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Abstract: It has been shown that the Christodoulou version of the strong cosmic censorship (SCC) conjecture can
be violated for a scalar field in a near-extremal Reissner-Nordstrom-de Sitter black hole. In this paper, we investig-
ate the effects of higher derivative corrections to the Einstein-Hilbert action on the validity of SCC, by considering a
neutral massless scalar perturbation in - and -dimensional Einstein-Maxwell-Gauss-Bonnet-de Sitter black holes.
Our numerical results show that the higher derivative term plays a different role in the  case than it does in the

 case. For , the SCC violation region increases as the strength of the higher derivative term increases. For
,  the  SCC  violation  region  first  increases  and  then  decreases  as  the  higher  derivative  correction  becomes

stronger, and SCC can always be restored for a black hole with a fixed charge ratio when the higher derivative cor-
rection is strong enough. Finally, we find that the  version of SCC is respected in the  case, but can be viol-
ated in some near-extremal regimes in the  case.
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I.  INTRODUCTION

It is well known that a curvature singularity could be
formed during a gravitational collapse. There might exist
three  types  of  these  singularities,  namely  space-like,
light-like  and  time-like.  Among  them,  the  undetermined
initial  data  on  a  time-like  singularity  would  cause  the
breakdown of  determinism  of  general  relativity.  Al-
though  there  exist  some  solutions  to  Einstein's  equation
admitting  time-like  singularities  (e.g.  Kerr-Newman  and
Reissner-Nordstrom  black  hole  solutions),  claiming  that
general relativity could lose predictability is rather subtle
due to  the  presence  of  the  Cauchy  horizon,  which  en-
closes  the  time-like  singularity.  In  particular,  to  rescue
the  predictability  of  general  relativity,  Penrose  proposed
the strong cosmic censorship (SCC) conjecture, which as-
serts that the maximal Cauchy development of physically
acceptable  initial  conditions  is  locally  inextendible  as  a
regular  manifold  [1-3].  Consequently,  when  the  initial
data  is  perturbed  outside  of  a  black  hole,  whether  SCC
holds  true  crucially  depends  on  the  extensibility  of  the
perturbation  (e.g.,  the  metric  and  other  fields)  at  the
Cauchy horizon.

To give  a  more  rigorous  definition  of  the  extensibil-
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ity of the perturbation across the Cauchy horizon, several
formulations  of  SCC  have  been  proposed.  For  example,
the  version  of  SCC  states  that  the  metric  cannot  be

 smooth  at  the  Cauchy  horizon  [4, 5].  Various
pieces  of  evidence  suggest  that  the  Cauchy  horizon  can
be extendible with a continuous metric  for  the perturbed
initial  data,  indicating  the  falsity  of  the  version  of
SCC [6-8]. On the other hand, it has been argued that the

 version of SCC appears to be true since the curvature
blows up at the Cauchy horizon [9]. However, an observ-
er  can  still  experience  a  finite  tidal  force  and  cross  the
Cauchy  horizon  even  when  the  metric  is  inextendible  in

 [10]. So requiring that the metric is  at the Cauchy
horizon seems to be too strong, and extensions with lower
smoothness shall be considered.

Cr
It is worth noting that weak solutions can have many

important  physical  applications,  in  which  smooth
solutions are not available. Therefore it  might be a more
appropriate choice to characterize the extensibility of the
Cauchy horizon by  considering  whether  the  perturbation
is inextendible  as  a  weak  solution.  For  Einstein's  equa-
tion, a weak solution is specified by locally square integ-
rable Christoffel symbols in some charts of the manifold.
This observation then leads to the Christodoulou formula-
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tion of SCC, which states that the maximal Cauchy devel-
opment should  be  inextendible  as  a  spacetime  with  loc-
ally  square  integrable  Christoffel  symbols  [11]. Practic-
ally,  for  a  linear  scalar  perturbation,  the  Christodoulou
version  of  SCC  can  be  tested  by  checking  whether  the
scalar  field  will  belong  to  the  Sobolev  space  at  the
Cauchy horizon.  Note  that  if  the  perturbation belongs  to
the  Sobolev  space ,  its  first  derivative  is  locally
square  integrable.  In  other  words,  if  SCC  is  violated  in
the  Christodoulou  version,  the  perturbation  belongs  to

 and,  roughly  speaking,  has  finite  energy  at  the
Cauchy horizon.

To check  the  validity  of  the  SCC,  one  needs  to  ana-
lyze the evolution of the perturbation, which is governed
by two  mechanisms.  One  is  the  mass-inflation  mechan-
ism,  associated  with  the  exponential  amplification  of  a
perturbation  due  to  the  blue-shift  effect,  which  might
cause a singular behavior at the Cauchy horizon [7, 9, 10,
12-14]. The other is the time-dependent remnant perturb-
ation decaying outside of the black hole, which can com-
pete  with  the  mass  inflation  to  invalidate  SCC.  For  an
asymptotically flat  black  hole  with  the  perturbation  out-
side  the  black  hole  decaying  in  an  inverse  power-law
way,  the  mass-inflation  mechanism  dominates  to  render
the Cauchy horizon unstable [7, 15-18]. Interestingly, the
exponential  decay  of  the  perturbation  is  observed  in
asymptotically dS  spacetime,  indicating  that  mass  infla-
tion  might  not  be  strong  enough  to  keep  SCC  valid.
Quantitatively,  for  a  linear  scalar  perturbation  in  an
asymptotic  dS  black  hole,  the  competition  between  the
the mass inflation and remnant decaying is characterized
by [19-24]

β ≡ α

κ−
, (1)

κ−
α

β > 1/2

β > 1 C1

β > 1
C2

where  denotes the surface gravity at the Cauchy hori-
zon,  and  is  the  spectral  gap  representing  the  distance
from the real axis to the lowest-lying quasi-normal mode
(QNM) on  the  lower  half  of  the  complex  plane  of  fre-
quency.  It  shows  that  corresponds to  the  viola-
tion  of  the  Christodoulou  version  of  SCC.  Moreover,

 represents  the  extensibility  of  a  scalar  field  at
the  Cauchy  horizon,  leading  to  the  bounded  curvature  if
coupled  to  gravity  [19, 23, 25].  Hence  implies  the
violation of SCC in the  version, opening the possibil-
ity to the existence of solutions with even higher regular-
ity  across  the  Cauchy  horizon.  From  now  on,  the  term
“SCC” only refers to the Christodoulou version of SCC.

Recently, the  validity  of  SCC  has  been  widely  ex-
plored in asymptotic dS black holes. In particular, the au-
thors of Refs. [23, 26-31] considered scalar perturbations
with/without  mass  and  charge  in  a  Reissner-Nordstrom-
de Sitter (RNdS) black hole, and found that SCC is viol-
ated  in  the  near-extremal  region.  The  analysis  has  been

C2

β > 1

Cr

r ⩾ 2

extended to the Dirac field perturbation [32-35] and high-
er space-time dimensions [36-38], where there still exists
some room for the violation of SCC. Especially in Refs.
[26, 33], it has been observed that the  version of SCC
can  be  violated,  since  appears  in  some  near-ex-
tremal  parameter  regimes.  Even  worse,  if  one  considers
the case with the coupled linearized electromagnetic and
gravitational  perturbations  in  a  RNdS black hole,  the 
version  of  SCC  for  any  can  be  violated  by  taking
the  black  hole  close  enough  to  extremality  [25].
Moreover,  the  authors  of  Refs.  [34, 39, 40]  argued  that
nonlinear effects could not save SCC from being violated
for  a  near-extremal RNdS black hole.  Surprisingly,  SCC
can always be respected for the massless scalar field and
linearized  gravitational  perturbations  in  a  Kerr-dS  black
hole [36, 41].

5 6

It  is interesting and inspiring to check the validity of
SCC  in  models  beyond  the  Einstein-Maxwell  theory.  In
Refs. [42, 43], we studied SCC for dS black holes in the
Einstein-Born-Infeld  and  Einstein-Logarithmic  systems
and found that the nonlinear electrodynamics effects tend
to  rescue  SCC.  In  addition,  SCC  has  been  tested  for  a
scalar  field  perturbation  in  the  Horndeski  theory  in  Ref.
[44], which showed that the higher-order derivative coup-
lings increase  the  regularity  requirements  for  the  exist-
ence  of  weak  solutions  beyond  the  Cauchy  horizon.  On
the other hand, Gauss-Bonnet (GB) gravity, which arises
from  the  low-energy  effective  action  of  heterotic  string
theory [45], has attracted considerable attention in the lit-
erature. Coupling to Maxwell electrodynamics, namely in
the Einstein-Maxwell-Gauss-Bonnet (EMGB) theory, the
EMGB black  hole  solution  has  been  obtained,  and  vari-
ous  aspects  have  been  extensively  investigated  [46-56].
To  the  best  of  our  knowledge,  little  is  known  about  the
validity of SCC in the EMGB theory. The purpose of this
paper  is  to  investigate  the  validity  of  SCC  for  a  neutral
massless  scalar  perturbation  propagating  in -  and -di-
mensional EMGBdS black holes.

