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Abstract: We extend the hotspot model to include the virtuality dependence and use it to study the exclusive and
dissociative J/y¢ production combined with the dipole amplitude in the target rapidity representation. We determ-
ined that virtuality takes effect on a number of hotspots, thus providing a better description of the J/y production
data at HERA. The collinear improved Balitsky-Kovchegove equation in the target rapidity representation is numer-
ically solved and used to fit the J/y experimental data with a series of hotspot sizes. We infer that virtuality signific-
antly influences the number and size of hotspots. The expression y?/d.o.f = 1.0183 resulting from the fit with the
collinear improved dipole amplitude in the target rapidity representation is more reasonable than the corresponding
x*/d.o.f = 1.3995 originating from the leading order fit, which indicates that the collinear improved evolution equa-
tion in the target rapidity representation can provide a relatively good depiction of the exclusive and dissociative
HERA data.
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I. INTRODUCTION

It is well known that the gluon density inside a had-
ron has a rapid growth as the energy increases or the
Bjorken-x decreases. Eventually, a new state of high
density gluonic matter is expected to be formed. At high
gluon density, the non-linear effect becomes important
and controls the growth of the gluon density, leading to a
saturation state called the color glass condensate (CGC)
[1].

The saturation picture of the CGC has been studied
over the last two decades. One of the key predictions, the
geometric scaling, made by the CGC theory was ob-
served by the deep inelastic scattering (DIS) experiments
at HERA [2, 3]. In addition, the charged hadron trans-
verse momentum and multiplicity distributions in deutron-
gold (d-Au), proton-lead (p-Pb), and lead-lead (Pb-Pb)

collisions at RHIC and LHC energies are also success-
fully described by the CGC theory [4-6]. The CGC mech-
anism appears to exhibit a dominant effect on governing
the evolution of the partonic system, especially in the
early stage of the collisions. However, it was determined
that the DGLAP evolution can also provide the geomet-
ric scaling [7], while the quantum chromodynamics
(QCD) factorization formulation can describe the hadron
transverse momentum distribution in high energy heavy
ion collisions with equal quality. It is difficult to distin-
guish the mechanism between the CGC and DGLAP.

It has been determined that the exclusive vector
meson production process is sensitive to the saturation
physics [8-12]. To test the saturation picture of the CGC
and obtain more evidence to support the CGC mechan-
ism, we study the J/¢ production at HERA. Currently,
studies on the J/y production within the CGC frame-
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work are mainly focused on the leading order (LO) di-
pole amplitude, resulting from the Balitsky-Kovchegove
(BK) evolution equation, which is evolved in terms of the
rapidity of the dilute projectile [13, 14]. The LO satura-
tion models, such as the Golec-Biernat and Wusthoff
(GBW) [3] and Iancu, Itakura, and Munier (IIM) models
[15], were adopted to investigate the exclusive and disso-
ciative J/y production. In addition to the LO saturation
model, a novel model (called the hotspot model), which
considers the quantum fluctuation of the proton structure,
was proposed recently by the authors of Refs. [16, 17]
and promoted by the authors of Ref. [18], and it was ap-
plied to study the dissociative vector meson photoproduc-
tion. The structural quantum fluctuation of a proton was
treated via the variance of the number of regions of high
gluon density (hotspots). It was demonstrated that the ac-
curacy of the promoted hotspot model can still be im-
proved [18]. To improve the precision of the hotspot
model, it can be deduced that two aspects of the model
need to improve. On the one hand, the number of hot-
spots in this model does not consider the virtuality (Q?)
dependence. As is well known, the functional form of the
number of hotspots is inspired by the gluon distribution
function, and virtuality is a key factor in the parton distri-
bution function. Therefore, the number of hotspots should
include the influence of virtuality. In this study, we ex-
tend the hotspot model to consider the virtuality depend-
ence by multiplying a logarithmic factor (In(Q?/A?)). Our
results indicate that the virtuality affects the number of
hotspots and improves the capacity of the model in elu-
cidating the experimental data.

