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Abstract: We study the scattering of  -  mesons using quadratic  and Cornell  potentials  in  our  tetraquark
( ) system. The system’s wavefunction in the restricted gluonic basis, which is written by utilizing the adiabatic
approximation and Hamiltonian, is used via a quark potential model. The resonating group technique is used to ob-
tain the integral equations, which are solved to obtain the unknown inter-cluster dependence of the total wavefunc-
tion  of  our  tetraquark  system.  T-Matrix  elements  are  calculated  from  the  solutions,  and  eventually,  the  scattering
cross sections are obtained using the two potentials. We compare these cross sections and find that the magnitudes of
scattering cross sections of quadratic potential are higher than the Cornell potential.

J/ψKeywords: Cornell potential, quadratic potential,  scattering, quark potential model

DOI: 10.1088/1674-1137/abcc5b

I.  INTRODUCTION
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The  meson,  a  bound state  of  a  charm quark and
its anti-particle, was discovered in 1974; since then, it has
been studied  extensively  from  a  theoretical  and  experi-
mental point of view. In heavy ion collisions at the RHIC
[1]  and  recently  at  the  LHC [2], its  production  mechan-
isms  have  been  explored.  Perhaps,  the  most  significant
phenomenon as a result of heavy ion collisions is forma-
tion  of  the  particular  state  of  matter  called  quark-gluon
plasma (QGP).  A fundamental  effect  associated with the
QGP medium is known as color screening, i.e., the inter-
action  range  of  heavy quarks  decreases  with  an  increase
in the surrounding temperature [3]. As a result, the poten-
tial  between  heavier  quarks  or  is  screened  due  to
the deconfinement  of  other  quarks  and gluons.  The con-
sequent  separation  of  heavy  quarks  leads  to  suppressed
quarkonium yields.  suppression, an idea first put for-
ward  by  theorists  T.  Matsui  and  H.  Satz  [4]  in  1986,  is
considered one of the indicators of the formation of QGP.
As charm quarks are more abundantly produced in heavy-
ion experiments  compared to  bottom quarks,  researchers
initially  thought  that  could  also  be  used  to  measure
the temperature  of  QGP.  However,  due  to  technical  is-
sues  associated  with  production,  it  is  an  unsuitable
QGP  temperature  probe.  Among J/ 's  dominant  decay
modes  is  the  production  of  lepton  pairs.  However,  these

J/ψ

dileptons do not possess the requisite momentum to carry
them beyond the CMS particle spectrometer's large mag-
netic  fields  for  detection.  Furthermore,  non-QGP  effects
can  also  play  a  role  in  the  suppression  of .  A  better
temperature  probe  that  has  been  studied  is  the  upsilon
meson (bound state of bottom quark-anti quark) [5].
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Various  papers  have  considered  the  dissociation  of
 by light hadrons [6-15]. Due to the dominant scatter-

ing mechanism  and  the  different  assumptions  made  re-
garding  it,  the  computed  cross  sections  in  these  studies
exhibit  great  variations  at  low  energies.  For  example,
Kharseev et  al.  [6, 7]  studied  the -nucleon  collision
using the parton model and perturbative QCD "short dis-
tance"  approach.  The  cross  section  they  obtained  at

 GeV was found to be approximately 0.25 . An-
other  study concerning the  dissociation cross  sections  of

 by  and  mesons was conducted by Matinyan and
Muller  [10].  At  GeV,  they obtained   0.2-0.3

. The dissociation cross sections mentioned above at-
tain particular  significance  once  one  considers  the  sup-
pression of quarkonium states (such as the stronger (2S)
suppression  relative  to ) due  to  the  comover  scatter-
ing  effect  [16, 17].  Other  theoretical  studies  have  also
probed  various  phenomenological  aspects  related  to 
mesons.

J/ψ Tc Tc

Lattice QCD calculations performed in [18-22] found
a relatively narrow width of ,  i.e.,  around 1.6  (
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J/ψ
is  known  as  the  critical  phase  transition  temperature).
Subsequently,  Wong  [23]  calculated  the  production
cross  section  via  charm  quark-antiquark  collision  and
showed  the  energy  dependence  of  the  cross  section.
Moreover,  [23]  concluded  that,  with  the  corresponding
decrease  in  temperature,  an  increase  in  maximum  cross
section  occurs.  Theoretically,  the  two  broad  approaches
used to study the dynamics of quarkonia are based on po-
tential models and lattice QCD [24].

mc,b≫ ΛQCD
v≪ 1

KK̄

π+π+ K+K+ ρ+ρ+

Potential models assume that the gluonic field energy
between  a  heavy  quark  and  its  corresponding  antiquark
can be modeled with the aid of a suitable potential. For a
single quark-antiquark  pair,  the  Cornell  potential  ad-
equately describes  the  experimental  results  of  quarkoni-
um  spectroscopy  [25],  agrees  well  with  the  lattice  [26],
and  can  be  obtained  via  quantum  chromodynamics
(QCD)  [27, 28].  This  quark-antiquark  system  can  be
treated in the non-relativistic regime owing to the heavier
quark mass ( ) and the low heavy quark velo-
city  ( ).  J.  Weinstein  and  N.  Isgur  used  the  sum  of
two-body  Cornell  potentials  in  their  study  of  mo-
lecules  [29, 30]. Subsequently,  T.  Barnes  and  E.  Swan-
son employed the aforementioned approach [31] to com-
pute the cross sections and elastic scattering phase shifts
of , , and .