5 6

G = c = 1

The rest of the paper is organized as follows. In Sec.
II, we briefly review the - and -dimensional EMGBdS
black hole solutions and obtain the allowed parameter re-
gions,  where  the  Cauchy  horizon  exists.  In  Sec. III,  we
show how to  compute  the  QNMs  for  a  neutral  massless
scalar perturbation in an EMGBdS black hole. In Sec. IV,
we  present  and  discuss  the  numerical  results  in  various
parameter regions.  We  summarize  our  results  and  con-
clude with a brief discussion in the last section. For sim-
plicity, we set  in this paper.

II.  EINSTEIN-MAXWELL-GAUSS-BONNET-DE
SITTER BLACK HOLE

In this section, we briefly review the EMGBdS black
hole solution and obtain the parameter region where three
horizons  exist.  The  action  of  the  Einstein-Maxwell-
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Gauss-Bonnet  theory  in d-dimensional spacetime  is  giv-
en by [46]

S =
1

16π

∫
dd x
√−g
[
R−2Λ+αGB

(
R2−4RµνRµν

+RµνρσRµνρσ
)
−FµνFµν

]
, (2)

Λ > 0 R
Fµν = ∂µAν−∂νAµ

Aµ
αGB

where  is  the cosmological  constant,  is  the Ricci
scalar curvature, and  is the electromag-
netic  tensor  field  of  the  electromagnetic  field .  It  is
noteworthy  that  the  GB  coupling  constant  is natur-
ally  assumed  to  be  positive,  since  the  GB  correction  to
the  Einstein  gravity  is  well-motivated  from  the  low-en-

αGB ⩾ 0

d = 4 d ⩾ 5

ergy  effective  action  of  heterotic  string  theory  [45].  So
we  focus  on  in  this  paper.  In  addition,  the  GB
term is known to be topological with no dynamics in the

 dimension.  Therefore,  we  shall  consider  in
what follows.

For  the  action  (2),  a  static  spherically  symmetric
black hole solution was obtained in Refs. [46, 48, 51]:

ds2 =− f (r)dt2+
dr2

f (r)
+ r2dΩ2

d−2,

A =Atdt = − 4πQ
(d−3)ωd−2rd−3 dt, (3)

with the blackening factor

f (r) = 1+
r2

2α̃
− r2

2α̃

√
1+4α̃

 2Λ
(d−2)(d−1)

+
16πM

(d−2)ωd−2rd−1 −
32π2Q2

(d−2)(d−3)ω2
d−2r2d−4

, (4)

dΩ2
d−2

(d−2)
ωd−2 = 2π(d−1)/2/Γ((d−1)/2)

α̃ = αGB (d−3)(d−4) α̃→ 0

where M and Q are the ADM mass and the electric charge
of the EMGBdS black hole, respectively, and  rep-
resents  the  line  element  of  a -dimensional  unit
sphere with volume . For sim-
plicity,  we  introduce  a  redefined  GB  parameter

.  In the limit  of ,  Eqs.  (3) and
(4)  reduce  to  the d-dimensional RNdS black  hole  as  ex-
pected [37].

Λ α̃

r− r+
rc

κh ≡ | f ′ (rh)|/2 h ∈ {+,−,c}

r− = r+
Qext

r+ = rc

Qnar

Qnar < Q < Qext 0 < Q < Qext

5

An EMGBdS black hole is characterized by the para-
meters M, Q,  and . It can be shown that an EMGBdS
black hole can possess one, two or three horizons in dif-
ferent parameter regimes. The topology and causal struc-
ture of  EMGBdS black  holes  have  been  analyzed  in  de-
tail in Ref. [50]. To study SCC, we need to find the “al-
lowed ”  region  in  parameter  space,  in  which  the  black
hole possesses  three  horizons,  namely  the  Cauchy  hori-
zon ,  the  event  horizon  and the  cosmological  hori-
zon .  For  later  use,  we  denote  the  surface  gravity

 with  for each horizon.  The al-
lowed region is determined by the two limits, namely the
extremal limit with , which corresponds to the ex-
tremal  black  hole  with  charge ,  and  the  Nariai  limit
with ,  which  corresponds  to  the  Nariai  black  hole
with  charge .  Hence,  the  allowed region is  given by

 or  if no Nariai limit exists. In
particular, a -dimensional EMGBdS black hole has

Qnar = π

√
−2+3k−2(1− k)3/2/Λ

and

Qext = π

√
−2+3k+2(1− k)3/2/Λ

k ≡ Λ(8M−3πα̃)/(6π) Qnar

Qext α̃ < 8M/(3π),
α. Λ > Λc ≡ 3π/ (4M) Qnar

α̃ > 8M/(3π)−2/Λ
α d ⩾ 6

d = 6
α̃ α̃

Λ > Λc ∼ 6.348M−2/3

with  [57].  The  existence  of 
and  requires  which  puts  an  upper
bound  on  If ,  could  only  exist
when ,  which  puts  a  nonzero  lower
bound  on .  However  for ,  the  allowed  region  can
only be determined numerically. For example, our numer-
ical results show that,  for ,  there is no upper bound
on ,  and  a  nonzero  lower  bound  on  appears  when

.
α̃

Λ d = 5 d = 6
M = 1 Λ > Λc

α̃

A,
α̃ < 8/ (3π) d = 5
α̃ d = 6

d ≥ 6
d = 7

d = 8
d = 6

d = 5 d = 6

The allowed regions and their boundaries in the -Q
parameter space are plotted in Fig. 1 for various values of

 in the  and  cases. Without loss of generality,
we set  in the rest  of  this  paper.  When ,  the
right-hand  column  of Fig.  1 shows that  the  allowed  re-
gions have a nonzero minimum value of , marked by the
point  as expected. One can also notice that, for the al-
lowed region,  in the  case, while no up-
per bound on  exists in the  case. Furthermore, we
find that the allowed regions are very similar in the 
cases.  We  show  the  allowed  regions  for  the  and

 cases  in Fig.  2,  showing remarkable  similarities  to
the  case.  Thus  we  shall  consider  only  two  cases,
those for  and , in what follows.

III.  QUASINORMAL MODES

In this section, we discuss QNMs for a neutral mass-
less scalar perturbation in d-dimensional EMGBdS space-
time. The behavior of the neutral massless scalar field is
governed by the Klein-Gordon equation

∇2Φ = 0, (5)

∇where  is the covariant derivative. To facilitate our nu-
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d = 5
d = 6 Λ

Λ > Λc α̃

Q/Qext = 0.9

Fig. 1.    (color online) The regions in light blue are allowed to possess three horizons for EMGBdS black holes with  (upper row)
and  (lower row)  for  various  values  of .  The dashed orange and green lines  represent  the  extremal  black hole  and the  Nariai
black hole, respectively. When  (right column), there exists a tipping point A, which marks a nonzero minimum value of . The
solid red line, which represents the near-extremal black hole with the charge ratio , intersects the dashed green line at point
B, where SCC tends to be saved, as discussed below.

 

d = 7
d = 8 Λ

d = 6

Fig. 2.    (color online) The regions in light blue are allowed to possess three horizons for EMGBdS black holes with  (upper row)
and  (lower row)  for  various  values  of .  The dashed orange and green lines  represent  the  extremal  black hole  and the  Nariai
black hole, respectively. The allowed regions in the , 7 and 8 cases are quite alike.
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(v,r,Ωd−2) v = t+ r∗ r∗
dr∗ = dr/ f (r)

A = Avdv = −4πQdv/((d−3)ωd−2rd−3)

merical calculation, we use the Eddington-Finkelstein in-
going  coordinates  with ,  where  is
the  tortoise  coordinate  defined  as . In  addi-
tion, we choose an appropriate gauge transformation such
that .  Since  the
EMGBdS  black  hole  solution  is  static  and  spherically
symmetric, a mode solution of Eq. (5) can have the separ-
able form

Φ(v,r,Ωd−2) =
∑
lm j

ψωlm j
(r)Ylm j

(Ωd−2)e−iωv. (6)

m j ( j = 1,2, · · · ,d−3)
(d−2)

Ylm j
(Ωd−2) ∇2

Sd−2 Ylm j
(Ωd−2) =

−l(l+d−3)Ylm j
(Ωd−2)

m j ψωlm j

Here, l and   denote the  integers  re-
quired to uniquely determine a -hyperspherical har-
monic ,  which  fulfills 