On the other hand, the dipole amplitudes adopted in
the hotspot model are inspired by the LOBK equations
[16-18]. It has been determined that these LO dipole
amplitudes are insufficient in providing an accurate de-
scription of the experimental data at HERA [19]. Further-
more, all the above mentioned dipole amplitudes are ex-
pressed in terms of projectile rapidity (Y), because their
evolution equations are derived in the Y representation. A
recent study determined that a dipole amplitude should be
adopted in the target rapidity (7) representation to invest-
igate the HERA data, as the data are usually measured in
terms of target rapidity, rather than projectile rapidity
[20]. The next-to-leading order (NLO) collinear im-

t
(a)

(color online) Diagrams for exclusive (a) and dissociative (b) vector meson productions in dipole-proton scattering.

Fig. 1.

proved Balitsky-Kovchegov evolution equation in the n
representation (ciBK-7n) was derived recently and used to
investigate the inclusive HERA data [20-22]. It was
demonstrated that the ciBK-n can provide a relatively
successful description of the proton structure function
data [23]. However, the ciBK-n has not confronted the
exclusive and dissociative experimental data yet. In this
study, the ciBK-7 is adopted, for the first time, to realize
the exclusive and dissociative vector meson production.
This indicates that our proposed method can provide a re-
latively optimal description of the J/y production HERA
data with y?/d.o.f = 1.0183 for the fit to the total cross
section. Our results can provide a significant implication
of signature for the CGC at HERA.

II. FORMALISM OF EXCLUSIVE AND
DISSOCIATIVE J/'¥Y PRODUCTION

To introduce notations and elucidate the kinematics,
we review the J/y production in this section. The corres-
ponding amplitudes of the J/¢ production are adopted for
comparisons with the experimental data in Sec. IV.

A. Diffractive amplitude of J/'¥ production

It is well known that the exclusive and dissociative
J/y production can be described by the color dipole mod-
el [24-26]. In the dipole model, the diffractive meson pro-
duction process can be divided into three subprocesses. In
the first process, an electron emits a virtual photon, and
then, the virtual photon fluctuates into a dipole that com-
prises a quark and antiquark pair. In the second process,
the dipole interacts with a target proton by exchanging
gluons. Finally, the quark and antiquark are recombined
to produce a vector meson, as illustrated in Fig. 1. The
vector meson production amplitude can be written as in
[16, 27]

> . Ydz .
A, Q% A)ry =i f dr f Wi
0 TT

. -2 dO'dj
db —i(b—=2r)A P’ 1
X f e b (D)

where ¢t = -A” and b represent the squared momentum

(b)
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transfer and the impact parameter between the dipole and
proton, respectively. The z in Eq. (1) represents the lon-
gitudinal momentum fraction carried by a quark, whose
integral ranges from 0 to 1. In addition, r ,Q%, 7, L, and x
represent the transverse size of the dipole, photon virtual-
ity, transversely polarized photon, longitudinally polar-
ized photon [17], and Bjorken variable [28], respectively.
Yy represents the overlap wave function of the vector
meson and photon, which will be comprehensively dis-
cussed later in this section. It should be noted that an ex-
ponential phase factor exp[—i(l—-2z)r-A/2] is intro-
duced to Eq. (1) to include the non-forward contribution
(A #0). This factor, proposed in Ref. [29], is an improve-
ment of the BGBP factor [30]. It has been determined that
the exp[—i(1—2z)r-A/2] plays a significant role in lon-
gitudinally polarized virtual photon process. Therefore,
we adopt exp[ —i(1 —2z)r-A/2] as the phase factor in this
study.

The dipole cross-section in Eq. (1) is a key compon-
ent because it includes most of the scattering information.
In terms of optical theorem, it can be expressed as

dodgip
db

= 2N(x,r,b), )

where N(x,r,b) is the imaginary part of the dipole-target
scattering amplitude. To simplify the calculation, we as-
sume that the impact parameter can be factorized out of
the dipole amplitude as [18]

N(x,r,b) = oogN(x,r) T(b), 3)

where oy is equal to 27R, with R,being the radius of
proton, and T'(b) is the profile of proton. We would like
to point out that the impact parameter b and the mo-
mentum transfer A are Fourier conjugate variables. The
scattering amplitude N(x,r,b) in b space can be obtained
via the Fourier transform of the amplitude N(x,r,A) in
momentum space [31]. Moreover, it is known that the
A # 0 corresponds to non-forward scattering. Therefore, it
can be observed that the dipole scattering amplitude in b
space include the non-forward information. When we fac-
torize the scattering amplitude into three parts as shown
in Eq. (3), the non-forward information is assumed to be
included in the b dependent factor T'(b).

