with beam energy.
In  more  detail,  in  the  ImQMD  model,  we  also  set

 mb and  mb at  GeV/c (or
 MeV) to avoid the spurious low energy  col-

lisions  in  the  nuclear  medium. Figure  4(b) shows  the
mean  attempted  collision  rate  by  nucleons,  i.e.,

, for nn/pp and np, in the uniform nuclear mat-
ter with  fm . The mean attempted collision rate
for np decreases with increasing beam energy,  while  the
mean  attempted  collision  rate  for nn/pp first  decreases
and then increases  at  MeV.  This  is  different
to the behaviors in Fig. 2, where a constant  cross sec-
tion of  mb is used. Thus, one may expect that the stop-
ping  power  may  weakly  depend  on  the  beam  energy  or
decrease with increasing beam energy if  is used
and Pauli blocking is switched off in the model.

⟨Rblock⟩
112Sn+124 Sn
⟨Rblock⟩

However,  the  Pauli  blocking  effect  is  indispensable
for low-intermediate energy HICs. In Fig. 5(a), the aver-
aged  blocking  ratios  as a  function  of  beam  en-
ergy for  at b = 1 fm are presented. The val-
ues  of  are  obtained  over  the  time  interval  0-400

 

NN

Fig. 4.    (color online) Panel (a):  Cross section of nn/pp and
np used in the ImQMD model. Panel (b): Mean attempted col-
lision rate obtained with the free  cross sections in nuclear
matter.

Xiang Chen, Yingxun Zhang, Zhuxia Li Chin. Phys. C 45, 074109 (2021)

074109-6



σfree

⟨Rblock⟩

⟨Rblock⟩

NN
NN

NN

⟨Rblock⟩ =⟨
1−

dNsuc.
coll.

dt

/dNatt.
coll.

dt

⟩

NN

fm/c and  10,000  events.  The  black  lines  with  different
symbols  are  the  results  obtained  with  PB-Wigner
(squares),  PB-Husimi  (circles),  and  PB-HSP  (triangles),
in the case of  being adopted in the ImQMD calcula-
tions. The values of  obtained with PB-Husimi and
PB-HSP  are  almost  same,  but  PB-Wigner  results  in  the
largest  among  the  three  kinds  of  Pauli  blocking
algorithms.  It  is  opposite  to  the  finding  in  the  nuclear
matter, and can be understood from the reaction dynam-
ics.  At  the  early  stage  of  reaction,  the  weakest  Pauli
blocking algorithm observed in the nuclear matter calcu-
lations,  i.e.,  PB-Wigner,  results  in  more  collisions
than PB-Husimi or PB-HSP. More  collisions provide
a  larger  repulsion  for  nucleons  during  the  compressed
stage, and  make  the  system  expand  to  a  larger  mo-
mentum space than that with fewer  collisions. Thus,
the  successful  collision  rates  for  PB-Wigner  become
smaller  than  those  for  PB-Husimi  or  PB-HSP  after  the
compression  stage.  Consequently,  the  largest 

 values  for  PB-Wigner  are  obtained

by averaging over  the  time interval  0-400 fm/c. This  ef-
fect becomes obvious at high beam energy where the 
collisions are more frequent than low beam energies.

⟨dNatt.
coll.

dt

⟩ ⟨dNsuc.
coll.

dt

⟩
⟨dNatt.

coll.

dt

⟩ ⟨dNsuc.
coll.

dt

⟩

To explore the uncertainties of the theoretical predic-
tions on  stopping  power  by  using  different  Pauli  block-
ing  algorithms,  we  present  the  averaged  attempted  and

successful collision rates, i.e.,  and , as a
function  of  beam  energy  in Fig.  5(b).  The  values  of

 and  are obtained  over  the  time  inter-

val 0-400  fm/c and from  10,000  events,  and  they  de-

crease  with increasing  beam  energy.  The  values  of

⟨dNsuc.
coll.

dt

⟩

⟨dNsuc.
coll.

dt

⟩ ⟨dNsuc.
coll.

dt

⟩
⟨Rblock⟩

⟨Rblock⟩ =
⟨
1−

dNsuc.
coll.

dt

/dNsuc.
coll.

dt

⟩
1−
⟨dNsuc.

coll.

dt

⟩/⟨dNsuc.
coll.

dt

⟩

 are in the range 2-5 c/fm, and the different Pauli

blocking algorithms lead to approximately 11%-15% dif-

ference in . The difference in  between
the PB-Wigner and the other two methods is not as large
as  that  in  panel  (a),  because  is  calculated  by  the

formula ,  which  is  different

from .
vartl

vartl
Z = 1−6

vartl

σ f ree

vartl

vartl
Ebeam > 100

NN

The values of  obtained from the different meth-
ods of Pauli blocking are presented in Fig. 5(c). In these
calculations,  is calculated from the rapidity distribu-
tion  of  charged  particles  weighted  by  their
charge number to weaken the defect on the cluster forma-
tion  mechanism  at  low-intermediate  energy  HICs.  Our
calculations show that the values of  weakly depend
on  the  Pauli  blocking  algorithms  we  used  owing  to  the
small  number  of  successful  collision  rates,  as  shown  in
panel  (b).  Furthermore,  the  calculations  with  pre-
dict  that  the  values  of  decrease  with  increasing
beam energy.  This  behavior  is  opposite  to  the  observa-
tion  in  experiments  [53]  where  increases with  in-
creasing beam energy for Au+Au at  MeV/u.
This  difference  illustrates  that  the  in-medium  correction
on the  cross sections is needed. 