.  Since  no  “magnetic  splitting ”  is
present due to the spherical symmetry of the background,
the  index  can  be  suppressed  in  [58, 59]. Plug-
ging Eq. (6) into Eq. (5), we obtain the radial equation(

r2 f∂2
r +
(
−2iωr2+ r2 f ′+ (d−2)r f

)
∂r

−i(d−2)ωr− l(l+d−3))ψωl(r) = 0, (7)

f ′ d f (r)/drwhere  denotes .
One can perform the Frobenius method to obtain the

solutions near  the  event  and  cosmological  horizons,  re-
spectively.  If  we impose the ingoing boundary condition
at the event horizon and the outgoing boundary condition
at the cosmological horizon, namely,

ψ
ingoing
ωl (r→ rh) ∼ const., ψ

outgoing
ωl (r→ rc) ∼ (r− rc)−iω/κc ,

(8)

ωln
(n = 1,2, · · · )
then  Eq.  (7)  selects  a  set  of  discrete  frequencies 

,  which  are  QNMs  of  the  scalar  field  [60].
There  are  many  analytic  and  numerical  ways  to  extract
QNMs [60, 61]. In this paper, we employ the Chebyshev
collocation scheme and the associated Mathematica pack-
age  developed  in  Refs.  [62-64]. The  basic  idea  to  com-
pute  the  spectrum  efficiently  is  to  discretize  the  QNM
equations  by  the  pseudospectral  method  and  solve  the
resulting generalized eigenvalue equation. It can produce
an  additional  infinite  set  of  purely  imaginary  modes,
which are  known to  be  missed by the  WKB approxima-
tion  [60].  Moreover,  the  WKB  approximation  assumes
that the potential  has a single extremum, which may fail
in some cases [65].

ψωl

To adapt  our  numerical  scheme for  the  Mathematica
package, we redefine the field  as

ψωl =
1
x

(1− x)−iω/κc ϕωl, (9)

x ≡ (r− r+)/(rc− r+)
ϕωl

ϕωl

ωln α
α = infln {−Imωln}

with a new coordinate , which renders
the new field  regular at both the event and cosmolo-
gical  horizons.  After  the  radial  equation  for  is ob-
tained from Eqs. (7) and (9), one can use the package to
find a series of QNMs, . The spectral gap  in Eq. (1)
is then given by .

IV.  NUMERICAL RESULTS

5
6

In  this  section,  we  present  the  numerical  results  for
QNMs for a neutral massless scalar perturbation in - and

-dimensional EMGBdS black holes and check the valid-
ity of SCC. These results were obtained using the Math-
ematica package of Refs. [62-64] and found to be consist-
ent  with  the  results  of  Refs.  [37, 49, 66, 67]  in  various
limits. Since  it  has  been  shown that  SCC could  be  viol-
ated  in  a  near-extremal  RNdS  black  hole,  we  will  focus
on the near-extremal regime of the EMGBdS black holes.

d = 5A.    
d = 5

Λ = 1 Λ = 3

Q/Qext
Im(ω)/κ−

β −1/2

α̃

Q/Qext

Im(ω)/κ− α̃
Q/Qext

α̃

Q/Qext

α̃ = 8/(3π) α̃ d = 5

Im(ω)/κ−
α̃

We  first  study  the  case.  For  a  near-extremal
black hole, it is well known that there exist three qualitat-
ively different families of QNMs: the photon sphere (PS)
family, which can be traced back to the photon sphere, the
de Sitter (dS) family, which is deformation of the pure de
Sitter  modes,  and the  near-extremal  (NE)  family,  which
only  appears  for  near-extremal  black  holes  [23, 33, 37,
42, 68].  We  plot  these  three  distinct  families  for  a  5-di-
mensional  near-extremal  EMGBdS  black  hole  in Fig.  3,
where we consider two cases with  and , since
their  allowed  regions  are  quite  different,  as  depicted  in
Fig. 1. As shown in Fig. 3(a), when  increases to-
ward the extremal limit,  for the PS and dS dom-
inant modes become divergent while the NE mode takes
over  to  make  finite  but  smaller  than .  Therefore,
like a RNdS black hole, the presence of the NE mode can
invalidate  SCC  as  long  as  the  EMGBdS  black  hole  lies
close enough to extremality. As one increases  from the
left column to the right column in Fig. 3(a), the SCC viol-
ation range of  expands, which implies that the GB
term in the action (2) tends to worsen the SCC violation
for  a  scalar  in  a  5-dimensional  near-extremal  EMGBdS
black hole. To better understand how the GB term affects
the validity of SCC, we plot  against  with in-
creasing  from the left column to the right column
in Fig.  3(b).  The  SCC violation  range  of ,  which  is  to
the  right  of  the  thick  dashed  vertical  lines,  increases  as

 increases, indicating  that  SCC  tends  to  be  viol-
ated  when  the  black  hole  is  closer  to  extremality.  Note
that there is an upper bound  on  for , as
discussed  before.  Moreover,  as  shown  in Fig.  4,  the

 of all three families' dominant modes decreases
to some finite values when  increases toward the upper
bound. Figure 3(b) shows that, for a scalar in a 5-dimen-
sional near-extremal  EMGBdS  black  hole,  SCC  is  al-
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5
l = 0 l = 1

l = 10 β ≡ −Im(ω)/κ− = 1/2
β = 1

Fig. 3.    (color online) Dominant modes of three families for a neutral massless scalar field in a -dimensional EMGBdS black hole,
showing the dominant NE mode (green lines) at , the dominant dS mode (red lines) at  and the (nearly) dominant complex PS
mode (blue lines) at . The threshold  is designated by thick dashed vertical lines, to the right of which SCC is
violated. The dashed vertical lines in the insets denote .
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α̃ways  violated  when  is  close  enough  to  the  upper
bound.

Λ = 3 > Λc
α̃ Q/Qext

α̃
α̃

κ−
β = 0

β = 0
Q/Qext α̃

Λ > Λc
α̃

When ,  the  upper  right  panel  of Fig.  1
shows that there is a lower bound on  with fixed 
and a possible lower bound on Q with fixed . The black
hole  with the minimum value of  or Q (e.g.  point B in
Fig.  1) corresponds to  the Nariai  limit.  The WKB meth-
od  gives  a  small  width  and  peak  of  the  potential  in  the
near  Nariai  regime,  which  makes  QNMs  vanish  in  the
Nariai  limit  [23, 60, 61].  On  the  other  hand,  the  surface
gravity  at  the  Cauchy  horizon  remains  finite  in  the
Nariai  limit,  which  makes  for  a  Nariai  black  hole.
So  it  is  expected  that  at  the  minimum  values  of

 and  in the lower left panel of Fig. 3(a) and the
lower row of Fig. 3(b),  respectively. Consequently,  SCC
is  always  valid  around  the  Nariai  limit.  Therefore  when

,  even  for  a  5-dimensional  highly  near-extremal
EMGBdS black hole, SCC is always saved as long as  is
close enough to its minimum value.

β
Λ = 1 Λ = 3

β = 1/2
Q/Qext = 0.9
Λ = 1 Λ = 3

α̃ α̃
Q/Qext = 0.99

Λ = 1 Λ = 3

We  display  the  density  plots  of  for  5-dimensional
EMGBdS  black  holes  with  and  in Fig.  5.
SCC is violated in the regions between the extremal lines
(dashed  orange  lines)  and  the  threshold  (solid
black  lines).  The  line  in  red  shows  that,  in
both  cases  with  and ,  SCC  is  respected  at
small  but violated when  is large enough. For a more
extremal  black  hole  (e.g., ),  SCC  could  be
always violated in  the  case.  However  when ,
SCC  can  be  recovered  even  for  a  highly  near-extremal
EMGBdS black hole in the region close to the Nariai line
(dashed green lines).