It is known that the proton is a quantum object, and
the structure of the proton fluctuates from event to event
in the interaction. Based on the hotspot model, all fluctu-
ations are encoded in the proton profile 7'(b) [16-18]. The
proton profile can be defined as the sum of N, regions of
the hotspots [18]

1 &
T(b) = —— > Tus(b b)), @)
i=1

Nhs P

with

_(b-by
e 2B, | 5
27Z'Bhs ( )

Ths(b - bl) =

where b; is the location of the i hotspot and is assumed
to satisfy the two-dimensional Gaussian distribution
centered at the origin with a width B,,. Here, B, denotes
half the average of the squared transverse radius of the
proton, and By, represents half the average of the squared
transverse radius of the hotspots.

The Ny, in Eq. (4) denotes the number of hotspots and
can be expressed as

2
N =po (e VD[(L)"©

with A =0.2 GeV. pg, p1, p2, and p; are free parameters,
which we will determined by fitting to the HERA data in
Sec. IV. Note that the functional form of Eq. (6) is in-
spired by the gluon distribution function [32, 33]. Origin-
ally, the number of hotspots defined in Ref. [18] solely
includes the Bjorken-x (or energy) information. In fact,
the number of hotspots should include both energy and
virtuality dependence in terms of the parton distribution
function. To promote the hotspot model, as accurate as
possible, we include the virtuality dependence into the
functional form of the number of hotspots, which is in-
spired by Ref. [33]. We determine that virtuality plays a
significant role in describing the exclusive and dissociat-
ive J/¢ production data at HERA.

To simplify the computation, we can rewrite Eq. (1)
in terms of the polar coordinate expression

2 . (1-22)
A(x, 0% A)rr =i f rdr f dge 17 Acosd
0

Mdz _ipa dodi
Xf(; Zr(lﬁvlﬁ)T,Lfdbe bAWp- (7

By substituting Egs. (2) and (3) into Eq. (7), the expres-
sion of the imaginary part of the scattering amplitude
used in the exclusive and dissociative J/¢ production can
be obtained as

A(x, Q% Ay =i f rdr N(x,r) f Az )T

x]o(r(l_zzz)A) f dbe TAT(B),  (8)

where Jj is the first kind Bessel function.
In the diffractive exclusive J/y production, the pro-
ton remains intact after the interaction between the di-
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pole and the target, which can be noted by y*p — Vp,
with the vector meson V' (J/¢). Using the scattering amp-
litude in Eq. (8), the differential scattering cross section
of the exclusive vector meson V' production is given by

[27]

d Y'p—Vp
(TTé—Lt - % (ac Q2,A)T,L>|2, )

where the notation () represents the average over the tar-
get configuration.

For the dissociative J/y production, the proton disso-
ciates into a new system. This process can be expressed
as y*p — VX, where X is the dissociation state of the pro-
ton. The dissociative differential scattering cross section
of V production can be written as [17]

dg_y‘p—)VX 1
T.L _ 2 2
4 " 1er (<|A(X, 0 7A)T,L| >

2
~(ace @ ars)] ). (10)

the Bjorken variable x is given by
x=(My+Q)/(W,.,+ 0%, (11)

where My and W,., denote the mass of vector meson and
the center of mass energy, respectively.

B. Overlap wave function of vector meson production

Regarding the overlap function in Eq. (1), there are
several types in the literature. It seems that a vector
meson has its own specific favorite overlap function [31].
However, we focus on studying the higher order correc-
tions of the dipole amplitude in this study and attempt to
solely the boosted Gaussian model [34, 35], as this mod-
el can describe both light and heavy mesons, simultan-
eously [36]. The overlap functions are written as [27]

N,
Wy =2 fem{miKo(er)m(n 2
— [ +(1-2)|eKi(€1)d,dr(r,2)}, (12)

Ne
W)L =@f€?2QZ(1 —2)Ko(er)

mff -V?
X [MV¢L(F, )+ 5m¢h(ﬂ Z)], (13)

where Ky(er) and K;(er) are the second kind bessel func-

tions, and € is a variable defined by € = z(1 —z)Q2+m}

with m, as the mass of the quark.  is a wave function

used to describe the splitting of the virtual photon into the
quark and antiquark, which can be calculated by QED
[16, 17]. The ¢} is the vector meson wave function,
which describes the probability of a quark and antiquark
pair recombining into a final vector meson [17]. In the
above two equations, the parameter ¢ is set to 1, N, =3 is
the QCD color number, e = V4ra,, is a unit charge, and
e is the charge of a quark. ¢7(r,z) and ¢.(r,z) represent
the transverse and longitudinal scalar parts of the vector
meson wave function, respectively, which are given by
mf,R2
8z(1-2)

2(1-z)r2 MR
— + s
R? 2

é71.1.(r,2) =Nr 12(1 —2)exp ( -

(14)

the specific parameter values of My, my, Nrpr, R? and er
are presented in Table 1.