NND.    In-medium  cross sections on stopping power
NN
σmed

QMD σmed
QMD =

(1+η(Ebeam)ρ/ρ0)σfree Ebeam ⩽ 100
η Ebeam = η =

To test the effect of in-medium  cross sections on
stopping  power,  we  simply  take  as 

 in the code. For  MeV,
 is set as -0.2. At  150, 200, and 300 MeV, 

0.0, 0.2,  and  0.8,  respectively.  The  red  lines  with  sym-
bols  in  panels  (a),  (b),  and  (c)  are  the  results  obtained

⟨Rblock⟩ NN NN

vartl

Fig.  5.    (color online) (a)  as a function of beam energy; (b) the mean attempted  and successful  collision rates as a
function of beam energy; (c)  as a function of beam energy. The different symbols are for different Pauli blocking, and the differ-
ent colors are for different in-medium cross sections.
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σmed
QMD

⟨Rblock⟩
NN

NN
∼ Ebeam ⩽ 100

> 7 Ebeam > 100
vartl

Ebeam ⩽ 100 Ebeam > 100

with .  As  illustrated  in Fig.  5(a),  the  values  of
 weakly depend on the correction of  the in-medi-

um  cross  sections.  However,  as  shown in  panel  (b),
the  in-medium  cross  sections  reduce  the  attempted
and  successful  collision  rates  by 7%  at 
MeV and enhance the attempted and successful collision
rates  by %  at  MeV.  Consequently,  as  in
panel  (c),  the  values  of  are  suppressed  at

 MeV/u, and enhanced at  MeV/u.

NN

However, one should bear in mind that even the dis-
appeared  sensitivity  is  found  among the  results  obtained
with the  three  PB  methods  in  HIC  simulations,  the  im-
provements  to  the  PB  method  are  still  necessary.  The
reasons  are  as  follows:  1)  all  PB methods  underestimate
the  Pauli  blocking  ratio  by  approximately  13%-25%  in
nuclear matter calculations, in which analytical values are
used to evaluate the accuracy of the PB method. For a fi-
nite  nucleus  at T=0  MeV,  the  successful  collision  rates
are  not  blocked  to  zero.  This  means  that  the  three  PB
methods are  not  good enough.  2)  For  the  Pauli  blocking
ratios in HICs, we need to know the analytical values of
Pauli blocking. Currently, we do not know the analytical
values,  and  thus  do  not  know  how  much  they  deviate
from  the  true  values  and  whether  the  deviations  are  too
large  to  neglect.  A  reliable  extraction  of  the  in-medium

 cross  section by comparing HIC data  with  transport
model  calculations  must  require  an  accuracy  method  to
treat  the  Pauli  blocking  in  the  simulation  of  HICs.  The
improvement of Pauli blocking is still in progress. 

IV.  SUMMARY

NN

In  summary,  we  first  evaluate  the  different  Pauli
blocking  algorithms  in  the  nuclear  matter  in  cascade
mode,  i.e.,  only  with  collisions.  Our  calculations
show that the averaged occupation probabilities obtained
with PB-Husimi and PB-HSP are closer to the analytical
values than those obtained with PB-Wigner, but all three

T ⩽ 10
NN

NN
σmed = 2 ∼ 2.7σmed

QMD

algorithms  used  in  the  QMD  codes  underestimate  the
Pauli  blocking  ratio  by  13%-25%  at  MeV.  This
underestimation may lead to the extracted in-medium 
cross sections from QMD type models being smaller than
the  true  in-medium  cross  sections.  For  example,  at
T =  10  MeV, , in  the  case  of  obtain-
ing  the  same successful  collision  rate  as  in  its  analytical
values.

NN

NN

Furthermore, we evaluate the different Pauli blocking
algorithms in the finite nucleus, in which both mean field
potential  and  collisions  are  included.  For  the  finite
nucleus, the Pauli blocking ratios are in the range of 69%-
83% for different Pauli blocking algorithms owing to the
defects of Pauli  blocking in the QMD model.  The spuri-
ous  collision mainly occurs around the surface of the
finite  nucleus.  There  have  been  some efforts  to  improve
the Pauli blocking, especially near the surface of the nuc-
leus  or  the  reaction  system,  but  consistent  treatment  is
still a big challenge for the many-body transport theory.

vartl
NN

NN

By  using  the  Pauli  blocking  algorithms  currently  in
the  market,  the  uncertainties  of  different  Pauli  blocking
algorithms  on  the  excitation  function  of  stopping  power
in HICs are  discussed.  Our  finding is  that  the  uncertain-
ties  of  stopping  power  with  different  Pauli  blocking  are
less than 5%. If one would like to produce the behaviors
of  the  increasing with  beam  energy,  a  strong  en-
hancement  of  in-medium  cross  sections  is  needed.
Nevertheless, for obtaining the true values of in-medium

 cross  sections  by  comparing  the  HIC  data  with  the
transport model calculations, a refined Pauli blocking al-
gorithm must be developed in the future. 
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