Im(ω)/κ− < −1
β > 1

C2

Unlike  the  RNdS  case  [23],  the  insets  in Fig.  3(a)
show  that  there  exist  some  near-extremal  regions  where
the dominant NE mode dominates and has 
(i.e. ),  which  indicates  the  violation  of  SCC  in  the

 version.  Moreover,  our  numerical  results  in  the  table

Im(ω)/κ−
−1 β→ 1

β β > 1
C2

Q/Qext = 1−10−2 Q/Qext = 1−10−3, C2

α̃
C2

in Fig.  6 suggest  that  for  the  dominant  NE
mode  would  approach  (i.e., )  in  the  extremal
limit.  In  the  density  plot  of  displayed  in Fig.  6, 
and hence the  version of SCC is violated in the region
between the  solid  black line  and the  dashed orange line.
Additionally,  the  insets  in Fig.  3(b) show  that  when

 and  the  version of
SCC can be violated for a large enough value of , which
means that GB term also tends to violate SCC in the 
version.

d = 6B.    
6

Λ = 5 Λ = 10

Im(ω)/κ− Q/Qext
α̃ Q/Qext

α̃ Im(ω)/κ−
α̃ Q/Qext

Λ = 5 < Λc α̃ ⩾ 0
Λ = 10 > Λc

α̃

α̃
Im(ω)/κ−

α̃

Q/Qext

We now consider  QNMs for  a  scalar  field  in  a -di-
mensional EMGBdS black hole and investigate the valid-
ity of SCC. Since the allowed regions in Fig. 1 are quite
different for  and , we will focus on these two
cases.  For  the  lowest-lying  mode  of  the  three  families,
their  are  depicted  against  for  various
values of  in Fig. 7. It seems that the ranges of in
which  SCC  is  violated  first  increase  and  then  decrease
with increasing . Furthermore, we plot  against

 with  fixed ,  for  the  three  families'  dominant
modes,  in Fig.  7(b).  When ,  one  has .
However, when , there exists a positive lower
bound on ,  which can be observed in the lower row of
Fig. 7(b). Since the lower bound corresponds to the Nari-
ai  limit,  SCC  is  always  valid  close  to  the  lower  bound.
Figure 7(b) shows that, as  increases from its minimum
value,  first  decreases,  for  all  three  families'
dominant modes, and then the dS and NE modes increase
to zero (as shown in the insets of Fig. 7(b)) while the PS
mode  increases  to  some  negative  constant.  Therefore
SCC  is  always  valid  as  long  as  is  large  enough.
Moreover, the SCC violation regions in Fig. 7(b) expand
with increasing , which indicates that SCC tends to
be violated for a black hole closer to extremality.

α̃ 5
Λ Q/Qext Im(ω)/κ−

α̃

Fig. 4.    (color online) Dominant modes of three families near the upper bound of , for a neutral massless scalar field in a -dimen-
sional EMGBdS black hole with various  and . It shows that the  of all three families' dominant modes decreases to
some finite values with  increasing toward the upper bound.
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β Λ = 1
Λ = 3

β = 1/2
Q/Qext = 0.9 α̃ α̃ Λ = 1 Λ = 3 Q/Qext = 0.99

α̃ Λ = 1 α̃ Λ = 3

Fig. 5.    (color online) Density plots of  for a neutral massless scalar field in a 5-dimensional EMGBdS black hole with  (upper
row) and  (lower row). The parameter space of interest is bounded by the Nariai limit (dashed green lines) and the extremal limit
(dashed orange  lines).  The  solid  black  lines  represent  the  threshold .  SCC is  valid  in  the  regions  below the  solid  black  lines.
When , SCC is saved at small  but violated at large  for both  and . When , SCC is violated in all
range of  for  but can be saved when  is small enough for .

 

β α̃ = 0.8 Λ = 1 d = 5
β = 1 C2

Q/Qext = 0.991 Im(ω)/κ−
Q/Qext Λ = 1 α̃ = 0.8

(N, p)

Fig. 6.    (color online) Left: Density plot of  in a near-extremal region around  with  for . The solid black line cor-
responds to . In the region between the solid black line and the extremal limit (dashed orange line), the  version of SCC is viol-
ated for a near-extremal EMGBdS black hole, e.g.,  shown by the red line. Right: A table of  for the dominant
NE modes for various near-extremal values of  with  and . The numbers in brackets in the second column indicate
the number of agreed digits after the decimal point. In the third column, we show the different grid sizes and precisions  used in
the computations.
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β
Λ = 5 Λ = 10

β = 1/2
Q/Qext = 0.99 Λ = 5 < Λc

α̃
α̃ ≳ 5.2 Λ = 10 > Λc

α̃

The  density  plots  of  for  6-dimensional  EMGBdS
black holes with  and  are displayed in Fig. 8,
where SCC  is  violated  in  the  regions  between  the  ex-
tremal  limit  (dashed  orange  lines)  and  the  threshold

 (solid black lines). For a near-extremal black hole
with  and  (the red  line),  the  up-
per row of Fig. 8 shows that SCC is violated for small ,
but can be restored when . When , the
lower left  panel  of Fig.  8 highlights  the parameter  space
around the lower bound on  (point A), which shows that
SCC is always valid when black holes approach the Nari-
ai  limit.  In  the  lower  right  panel  of Fig.  8,  we  plot  the

α̃-Q/Qext
6

Λ = 5 Q/Qext
α̃

Im(ω)/κ−
Q/Qext

Λ α̃
Im(ω)/κ−

β 1
C2

d = 6

SCC  violation  region  (yellow  region)  in  the 
plane  for  a -dimensional  EMGBdS  black  hole  with

.  It  shows  that  the  range of  the  SCC viola-
tion  region  first  increases  and  then  decreases  as  in-
creases.  Finally,  we  present  the  of the  domin-
ant NE modes for various near-extremal values of 
with  different  and  in Table  1.  Although  we  do  not
calculate  in the very near-extremal regime due
to  the  significant  computational  resource  requirements,
our  findings  infer  that  may approach  from below in
the  extremal  limit,  which  implies  that  the  version  of
SCC seems to be respected in the  case.

6
β = 1/2

Fig. 7.    (color online) Dominant modes of three families for a neutral massless scalar field in a -dimensional EMGBdS black hole.
The thick vertical dashed lines designate the points where .

 

Strong cosmic censorship for a scalar field in an Einstein-Maxwell-Gauss-Bonnet-de... Chin. Phys. C 45, 025103 (2021)

025103-9



V.  DISCUSSION AND CONCLUSION

5 6

Λ

In this paper, we investigated the validity of SCC for
a linear neutral massless scalar perturbation in - and -
dimensional EMGBdS  black  holes.  In  Sec.  II,  we  ob-
tained  the  allowed  parameter  regions  where  a  EMGBdS
black  hole  can  have  a  Cauchy  horizon  for  various .

After  the  method  to  calculate  QNMs  was  discussed  in
Sec. III, the numerical results were presented in Sec. IV.

β→ 1
β→ 0

For  the  EMGBdS black  holes  in  the  allowed  region,
there  are  two  limits,  namely  the  extremal  limit  and  the
Nariai limit. In the extremal limit, we found numerically
that ,  and  hence  SCC is  always  violated.  However
in the Nariai limit, we showed that , and hence SCC

Im(ω)/κ− 6 α̃ Λ

β < 1
Table 1.     of the dominant NE modes for -dimensional EMGBdS black holes with various values of  and , suggesting
that  in the highly near-extremal case.

α̃ Λ Q/Qext Im(ω)/κ− (N, p)

1

1

1−10−4 −0.992860(6) (350,50)(400,50)

1−10−5 −0.9979(3) (450,50)(500,50)

1−10−6 −0.99939(4) (850,50)(900,50)

5

1−10−4 −0.992449(6) (250,50)(300,50)

1−10−5 −0.9977(4) (350,50)(400,50)

1−10−6 −0.9993(4) (600,50)(650,50)

10

1−10−4 −0.9918(4) (160,50)(200,50)

1−10−5 −0.9975(4) (300,50)(350,50)

1−10−6 −0.9992(4) (400,50)(450,50)

β 6
Λ = 5 β = 1/2

Q/Qext = 0.99 α̃ ≳ 5.2 β 6
Λ = 10 > Λc α̃

6 Λ = 5

Q/Qext

α̃

Fig. 8.    (color online) Upper row: Density plots of  for a neutral massless scalar field in a -dimensional EMGBdS black hole with
. The SCC violation regions are between  (solid black lines) and the extremal limit (orange dashed lines). The insets shows

that the  line (red line) exits the SCC violation region around . Lower left: Density plots of  in a -dimensional
EMGBdS black hole with  around the minimum value of . SCC is always saved close enough to the Nariai limit (dashed
green lines). Lower right: The yellow region denotes the violation of SCC in a -dimensional EMGBdS black hole with  while
SCC is  respected in  the  light  green region.  The tiny yellow region indicates  that  the  violation of  the  SCC only occurs  in  a  near-ex-
tremal black hole. Moreover, it shows that the range of  where SCC is violated first increases and then decreases with increasing

.
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Λ > Λc α̃

α̃
α̃ d = 5
α̃ d = 6

α̃
d = 5 d = 6

d = 5 d = 6
α̃

5
6

is  always  valid.  When ,  the  GB  parameter  was
found to have a positive lower bound, which corresponds
to  the  Nariai  black  hole.  So  SCC  is  respected  near  the
lower  bound  on .  On the  other  hand,  there  is  an  upper
bound on  in the  case while no upper bound is im-
posed  on  in  the  case.  Our  numerical  results
showed  that  SCC  tends  to  be  violated/saved  when  is
large  enough  in  the /  case,  which  implies  the
GB term tends to worsen/alleviate the violation of SCC in
the /  case.  We  summarize  the  results  for  how
the  validity  of  SCC depends  on  in Table  2, which  in-
dicates  that  the  GB  term  plays  a  different  role  in  the
validity of SCC for a -dimensional EMGBdS black hole
than it does for a -dimensional one.