We would like to note that the longitudinal contribu-
tion of the wave function is usually ignored owing to its
negligible contribution at a lower Q? value [12]. In Fig.
2, we present the transverse and longitudinal distribu-
tions of overlapping wave functions for J/y at different
Q?. From Fig. 2, one can find that the contribution of the
longitudinal wave function is also significant at larger
Q?. Therefore, the longitudinal contribution of the wave
function will be included in our study.

Table 1. The parameters of the scalar wave function of J/¥
production in the boosted Gaussian model [27].
Meson  My/GeV — my/GeV Nr Np R%/GeV~2 &
J/¥ 3.097 1.4 0.578 0.575 23 2/3
Jy
0.025 T T
Q?=0.1(T) 3
Q%=0.1(L) - - - ]
0.02 F Q%=3.2(T) E
o Q%=3.2(L) 3
= Q*=7.0(T) — }
> 0015 Q=7.0(L)- - - 7
= E
S 3
T oot :
0.005 -
0 FE- -~ 1 e - 1
102 107" 100
r(fm)
Fig. 2. (color online) Comparing the transverse and longit-

udinal overlap wave functions of J/y at different Q>. The sol-
id and dashed lines denote the transverse and longitudinal
wave functions of J/y, respectively.
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III. EVOLUTION EQUATIONS OF DIPOLE
SCATTERING AMPLITUDE

The dipole scattering amplitude plays a key role in
calculating the cross sections of the exclusive and disso-
ciative vector meson production, as it encodes all the
scattering information between the dipole and target. Ac-
cording to the literature, there are two methods for ob-
taining the dipole amplitude. In the LO case, the model-
ing of the dipole amplitude is adopted, such as GBW [3]
and IIM [15], which is inspired by the analytic solution of
the LOBK equation. The other approach to obtaining the
dipole amplitude is to solve its evolution equation numer-
ically. The latter method is conventionally employed in
the NLO case. In this study, we adopt the numerical
method to uniformly calculate the LO and NLO dipole
amplitudes. First, we introduce the evolution equations of
the dipole amplitude. Then, we solve them numerically.

A. Balitsky-Kovchegov equation at leading order

In the high energy dipole-target scattering, we as-
sume that a dipole consisting of a quark leg at the trans-
verse coordinate x and an antiquark leg at transverse co-
ordinate y, with a target, moves along the positive and
negative directions of the z-axis, respectively. In the LO
case, we work within the dipole framework in which all
the rapidities are carried by the dipole, and the target is
fixed; hence, it is possible for the ¢g dipole to emit a
gluon. Under the limit of a large N, the probability of the
quark-antiquark-gluon state production can be calculated
[25, 37]. The probability of this new state during scatter-
ing is

(x-y)?

B aN, zz
2 (x—2)2(z—y)*

dP =

(15)

where Y represents the rapidity of the projectile. x and y
denote the transverse coordinates of quark and antiquark,
respectively. x —y is the transverse size of the parent ¢g
dipole, and z stands for the transverse coordinate of the
emitted gluon. In Eq. (15), x—z and z—y represent the
transverse size of two new dipoles. The S matrix will
change as the rapidity changes, and it is expressed as

v 22 J " Sz
x[$Px-zz-p1)-SE-y.1| (16

among them, S @(x—z,z—y,Y) and S(x—y,Y) denote the
scattering amplitudes of two new dipoles interacting with
the target and a single dipole interacting with the target,
respectively. Under the mean field approximation [38, 39],

SPOx-z,z-y,Y)=Sx-z.)S(z-y.Y). (17)

By substituting Eq. (17) into Eq. (16), a closed evolution
equation can be obtained as

9S(x-y,¥) _aNe (o (x-y)
ay T on? (x—2)%(z-y)?