C2

d = 5
β

C1

C2

C2 d = 6
β→ 1

d = 5 d = 6

1

β→ 1

AdS 2×S d−2

We  also  checked  the  validity  of  the  version  of
SCC for near-extremal EMGBdS black holes. In the 
case,  we  found  that  in  some  parameter  regions,  is al-
lowed to exceed unity, which implies that the scalar is in

 extension  on  the  Cauchy  horizon,  and  hence  SCC is
violated in the  version. Such violation leads to the ex-
istence of solutions with bounded Ricci curvature, corres-
ponding to a much more severe failure of determinism in
general  relativity.  However,  the  violation  of  SCC  in  the

 version has not been observed in the  case. Fur-
thermore,  we  found  numerically  that  in the  ex-
tremal limit for both  and . To our knowledge,
the  results  of  charged  black  holes  in  Einstein-Maxwell
theory  [23, 37],  Einstein-Born-Infeld  theory  [42], Ein-
stein-Logarithmic theory [43] and Horndeski theory [44]
all suggest that the dominant mode of the NE family ap-
proaches  in the extremal limit.  It  is  known that such a
mode  has  been  described  analytically  in  asymptotically
flat spacetime [36, 69, 70]. The reason why  in the
extremal  limit  may  relate  to  the  fact  that  the  extremal
black  holes  share  the  same  near-horizon  topology,
namely ,  leading  to  an  enhanced  spacetime
symmetry [71-75].

d > 6
d = 6

For EMGBdS black holes with ,  we expect  that
the result might be similar to the  case, since their al-
lowed regions  are  alike.  In  this  paper,  we  only  con-
sidered the scalar field perturbation of the fixed EMGBdS
black  hole  background  in  the  probe  limit  without  taking

into  account  the  backreaction  of  the  scalar  field  on  the
black  hole  spacetime.  Our  results  on  stability  therefore
actually refer to the scalar field rather than the EMGBdS
black hole spacetime. In future studies, it will be very in-
teresting to check the validity of SCC and discuss its de-
pendence on the dimension d in a full backreaction way.

α̃
α̃ d = 5 d = 6

Λ
β = 1/2 Q/Qext

Λ > Λcrit

5 6

α̃
d = 5

α̃ d = 6
d = 6

α̃
C2

5

Note: Just before this paper was submitted to arXiv, a
relevant  preprint  [76]  appeared,  which  investigated  SCC
in higher curvature gravity. In Ref. [76], it was found that
the violation of SCC becomes worse as  increases in the
small  regime  for  both  and ,  which  is  in
agreement with our results.  Similar to Ref. [76], we also
observed that with  increasing, the PS mode crosses the

 line at larger values of  and becomes sub-
dominant  to  the  NE  mode  in  the  near-extremal  regime.
However, we carried out the analysis in a more thorough
way  with  a  broader  survey  of  the  parameter  space  and
found that the behavior of SCC in EMGBdS black holes
is  much  richer  than  what  was  observed  in  Ref.  [76].  In
particular, in the  regime, we found that SCC can
be  restored  for  any  arbitrary  highly  near-extremal  black
hole due to the presence of the Nariai limit,  as shown in
Figs. 5 and 8. Therefore we partially agree with the con-
clusion given in Ref. [76] that the presence of GB terms
do not help to restore SCC. Moreover, our numerical res-
ults showed that the behavior of SCC is quite different in

-  and -dimensional  cases.  For  instance,  we found that
the  dominant  modes  of  the  three  families  decrease  to
some nonzero finite values towards the upper bound of 
for  (see Fig.  4),  while  the  dominant  NE  and  dS
modes  tend  to  zero  in  the  large  regime  for  (see
Fig. 7(b)). Besides, in the  case, we showed that the
GB  term  tends  to  alleviate  the  violation  of  SCC  in  the
large  regime, which was not explored in Ref. [76]. Fi-
nally, we investigated the  version of SCC, which was
not studied in Ref. [76], and such violation was observed
in a -dimensional near-extremal EMGBdS black hole.

ACKNOWLEDGEMENTS

We thank Guangzhou Guo and Shuxuan Ying for their
helpful discussions and suggestions.

 

 

References

 R.  Penrose.  Gravitational  collapse:  The  role  of  general
relativity. Riv.  Nuovo  Cim., 1:  252 –276,  1969.  [Gen.  Rel.
Grav. 34, 1141(2002)]

[1]

 S.  W.  Hawking  and  R.  Penrose, Proc.  Roy.  Soc.  Lond.  A
314, 529-548 (1970)

[2]

 Roger Penrose, Phys. Rev. Lett. 14, 57-59 (1965)[3]
 Jonathan Luk and Sung-Jin Oh, Strong cosmic censorship in
spherical  symmetry  for  twoended asymptotically  flat  initial

[4]

α̃Table 2.    Dependence of the validity of SCC on the GB parameter .

Q/Qext α̃SCC violation range of  with fixed α̃ Q/QextVarying  with fixed 

d = 5 α̃increases as  increases α̃SCC is violated near the maximum value of 

d = 6 α̃first increases and then decreases as  increases α̃SCC is restored when  is large enough

Strong cosmic censorship for a scalar field in an Einstein-Maxwell-Gauss-Bonnet-de... Chin. Phys. C 45, 025103 (2021)

025103-11

https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.14.57


data  I.  The  interior  of  the  black  hole  region, 2017.  arXiv:
1702.05715
 Jonathan Luk and Sung-Jin Oh, Strong cosmic censorship in
spherical  symmetry  for  twoended asymptotically  flat  initial
data II.  The exterior of the black hole region, 2017, arXiv:
1702.05716

[5]

 J.  M.  McNamara, Proceedings  of  the  Royal  Society  of
London  Series  A,  Mathematical  and  Physical  Sciences
364(1716), 121-134 (1978)

[6]

 Mihalis  Dafermos, Commun.  Pure  Appl.  Math. 58,  0445-
0504 (2005), arXiv:gr-qc/0307013

[7]

 Anne  T.  Franzen, Commun.  Math.  Phys. 343(2),  601-650
(2016), arXiv:1407.7093

[8]

 Eric  Poisson  and  W.  Israel, Phys.  Rev.  D 41,  1796-1809
(1990)

[9]

 Amos Ori, Phys. Rev. Lett. 67, 789-792 (1991)[10]
 Demetrios Christodoulou. The Formation of Black Holes in
General Relativity, In On recent developments in theoretical
and  experimental  general  relativity,  astrophysics  and
relativistic  field  theories,  Proceedings,  12th  Marcel
Grossmann  Meeting  on  General  Relativity,  Paris,  France,
July  12-18,  2009.  Vol.  1-3,  pages  24 –34,  2008.  arXiv:
0805.3880, doi: 10.1142/9789814374552_0002

[11]

 Chris  M.  Chambers, The  Cauchy  horizon  in  black  hole  de
sitter  space-times, Annals  Israel  Phys.  Soc. 13,  33,  (1997),
[33 (1997)], arXiv: gr-qc/9709025

[12]

 Shahar Hod and Tsvi Piran, Phys. Rev. Lett. 81, 1554-1557
(1998), arXiv:gr-qc/9803004

[13]

 Patrick  R.  Brady  and  John  D.  Smith, Phys.  Rev.  Lett. 75,
1256-1259 (1995), arXiv:gr-qc/9506067

[14]

 Richard H. Price, Phys. Rev. D 5, 2419-2438 (1972)[15]
 Mihalis  Dafermos, Commun.  Math.  Phys. 332,  729-757
(2014), arXiv:1201.1797

[16]

 Mihalis  Dafermos,  Igor  Rodnianski,  and  Yakov
Shlapentokh-Rothman, Decay  for  solutions  of  the  wave
equation  on  Kerr  exterior  spacetimes  III:  The  full
subextremal case |a| < M. 2014, arXiv: 1402.7034

[17]

 Yannis  Angelopoulos,  Stefanos  Aretakis,  and  Dejan  Gajic,
Adv. Math. 323, 529-621 (2018), arXiv:1612.01566

[18]

 João L.  Costa,  Pedro M. Girão,  José Natário et  al., On the
global  uniqueness  for  the  Einstein-Maxwell-scalar  field
system with a cosmological constant. Part 3: Mass inflation
and  extendibility  of  the  solutions, 2014.  arXiv:  1406.7261,
doi: 10.1007/s40818-017-0028-6

[19]

 João  L.  Costa,  Pedro  M.  Girão,  José  Natário et  al., Class.
Quant. Grav. 32(1), 015017 (2015)

[20]

 João  L.  Costa,  Pedro  M.  Girão,  José  Natário et  al.,
Commun.  Math.  Phys. 339(3),  903-947  (2015),
arXiv:1406.7253

[21]

 Peter Hintz and András Vasy, J. Math. Phys. 58(8), 081509
(2017), arXiv:1512.08004

[22]

 Vitor  Cardoso,  João  L et  al., Phys.  Rev.  Lett. 120(3),
031103 (2018), arXiv:1711.10502

[23]

 Christoph Kehle and Yakov Shlapentokh-Rothman, Annales
Henri Poincare 20(5), 1583-1650 (2019), arXiv:1804.05438

[24]

 Oscar  J.  C.  Dias,  Harvey  S.  Reall,  and  Jorge  E.  Santos,
JHEP 10, 001 (2018), arXiv:1808.02895

[25]

 Vitor  Cardoso,  Joao  L.  Costa,  Kyriakos  Destounis et  al.,
Phys. Rev. D 98(10), 104007 (2018), arXiv:1808.03631

[26]

 Yuyu Mo, Yu Tian, Bin Wang et al., Phys. Rev. D 98(12),
124025 (2018), arXiv:1808.03635

[27]

 Oscar  J.  C.  Dias,  Harvey  S.  Reall,  and  Jorge  E.  Santos,
Class. Quant. Grav. 36(4), 045005 (2019), arXiv:1808.04832

[28]

 Shahar  Hod, Nucl.  Phys.  B 941,  636-645  (2019),
arXiv:1801.07261

[29]

 Mihalis Dafermos and Yakov Shlapentokh-Rothman, Class.
Quant. Grav. 35(19), 195010 (2018), arXiv:1805.08764

[30]

 Yongwan  Gim  and  Bogeun  Gwak, Charged  Particle  and
Strong  Cosmic  Censorship  in  ReissnerNordström-de  Sitter

[31]

Black Holes, 2019, arXiv: 1901.11214
 Boxuan  Ge,  Jie  Jiang,  Bin  Wang et  al., JHEP 01,  123
(2019), arXiv:1810.12128

[32]

 Kyriakos  Destounis, Phys.  Lett.  B 795,  211-219  (2019),
arXiv:1811.10629

[33]

 Hongbao Zhang and Zhen Zhong, Strong cosmic censorship
in  de  Sitter  space:  As  strong  as  ever, 2019,  arXiv:
1910.01610

[34]

 Mostafizur  Rahman, On  the  validity  of  Strong  Cosmic
Censorship  Conjecture  in  presence  of  Dirac  fields, 2019.
arXiv: 1905.06675

[35]

 Mostafizur  Rahman,  Sumanta  Chakraborty,  Soumitra
SenGupta et al., JHEP 03, 178 (2019), arXiv:1811.08538

[36]

 Hang Liu, Ziyu Tang, Kyriakos Destounis et al., JHEP 03,
187 (2019), arXiv:1902.01865

[37]

 Xiaoyi Liu, Stijn Van Vooren, Hongbao Zhang et al., JHEP
10, 186 (2019), arXiv:1909.07904

[38]

 Raimon  Luna,  Miguel  Zilhao,  Vitor  Cardoso et  al., Phys.
Rev. D 99(6), 064014 (2019), arXiv:1810.00886

[39]

 Bogeun  Gwak, Strong  Cosmic  Censorship  under
Quasinormal  Modes  of  Non-Minimally  Coupled  Massive
Scalar Field, 2018. arXiv: 1812.04923

[40]

 Oscar J. C. Dias, Felicity C. Eperon, Harvey S. Reall et al.,
Phys. Rev. D 97(10), 104060 (2018), arXiv:1801.09694

[41]

 Qingyu  Gan,  Guangzhou  Guo,  Peng  Wang et  al., Strong
Cosmic  Censorship  for  a  Scalar  Field  in  a  Born-Infeld-de
Sitter Black Hole, 2019. arXiv: 1907.04466

[42]

 Yiqian  Chen,  Qingyu  Gan,  and  Guangzhou  Guo, Strong
Cosmic Censorship for  a Scalar Field in  a Logarithmic-de
Sitter Black Hole, 2019, arXiv: 1911.06628

[43]

 Kyriakos Destounis, Rodrigo D. B. Fontana, Filipe C. Mena
et  al., Strong  Cosmic  Censorship  in  Horndeski  Theory,
2019 arXiv: 1908.09842

[44]

 David G, Phys. Rev. Lett. 55, 2656 (1985)[45]
 D. L. Wiltshire, Phys. Lett. B 169, 36-40 (1986)[46]
 Rong-Gen Cai, Phys. Rev. D 65, 084014 (2002), arXiv:hep-
th/0109133

[47]

 Rong-Gen  Cai  and  Qi  Guo, Phys.  Rev.  D 69,  104025
(2004), arXiv:hep-th/0311020

[48]

 Roman  Konoplya, Phys.  Rev.  D 71,  024038  (2005),
arXiv:hep-th/0410057

[49]

 Takashi Torii and Hideki Maeda, Phys. Rev. D 72, 064007
(2005), arXiv:hep-th/0504141

[50]

 Decheng  Zou,  Zhanying  Yang,  Ruihong  Yue et  al., Mod.
Phys. Lett. A 26, 515-529 (2011), arXiv:1011.3184

[51]

 Peng  Wang,  Haitang  Yang,  and  Shuxuan  Ying,
Thermodynamics  and  Phase  Transition  of  a  Gauss-Bonnet
Black Hole in a Cavity, 2019. arXiv: 1909.01275

[52]

 Xiao-Xiong  Zeng,  Xin-Yun  Hu,  and  Ke-Jian  He, Weak
cosmic  censorship  conjecture  with  pressure  and  volume  in
the Gauss-Bonnet AdS black hole, 2019, arXiv: 1905.07750

[53]

 M. A. Cuyubamba, R. A. Konoplya, and A. Zhidenko, Phys.
Rev. D 93(10), 104053 (2016), arXiv:1011.3184

[54]

 R.  A.  Konoplya  and  A.  Zhidenko, Phys.  Rev.  D 95(10),
104005 (2017), arXiv:1701.01652

[55]

 R.  A.  Konoplya  and  A.  Zhidenko, JCA 1705(05),  050
(2017), arXiv:1705.01656

[56]

 Marc  Thibeault,  Claudio  Simeone,  and  Ernesto  F.  Eiroa,
Gen. Rel. Grav. 38, 1593-1608 (2006), arXiv:gr-qc/0512029

[57]

 Atsushi Higuchi,  J. Math. Phys. 28, 1553 (1987), [Erratum:
J. Math. Phys. 43, 6385 (2002)] doi: 10.1063/1.527513

[58]

 Octavio  Fierro,  Nicolas  Grandi,  and  Julio  Oliva, Class.
Quant. Grav. 35(10), 105007 (2017), arXiv:1708.06037

[59]

 Emanuele  Berti,  Vitor  Cardoso,  and  Andrei  O.  Starinets,
Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975

[60]

 R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793-
836 (2011), arXiv:1102.4014

[61]

 Aron  Jansen, Eur.  Phys.  J.  Plus 132(12),  546  (2017),
arXiv:1709.09178

[62]

Qingyu Gan, Peng Wang, Houwen Wu et al. Chin. Phys. C 45, 025103 (2021)