x[S(x-2.V)S(z-y.¥)-S(x-y. V)] (18)

which is known as the BK evolution equation [13, 14].
As is well-know, the relationship between the scattering
amplitude and the S matrix is

Nx-y,Y)=1-S(x-y,Y). (19)

By substituting Eq. (19) into Eq. (18), we can obtain an-
other form of the BK equation as [14]

ON(x-y,Y)

2 LO _ _
7 f d?zK [N(x zY)+N(z-y,Y)

~N(x-y.Y)-Nx-2z.Y)N(z-y.Y)|. (20)
where the evolution kernel is

o_oNe  (x-y?
212 (x—2)%(z—y)*

2

A nonlinear term N(x—z,Y)N(z—y,Y) exists in Eq. (20),
which indicates that two new dipoles interact with the tar-
get simultaneously and ensures the unitarity of the scat-
tering amplitude.

B. Collinear improved Balitsky-Kovchegov equation in
1 representation

The LOBK equation solely considers the leading log-
arithmic contribution with fixed a,, whereas NLO correc-
tions are ignored. It has been determined that the LOBK
equation is insufficient in providing an accurate descrip-
tion of the experimental data HERA [19], which indic-
ates that the NLO corrections are required. The complete
NLO BK evolution equation was derived in Ref. [40],
where the corrections of quark and gluon loops, as well as
tree gluon diagrams with quadratic and cubic nonlinearit-
ies, are included. However, the complete NLO BK equa-
tion cannot be directly applied to phenomenology be-
cause its numerical solution significantly depends on the
details of the initial conditions and can turn to negative
for small size dipoles [41], which is usually considered an
instability problem. It was inferred that the instability is-
sues are related to a large double logarithmic term in the
evolution kernel, which leads to a negative dipole amp-
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litude. To address these issues, a novel method was pro-
posed to resum all orders in the radiative corrections en-
hanced by large double transverse logarithms [42]. A
ciBK equation was obtained by including the time order-
ing constrain in the successive gluon emissions [42].

Although the instability problem was temporarily
solved by the collinear improved method, all the afore-
mentioned evolution equations were derived in the pro-
jectile (dipole) framework, where the projectile rapidity is
considered the “evolution time” in the high energy evolu-
tion. Based on the previous experience with the NLO
BKFL equation [43], the instability of the full NLO BK
equation is a consequence of the “wrong choice of evolu-
tion variable.” To completely solve the instability prob-
lem, the evolution equation in the target framework needs
to be re-derived, where the target rapidity is considered
“evolution time.” As is known, the target is a nucleus and
its wavefunction is saturated for modes softer than the
saturation scale. In addition, it is difficult to directly de-
rive the evolution equation in the target frame. Fortu-
nately, an ingenious method was proposed in Ref. [20],
where the authors adopt the change in variables to trans-
form the results of the perturbation theory from the Y-rep-
resentation to the n-representation,

Y - n=Y-p, (22)

with p =In(1/r2Q3). The various S-matrices can be re-
written as

Sx-y,Y)=Sx-yn+p)=Sx-y.n), (23)

S(y-z7Y) =S(y—z,n+p)=S(y—z,77+pyz

(y-2z)° (y-2)°
+in (x- y)z) S(y_z’n+ln(x—y)2)
(24)
and
S(z—x,Y)=S(z—x,n+p)=S(z—x,n+pzx
(z-x)"\_ ¢ (z—x)?
+1n(x y)2) S(z xn+ln( ) (25)

Upon substituting the above three equations into Eq. (18),
Egs. (24) and (25) need to be expanded, and the first non-
trivial term must be maintained in the expansions:

. ¥-27)_ @-2750p-zm _ a (o (-2? (y-2)?
S(y_z’n+ln(x—y)2) =S0- z’n)+ln( -y Oy =S50zt o, du(v—u)z(u—z)2 (x—y)?
X[S(y—”’ﬂ)g(u—1777)—5()’—1777)], (26)
and
(z—x)? (z-x)?8S(z-xm) a o, (z—-x) (z—x)?
S(z—x,n+ln( y)z) ~S(z—- xn)+ln( ) an —S(z—x,n)+§fd u(z—u)z(u—x)zln(x—y)z
X[S(z—u,mS @ —x,m)-S(z-x,n)]. (27)

By substituting Egs. (23), (26), and (27) into Eq. (18), and applying the time ordering condition, the ciBK equation can

be obtained in the 5 representation (ciBK-7) as [20]

0N(x ON(x—y,n) 77) f (x— y)2
(v y-2%(z-x)?