025103-12

https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1002/cpa.20071
https://arxiv.org/abs/0307013
https://doi.org/10.1007/s00220-015-2440-7
https://arxiv.org/abs/1407.7093
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRevLett.67.789
http://dx.doi.org/10.1142/9789814374552_0002
https://doi.org/10.1103/PhysRevLett.81.1554
https://arxiv.org/abs/9803004
https://doi.org/10.1103/PhysRevLett.75.1256
https://arxiv.org/abs/9506067
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1007/s00220-014-2063-4
https://arxiv.org/abs/1201.1797
https://doi.org/10.1016/j.aim.2017.10.027
https://arxiv.org/abs/1612.01566
http://dx.doi.org/10.1007/s40818-017-0028-6
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1007/s00220-015-2433-6
https://arxiv.org/abs/1406.7253
https://doi.org/10.1063/1.4996575
https://arxiv.org/abs/1512.08004
https://doi.org/10.1103/PhysRevLett.120.031103
https://arxiv.org/abs/1711.10502
https://doi.org/10.1007/s00023-019-00760-z
https://doi.org/10.1007/s00023-019-00760-z
https://arxiv.org/abs/1804.05438
https://doi.org/10.1007/JHEP10(2018)001
https://arxiv.org/abs/1808.02895
https://doi.org/10.1103/PhysRevD.98.104007
https://arxiv.org/abs/1808.03631
https://doi.org/10.1103/PhysRevD.98.124025
https://arxiv.org/abs/&gt;1808.03635
https://arxiv.org/abs/&gt;1808.03635
https://doi.org/10.1088/1361-6382/aafcf2
https://arxiv.org/abs/&gt;
https://doi.org/10.1016/j.nuclphysb.2019.03.003
https://arxiv.org/abs/1801.07261
https://doi.org/10.1088/1361-6382/aadbcf
https://doi.org/10.1088/1361-6382/aadbcf
https://arxiv.org/abs/1805.08764
https://doi.org/10.1007/JHEP01(2019)123
https://arxiv.org/abs/1810.12128
https://doi.org/10.1016/j.physletb.2019.06.015
https://arxiv.org/abs/1811.10629
https://doi.org/10.1007/JHEP03(2019)178
https://arxiv.org/abs/1811.08538
https://doi.org/10.1007/JHEP03(2019)187
https://arxiv.org/abs/1902.01865
https://doi.org/10.1007/JHEP10(2019)186
https://arxiv.org/abs/1909.07904
https://doi.org/10.1103/PhysRevD.99.064014
https://doi.org/10.1103/PhysRevD.99.064014
https://arxiv.org/abs/1810.00886
https://doi.org/10.1103/PhysRevD.97.104060
https://arxiv.org/abs/1801.09694
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0370-2693(86)90681-7
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/0109133
https://arxiv.org/abs/0109133
https://doi.org/10.1103/PhysRevD.69.104025
https://arxiv.org/abs/0311020
https://doi.org/10.1103/PhysRevD.71.024038
https://arxiv.org/abs/0410057
https://doi.org/10.1103/PhysRevD.72.064007
https://arxiv.org/abs/0504141
https://doi.org/10.1142/S0217732311034724
https://doi.org/10.1142/S0217732311034724
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.93.104053
https://doi.org/10.1103/PhysRevD.93.104053
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.95.104005
https://arxiv.org/abs/1701.01652
https://doi.org/10.1088/1475-7516/2017/05/050
https://arxiv.org/abs/1705.01656
https://doi.org/10.1007/s10714-006-0324-z
https://arxiv.org/abs/0512029&lt;linebreak/&gt;
http://dx.doi.org/10.1063/1.527513
https://doi.org/10.1088/1361-6382/aab3f6
https://doi.org/10.1088/1361-6382/aab3f6
https://arxiv.org/abs/1708.06037
https://doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
https://doi.org/10.1103/RevModPhys.83.793
https://arxiv.org/abs/1102.4014
https://doi.org/10.1140/epjp/i2017-11825-9
https://arxiv.org/abs/1709.09178
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1002/cpa.20071
https://arxiv.org/abs/0307013
https://doi.org/10.1007/s00220-015-2440-7
https://arxiv.org/abs/1407.7093
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRevLett.67.789
http://dx.doi.org/10.1142/9789814374552_0002
https://doi.org/10.1103/PhysRevLett.81.1554
https://arxiv.org/abs/9803004
https://doi.org/10.1103/PhysRevLett.75.1256
https://arxiv.org/abs/9506067
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1007/s00220-014-2063-4
https://arxiv.org/abs/1201.1797
https://doi.org/10.1016/j.aim.2017.10.027
https://arxiv.org/abs/1612.01566
http://dx.doi.org/10.1007/s40818-017-0028-6
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1007/s00220-015-2433-6
https://arxiv.org/abs/1406.7253
https://doi.org/10.1063/1.4996575
https://arxiv.org/abs/1512.08004
https://doi.org/10.1103/PhysRevLett.120.031103
https://arxiv.org/abs/1711.10502
https://doi.org/10.1007/s00023-019-00760-z
https://doi.org/10.1007/s00023-019-00760-z
https://arxiv.org/abs/1804.05438
https://doi.org/10.1007/JHEP10(2018)001
https://arxiv.org/abs/1808.02895
https://doi.org/10.1103/PhysRevD.98.104007
https://arxiv.org/abs/1808.03631
https://doi.org/10.1103/PhysRevD.98.124025
https://arxiv.org/abs/&gt;1808.03635
https://arxiv.org/abs/&gt;1808.03635
https://doi.org/10.1088/1361-6382/aafcf2
https://arxiv.org/abs/&gt;
https://doi.org/10.1016/j.nuclphysb.2019.03.003
https://arxiv.org/abs/1801.07261
https://doi.org/10.1088/1361-6382/aadbcf
https://doi.org/10.1088/1361-6382/aadbcf
https://arxiv.org/abs/1805.08764
https://doi.org/10.1007/JHEP01(2019)123
https://arxiv.org/abs/1810.12128
https://doi.org/10.1016/j.physletb.2019.06.015
https://arxiv.org/abs/1811.10629
https://doi.org/10.1007/JHEP03(2019)178
https://arxiv.org/abs/1811.08538
https://doi.org/10.1007/JHEP03(2019)187
https://arxiv.org/abs/1902.01865
https://doi.org/10.1007/JHEP10(2019)186
https://arxiv.org/abs/1909.07904
https://doi.org/10.1103/PhysRevD.99.064014
https://doi.org/10.1103/PhysRevD.99.064014
https://arxiv.org/abs/1810.00886
https://doi.org/10.1103/PhysRevD.97.104060
https://arxiv.org/abs/1801.09694
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0370-2693(86)90681-7
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/0109133
https://arxiv.org/abs/0109133
https://doi.org/10.1103/PhysRevD.69.104025
https://arxiv.org/abs/0311020
https://doi.org/10.1103/PhysRevD.71.024038
https://arxiv.org/abs/0410057
https://doi.org/10.1103/PhysRevD.72.064007
https://arxiv.org/abs/0504141
https://doi.org/10.1142/S0217732311034724
https://doi.org/10.1142/S0217732311034724
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.93.104053
https://doi.org/10.1103/PhysRevD.93.104053
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.95.104005
https://arxiv.org/abs/1701.01652
https://doi.org/10.1088/1475-7516/2017/05/050
https://arxiv.org/abs/1705.01656
https://doi.org/10.1007/s10714-006-0324-z
https://arxiv.org/abs/0512029&lt;linebreak/&gt;
http://dx.doi.org/10.1063/1.527513
https://doi.org/10.1088/1361-6382/aab3f6
https://doi.org/10.1088/1361-6382/aab3f6
https://arxiv.org/abs/1708.06037
https://doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
https://doi.org/10.1103/RevModPhys.83.793
https://arxiv.org/abs/1102.4014
https://doi.org/10.1140/epjp/i2017-11825-9
https://arxiv.org/abs/1709.09178
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1002/cpa.20071
https://arxiv.org/abs/0307013
https://doi.org/10.1007/s00220-015-2440-7
https://arxiv.org/abs/1407.7093
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRevLett.67.789
http://dx.doi.org/10.1142/9789814374552_0002
https://doi.org/10.1103/PhysRevLett.81.1554
https://arxiv.org/abs/9803004
https://doi.org/10.1103/PhysRevLett.75.1256
https://arxiv.org/abs/9506067
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1007/s00220-014-2063-4
https://arxiv.org/abs/1201.1797
https://doi.org/10.1016/j.aim.2017.10.027
https://arxiv.org/abs/1612.01566
http://dx.doi.org/10.1007/s40818-017-0028-6
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1007/s00220-015-2433-6
https://arxiv.org/abs/1406.7253
https://doi.org/10.1063/1.4996575
https://arxiv.org/abs/1512.08004
https://doi.org/10.1103/PhysRevLett.120.031103
https://arxiv.org/abs/1711.10502
https://doi.org/10.1007/s00023-019-00760-z
https://doi.org/10.1007/s00023-019-00760-z
https://arxiv.org/abs/1804.05438
https://doi.org/10.1007/JHEP10(2018)001
https://arxiv.org/abs/1808.02895
https://doi.org/10.1103/PhysRevD.98.104007
https://arxiv.org/abs/1808.03631
https://doi.org/10.1103/PhysRevD.98.124025
https://arxiv.org/abs/&gt;1808.03635
https://arxiv.org/abs/&gt;1808.03635
https://doi.org/10.1088/1361-6382/aafcf2
https://arxiv.org/abs/&gt;
https://doi.org/10.1016/j.nuclphysb.2019.03.003
https://arxiv.org/abs/1801.07261
https://doi.org/10.1088/1361-6382/aadbcf
https://doi.org/10.1088/1361-6382/aadbcf
https://arxiv.org/abs/1805.08764
https://doi.org/10.1007/JHEP01(2019)123
https://arxiv.org/abs/1810.12128
https://doi.org/10.1016/j.physletb.2019.06.015
https://arxiv.org/abs/1811.10629
https://doi.org/10.1007/JHEP03(2019)178
https://arxiv.org/abs/1811.08538
https://doi.org/10.1007/JHEP03(2019)187
https://arxiv.org/abs/1902.01865
https://doi.org/10.1007/JHEP10(2019)186
https://arxiv.org/abs/1909.07904
https://doi.org/10.1103/PhysRevD.99.064014
https://doi.org/10.1103/PhysRevD.99.064014
https://arxiv.org/abs/1810.00886
https://doi.org/10.1103/PhysRevD.97.104060
https://arxiv.org/abs/1801.09694
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0370-2693(86)90681-7
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/0109133
https://arxiv.org/abs/0109133
https://doi.org/10.1103/PhysRevD.69.104025
https://arxiv.org/abs/0311020
https://doi.org/10.1103/PhysRevD.71.024038
https://arxiv.org/abs/0410057
https://doi.org/10.1103/PhysRevD.72.064007
https://arxiv.org/abs/0504141
https://doi.org/10.1142/S0217732311034724
https://doi.org/10.1142/S0217732311034724
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.93.104053
https://doi.org/10.1103/PhysRevD.93.104053
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.95.104005
https://arxiv.org/abs/1701.01652
https://doi.org/10.1088/1475-7516/2017/05/050
https://arxiv.org/abs/1705.01656
https://doi.org/10.1007/s10714-006-0324-z
https://arxiv.org/abs/0512029&lt;linebreak/&gt;
http://dx.doi.org/10.1063/1.527513
https://doi.org/10.1088/1361-6382/aab3f6
https://doi.org/10.1088/1361-6382/aab3f6
https://arxiv.org/abs/1708.06037
https://doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
https://doi.org/10.1103/RevModPhys.83.793
https://arxiv.org/abs/1102.4014
https://doi.org/10.1140/epjp/i2017-11825-9
https://arxiv.org/abs/1709.09178
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1098/rspa.1978.0191
https://doi.org/10.1002/cpa.20071
https://arxiv.org/abs/0307013
https://doi.org/10.1007/s00220-015-2440-7
https://arxiv.org/abs/1407.7093
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRevLett.67.789
http://dx.doi.org/10.1142/9789814374552_0002
https://doi.org/10.1103/PhysRevLett.81.1554
https://arxiv.org/abs/9803004
https://doi.org/10.1103/PhysRevLett.75.1256
https://arxiv.org/abs/9506067
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1007/s00220-014-2063-4
https://arxiv.org/abs/1201.1797
https://doi.org/10.1016/j.aim.2017.10.027
https://arxiv.org/abs/1612.01566
http://dx.doi.org/10.1007/s40818-017-0028-6
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1088/0264-9381/32/1/015017
https://doi.org/10.1007/s00220-015-2433-6
https://arxiv.org/abs/1406.7253
https://doi.org/10.1063/1.4996575
https://arxiv.org/abs/1512.08004
https://doi.org/10.1103/PhysRevLett.120.031103
https://arxiv.org/abs/1711.10502
https://doi.org/10.1007/s00023-019-00760-z
https://doi.org/10.1007/s00023-019-00760-z
https://arxiv.org/abs/1804.05438
https://doi.org/10.1007/JHEP10(2018)001
https://arxiv.org/abs/1808.02895
https://doi.org/10.1103/PhysRevD.98.104007
https://arxiv.org/abs/1808.03631
https://doi.org/10.1103/PhysRevD.98.124025
https://arxiv.org/abs/&gt;1808.03635
https://arxiv.org/abs/&gt;1808.03635
https://doi.org/10.1088/1361-6382/aafcf2
https://arxiv.org/abs/&gt;
https://doi.org/10.1016/j.nuclphysb.2019.03.003
https://arxiv.org/abs/1801.07261
https://doi.org/10.1088/1361-6382/aadbcf
https://doi.org/10.1088/1361-6382/aadbcf
https://arxiv.org/abs/1805.08764
https://doi.org/10.1007/JHEP01(2019)123
https://arxiv.org/abs/1810.12128
https://doi.org/10.1016/j.physletb.2019.06.015
https://arxiv.org/abs/1811.10629
https://doi.org/10.1007/JHEP03(2019)178
https://arxiv.org/abs/1811.08538
https://doi.org/10.1007/JHEP03(2019)187
https://arxiv.org/abs/1902.01865
https://doi.org/10.1007/JHEP10(2019)186
https://arxiv.org/abs/1909.07904
https://doi.org/10.1103/PhysRevD.99.064014
https://doi.org/10.1103/PhysRevD.99.064014
https://arxiv.org/abs/1810.00886
https://doi.org/10.1103/PhysRevD.97.104060
https://arxiv.org/abs/1801.09694
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0370-2693(86)90681-7
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/0109133
https://arxiv.org/abs/0109133
https://doi.org/10.1103/PhysRevD.69.104025
https://arxiv.org/abs/0311020
https://doi.org/10.1103/PhysRevD.71.024038
https://arxiv.org/abs/0410057
https://doi.org/10.1103/PhysRevD.72.064007
https://arxiv.org/abs/0504141
https://doi.org/10.1142/S0217732311034724
https://doi.org/10.1142/S0217732311034724
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.93.104053
https://doi.org/10.1103/PhysRevD.93.104053
https://arxiv.org/abs/1011.3184
https://doi.org/10.1103/PhysRevD.95.104005
https://arxiv.org/abs/1701.01652
https://doi.org/10.1088/1475-7516/2017/05/050
https://arxiv.org/abs/1705.01656
https://doi.org/10.1007/s10714-006-0324-z
https://arxiv.org/abs/0512029&lt;linebreak/&gt;
http://dx.doi.org/10.1063/1.527513
https://doi.org/10.1088/1361-6382/aab3f6
https://doi.org/10.1088/1361-6382/aab3f6
https://arxiv.org/abs/1708.06037
https://doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
https://doi.org/10.1103/RevModPhys.83.793
https://arxiv.org/abs/1102.4014
https://doi.org/10.1140/epjp/i2017-11825-9
https://arxiv.org/abs/1709.09178