Ny-zn-6(y-2,x-y)+N@z-x,n—6(z—x,x—y))— N(x—y,1)

-Ny-zn-6y-z2,x=y)Niz-x,1-6(z—x,x-Y))|, (28)

where N = 1-§ is adopted, and the rapidity shifts are

N2
S(y—z,x—y) = max{O,ln g_gz} (29)
and
2
6(z—x,x—-y) = max{O, In Z_-’:;z } (30)

Note that Eq. (28) can be used to describe the DIS data
without any assumptions, as the rapidity n of the hadron-
ic target is directly adopted in the DIS measurements. If
an evolution equation in the Y representation is adopted,
it is necessary to either transfer the results from the Y rep-
resentation to the n representation or blindly assume Y to
be as n when fit to the HERA data. However, it is diffi-
cult to draw a firm conclusion from the latter.
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C. Numerical solutions to BK equations

From the LOBK expressions and ciBK-n equations
introduced in Secs. III A and III B, it can be observed that
they all belong to integro-differential equations. In this
section, we first discretize the size of the dipole and then
numerically solve the above mentioned two equations on
the lattice. We adopt the GNU science library (GSL) to
carry out the numerical simulation, because GSL can
provide adaptive integral subroutines to perform the in-
tegrations, and the Runge-Kutta method in the GSL can
be used to solve the differential equations on the lattice
[22, 44]. Simultaneously, to obtain the data points that are
not located on the lattice, the cubic spline interpolation
method is adopted.

To solve the differential equations, we adopt the GBW
model as the initial condition [3]. To elucidate the differ-
ence between the LOBK and ciBK-n equations, we plot
the solutions of the LOBK and ciBK-5 equations (dipole
amplitudes) as a function of the dipole sizes r for three
different target rapidities in Fig. 3. From Fig. 3, it can be
inferred that the LO and ci dipole amplitudes are close to
each other when the rapidities are small. As the rapidity
increases, it can be observed that the LO dipole amp-
litudes are always larger than the ones with the higher or-
der radiative corrections. In Fig. 3, it can be observed that
the evolution of the LO dipole amplitude is very rapid,
while the evolution speed of the ci dipole amplitude is in-
hibited by higher order corrections, which indicates that
the collinear improved effect significantly contributes to
suppressing the evolution of the dipole amplitude [42]. In
the next section, it can be inferred that the improvements
in the description of the HERA data are precisely owing
to the already mentioned suppression effect.

IV. DESCRIPTION OF EXPERIMENTAL DATA
WITH THE DIPOLE MODEL

In this section, we use the formula introduced in pre-
vious two sections to fit the J/y experimental data. The

1.2 T T T T

1.C. ——
n=4 LOBK
1} n=8 LOBK -----
n=12LOBK -----
n=4 ciBK-n
[ n=8ciBK-n ——
. 08 n=12 ciBK-n ——
£06F
zZ /
04}
02}

0 —— : ;

10 102 10" 10" 10
(GeV™")

Fig. 3. (color online) Numerical solutions to the LOBK and

ciBK-7 equations for three different target rapidities.

data are obtained from ZEUS [45] and H1 [46] collabora-
tions. Because we are focusing on the small-x physics in
this study, the data with x > 0.01 are excluded. Moreover,
we only consider the data with 1< Q% <60 GeV>. The
lower limit on Q2 is selected to ensure that work is per-
formed in the perturbative region. The upper limit on Q?
is set large enough to include as much as possible “per-
turbative” data points but low enough to validate the use
of small-x dynamics, rather than DGLAP dynamics.

It should be noted that the number of hot spots in Eq.
(6) is introduced by the inspiration of the Q* dependent
gluon distribution function. As Q? sets the resolution
scale in the transverse plane, Q% will affect both the num-
ber and the size of hotspots. To explore these effects, we
shall carry out the fit by using Eq. (6) with a series val-
ues of By, which vary from 0.7 to 0.82 GeV~™ , as
presented in Tables 2 and 3. The relevant parameters
presented in Tables 2 and 3 correspond to the fit of the
total cross sections with the dipole amplitude from the
ciBK-n and LOBK equations, respectively. We obtain the
best quality of fit at B;; = 0.76 GeV~2 in both ciBK-7 and
LOBK cases, and the y?/d.o.f becomes worse when the
By shifts to either small or large values. This value is
smaller than that one (Bj, = 0.8 GeV~2) obtained by the
0? independent hotspot model in Ref. [18], which indic-
ates that the size of hotspots decreases when the Q? val-
ues are considered in the hotspot model. In addition, the
p3 parameter in Eq. (6), which reflects the dependence of
the number of hotspots on Q?, increases as By, decreases.
This result indicates that the Q? has a significant impact
on the number and the size of hotspots. From Tables 2

Table 2.
section of J/¥ production with the dipole amplitude from the
ciBK-n equation.

Parmeters and y2/d.o.f from the fit to total cross

Bis/GeV?  \2/do.f po P » P
0.7 1.2946 0.0062  —0.5451  423.4428  0.1432
0.73 1.1736 0.0058  —0.5456  455.8736  0.1357
0.76 1.0183 0.0059  —0.5443  451.0784  0.1320
0.79 1.1354 0.0065  —0.5430  409.6127  0.1315
0.82 1.2523 0.0073  —0.5201  421.5528  0.1245

Table 3. Parmeters and y?/d.o.f from the fit to total cross

section of J/y production with the dipole amplitude from the
LOBK equation.

Bi/GeV™2  \2/d.o.f Po P P2 p3
0.7 1.8942 0.0074  —-0.5047  404.0211 0.3372
0.73 1.6703 0.0072  —-0.5109  402.7923  0.3261
0.76 1.3995 0.0068  —0.5198  401.0062  0.3220
0.79 1.6302 0.0070 —-0.5136  406.6679  0.3134
0.82 1.8236 0.0071 —0.5048  423.6126  0.3109
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and 3, it can be observed that the values of y?/d.o.f
(1.0183) resulting from ciBK-7 equation are more ap-
proximate to the unit than the corresponding ones
(1.3995) originating from LOBK equation. These results
indicate that the collinear improved BK equation in the 5
representation provides a better description of the HERA
data than the LOBK equation. We would like to point out
that we adopted an improved phase factor to include the
non-forward contribution in Eq. (1). We also carried out
the fit by using the phase factor proposed in Ref. [30]
with collinear improved dipole amplitude. This gives a
relatively poor x?/d.o.f when compared to the improved
phase factor, which indicates that the improved phase
factor enhances the theoretical description of the data.

To elucidate the influence of Q? on the size and num-
ber of hot spots, we plot the Q> dependence of the num-
ber of hot spots N, at different B, with parameters fit-
ted from the ciBK-n equation, as presented in Fig. 4.
From Fig. 4, it can be observed that the number of hot-
spots increases as Q° increases, and the number of hot-
spots increases as By decreases. These results are con-
sistent with the results from Tables 2 and 3.

The differential cross sections of the exclusive and
dissociative J/y production for different Q> are presen-
ted in Fig. 5. The solid squares and circles denote data
points from the ZEUS and H1 collaborations hereafter in

47 |
46 1
45 1

(\.IO ,

44T 1=6(B=0.7) - 1

2 [ 1=6(B},=0.76) ——

z 43 Wi 11=6(B:z=0.82) 1
4.2 1
4.1 1

4 1 1 1 1
5 10 15 20
Q%(GeV?)

Fig. 4. (color online) Number of hotspots as a function of
0? at different By,.
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Fig. 5.
transfer ¢ at different Q2. Data are obtained from Refs. [45-47].

the following figures, respectively. From the left hand
panel of Fig. 5, it can be observed that the theoretical cal-
culations of the differential cross section of exclusive J/y
production are almost across all the data points, which in-
dicates that our virtuality improved hotspot model com-
bined with collinear improved dipole amplitude in the
representation provides a relatively optimal description of
the HERA data. The right hand panel of Fig. 5 presents
the differential cross section of the dissociative J/y pro-
duction. We cannot determine any experimental measure-
ments of the dissociative J/y production for
Q% > 1 GeV?. Therefore, we provide an extension of the
theoretical calculations at Q® =0.1 GeV?, although the
data points in our fit have a lower limit on Q. It seems
that the theoretical results (solid lines in the right the
hand panel of Fig. 5) are in agreement with the H1 data.
In the right hand panel of Fig. 5, the dash-dot, dash, and
dot lines depict the theoretical predictions of the differen-
tial cross section of the dissociative J/y production at
3.2,7.0, and 22.4 GeV’ virtualities, respectively.