 Aron  Peter  Jansen,  Qnmspectral.  URL: https://github.com/
APJansen/QNMspectral

[63]

 URL: https://centra.tecnico.ulisboa.pt/network/grit/files/
ringdown/

[64]

 Akihiro  Ishibashi  and  Hideo  Kodama, Prog.  Theor.  Phys.
110, 901-919 (2003)

[65]

 E.  Abdalla,  R.  A.  Konoplya,  and  C.  Molina, Phys.  Rev.  D
72, 084006, (2005), arXiv:hep-th/0507100

[66]

 R. A. Konoplya and A. Zhidenko, Phys. Rev. D 77, 104004
(2008), arXiv:0802.0267

[67]

 Clarissa-Marie Claudel, K. S. Virbhadra, and G. F. R. Ellis,
J. Math. Phys. 42, 818-838 (2001), arXiv:gr-qc/0005050

[68]

 Chiang-Mei Chen, Sang Pyo Kim, I-Chieh Lin et al., Phys.
Rev. D 85, 124041 (2012), arXiv:1202.3224

[69]

 Yong-Wan  Kim,  Yun  Soo  Myung,  and  Young-Jai  Park,[70]

Eur. Phys. J. C 73, 2440 (2013), arXiv:1205.3701
 Vijay Balasubramanian and Finn Larsen, Nucl. Phys. B 528,
229-237 (1998), arXiv:hep-th/9802198

[71]

 Mirjam  Cvetic  and  Finn  Larsen, Nucl.  Phys.  B 531,  239-
255 (1998), arXiv:hep-th/9805097

[72]

 Jin-Ho  Cho  and  Soonkeon  Nam, JHEP 01,  011  (2007),
arXiv:0705.2892

[73]

 Hari  K.  Kunduri,  James  Lucietti,  and  Harvey  S.  Reall,
Class. Quant. Grav. 24, 4169-4190 (2007), arXiv:0705.4214

[74]

 Hari  K.  Kunduri  and  James  Lucietti, J.  Math.  Phys. 50,
082502 (2009), arXiv:0806.2051

[75]

 Akash K. Mishra and Sumanta Chakraborty, Strong Cosmic
Censorship  in  higher  curvature  gravity, 2019,  arXiv:
1911.09855

[76]

Strong cosmic censorship for a scalar field in an Einstein-Maxwell-Gauss-Bonnet-de... Chin. Phys. C 45, 025103 (2021)

025103-13

https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://github.com/APJansen/QNMspectral
https://github.com/APJansen/QNMspectral
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1103/PhysRevD.72.084006
https://arxiv.org/abs/0507100
https://doi.org/10.1103/PhysRevD.77.104004
https://arxiv.org/abs/0802.0267
https://doi.org/10.1063/1.1308507
https://arxiv.org/abs/0005050
https://doi.org/10.1103/PhysRevD.85.124041
https://doi.org/10.1103/PhysRevD.85.124041
https://arxiv.org/abs/1202.3224
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051
https://doi.org/10.1140/epjc/s10052-013-2440-8
https://arxiv.org/abs/1205.3701
https://doi.org/10.1016/S0550-3213(98)00334-4
https://arxiv.org/abs/9802198
https://doi.org/10.1016/S0550-3213(98)00604-X
https://arxiv.org/abs/9805097
https://doi.org/10.1088/1126-6708/2007/07/011
https://arxiv.org/abs/0705.2892
https://doi.org/10.1088/0264-9381/24/16/012
https://arxiv.org/abs/0705.4214
https://doi.org/10.1063/1.3190480
https://arxiv.org/abs/0806.2051