The total cross sections of the exclusive and dissociat-
ive J/y production for different Q? are presented in Fig.
6. From the left hand panel of the figure, it can be in-
ferred that our virtuality improved hotspot model, com-
bined with the collinear improved dipole scattering amp-
litude, accurately describes the energy evolution of the
exclusive cross section for the available experimental
data. We also verify that the original hot spot model
present in Ref. [18] with the collinear improved dipole
amplitude provides a relatively poor description of the
data than our combination. As mentioned above, we also
provided an extended theoretical calculations of the total
cross section of the dissociative J/y production at
Q% =0.1GeV?, as presented in the right hand panel of
Fig. 6. Coincidentally, our theoretical results agree well
with the measurements. In the right hand panel of Fig. 6,
we provide the theoretical predictions of the total cross
section of the dissociative J/y production at 3.2 (dash-dot
line), 7.0 (dash line), and 22.4 (dot line) GeV’ virtualities,
respectively.

JI¥
i i dis. GBK-n(Q2=0.1) —
5 H1(Q2=0.1)
10°F CIBK—(Q%=3.2) - — 3
CiBK—(Q%<7.0) — —
CIBK—(Q%=22.4) ----

107"k

0 05 1 15 2 25 3 35 4
It (GeV?)

(color online) Differential cross sections of the exclusive and dissociative J/y production as a function of squared momentum
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Fig. 7.
tained from Refs. [45, 46].

The theoretical calculations of the Q? distribution of
the total cross section of the exclusive and dissociative
J/y production are presented in Fig. 7. The left hand pan-
el of Fig. 7 shows that our virtuality improved hotspot
model, combined with the collinear improved dipole
amplitude in the 75 representation, can reproduce the
measurements relatively successfully. By analyzing the
origin of the improvement, the following can be inferred:
(1) the virtuality dependence is significant, which takes a
slight enhancement of the number of the hotspots; (ii) the
LOBK evolution equation overestimates the evolution
speed of the dipole amplitude, as the ciBK-n equation
provides a dipole amplitude favored by the HERA data;
and (iii) the dipole amplitude resulting from the ciBK-7n
adopts the target rapidity as evolution variable, which is
the physical variable directly used in the DIS measure-
ment. This result differs from that of most of studies in
literature, where they blindly assumed the projectile
rapidity to be the physical rapidity [20, 23]. In the right
hand panel of Fig. 7, we preset the predictions of the Q?
evolution of the total cross sections of the dissociative
J/y production.

JIY

dis.  ciBK-n(@?<0.1) —
H1(Q?=0.1)
102 F ciBK-n(Q?=3.2) - —
b CiBK-n(Q%<7.0) — —
s CiBK-n(Q%=22.4) - - -
o) —
Q o
= — PR
© 4! b I i
) e
10
10° 10°
Wy (GeV)

(color online) Total cross sections of the exclusive and dissociative J/¢ production as a function of center of mass energy

2 JI¥
10 . e
10" F 4
)
=
©
100 ¢ E
-1 Ll N NN N
1
0 10 102
Q%(GeV?d)

(color online) Total cross sections of the exclusive and dissociative J/y production as a function of virtuality Q2. Data are ob-

In summary, the exclusive and dissociative J/i pro-
duction is studied using a virtuality improved hotspot
model combined with a collinear improved dipole amp-
litude in the 5 representation at HERA energies. By com-
paring the theoretical results of the differential and total
cross sections calculated from the LOBK and ciBK-7
equations with the HERA data, it can be inferred that the
dipole amplitude resulting from ciBK-n can provide a
more successful description of the experimental data than
the LOBK dipole amplitude. The reason for this improve-
ment can be attributed to two main aspects. On the one
hand, the evolution speed of the leading order dipole
amplitude is too fast to depict the data, and the collinear
improved dipole amplitude includes higher order correc-
tions that adopt the suppression of the evolution speed
and lead to a successful reproduction of the experimental
data. On the other hand, the influence of Q? on the num-
ber and size of hotspots are considered. Finally, we would
like to emphasize that the significant outcomes of our
studies can provide a further implication of the CGC at
HERA.
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