Another  potential  of  interest  to  our  current  study  is
the  quadratic  potential.  This  has  been  widely  used  to
probe  nucleon-nucleon  interaction  [32-35] and,  more  re-
cently,  to  calculate  the  mass  spectra  of  tetraquarks  [36].
Quadratic confinement has also been used to investigate a
six-quark state with a structure akin to benzene [37].

J/ψIn  our  study,  we  consider  a  system  of  two 
mesons and study their scattering cross sections with the
aid of different potentials. We analyze how changing the
potential between quarks changes the interaction between
them. In Section II, we state the wavefunction of our sys-
tem, followed by the Hamiltonian. The section ends with
a discussion on quadratic and Cornell  potentials.  In Sec-
tion III,  integral  equations are written and decoupled us-
ing the Born approximation. The final section is devoted
to the results of the quadratic and Cornell potentials.

II.  WAVE FUNCTION AND THE HAMILTONIAN

We write  the  state  function  of  our  tetraquark  system
by utilizing the adiabatic approximation [38] as follows:

|ΨT ⟩ =
2∑

k=1

ψc(Qc)χk(Qk)ξk(uk)ζk(vk)|k⟩ f |k⟩s|k⟩c, (1)

where
Qc  : position  of  COM  (center  of  mass)  of  our  com-

plete system,
Q1 3̄ 4̄ : vector joining COM of (1, ) and (2, ) clusters,
u1  :  vector  representing  position  of  quark  1  w.r.t.

3̄ 3̄quark  in the cluster (1, ),
v1

4̄ 4̄
 :  vector  representing  position  of  quark  2  w.r.t.

quark  in the cluster (2, ).
4̄

3̄ Q2 u2 v2 3̄ 4̄
Q3 u3 v3

Identical  expressions  are  given for  clusters  (1, )  and
(2, )  via , ,  and  .  Likewise,  (1,2)  and  ( , )  are
defined by , , and . Hence,

Q1 =
1
2

(τ1+τ3̄−τ2−τ4̄),

u1 =τ1−τ3̄ , v1 = τ2−τ4̄, (2)

Q2 =
1
2

(τ1+τ4̄−τ2−τ3̄),

u2 =τ1−τ4̄ , v2 = τ2−τ3̄, (3)

Q3 =
1
2

(τ1+τ2−τ3̄−τ4̄),

u3 =τ1−τ2 , v3 = τ3̄−τ4̄, (4)

ξk(uk) =
1

(2πd2)3/4 exp
(−u2

k

4d2

)
,

ζk(vk) =
1

(2πd2)3/4 exp
(−v2

k

4d2

)
. (5)

The  possible  topologies  of  quark-antiquark  clusters
are shown in Figures 1 and 2 respectively.

ψc(Qc)
χk(Qk)

ξk(uk) ζk(vk)
|k⟩ f |k⟩s

|k⟩c
cc̄cc̄

As we are considering the system in the COM refer-
ence  frame,  has  no  role  in  the  dynamics  of  the
four  quark  system.  is  an  unknown  parameter  in
the radial part of the total wavefunction, and ,
are  the  predefined  Gaussian  wave  functions. , ,
and  are the flavor,  spin,  and color parts  of  the wave
function, respectively. The Hamiltonian of our ( ) sys-
tem is written as follows:

Ĥ =
4̄∑

i=1

[
mi+

P̂2
i

2mi

]
+

4̄∑
i< j

[v(ri j)Fi.Fj], (6)

 

Fig. 1.    Topology A.
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P̂
Fi = λi/2

Fi = −λ∗i /2 λ

v(ri j)
qq̄

where m and  denote the  quark  mass  and  linear  mo-
mentum,  respectively.  Moreover,  for  a  quark
and  for  an  antiquark,  where s  are  the  well-
known Gell-Mann matrices. The potentials  used for

 pairwise interaction are the quadratic potential [39],

vi j =Cr2
i j+ C̄, (7)

i, j = 1,2, 3̄, 4̄where ,  and  the  Cornell  potential  (Cou-
lombic plus linear potential) [29] is

vi j = −
4
3
αs

ri j
+bsri j, (8)

i, j = 1,2, 3̄, 4̄ αs

bs

where ,  is  the  strong  coupling  constant,
and  is the string tension (flux tube model).

ξk(uk) ζk(vk)The mesonic size d appearing in  and  can
be  adjusted  such  that  the  Gaussian  ground  state  wave
function  of  the  quadratic  potential  approximates  the
ground  state  wave  function  of  the  Cornell  potential.
Hence,  their  overlaps  become  unity  for  a  fitted  value  of
parameter d [40].

III.  INTEGRAL EQUATIONS AND
THEIR SOLUTIONS

χk (Qk)
ΨT

Qk ⟨δΨT |H−Ec|ΨT ⟩ = 0

We  employ  the  RGM  (resonating  group  method)
technique  [41]  and  take  variations  only  in  the  
factor  of  the  total  wave  function ;  by  making  use  of
linear independence of these variations both w.r.t. the two
values of k,  i.e., k = 1,  2,  and w.r.t.  all  possible continu-
ous values of  in , we obtain, from
Eq. (1), the following two integral equations:

2∑
l=1

∫
d3ukd3vkξk(uk)ζk(vk) f ⟨k|s⟨k|c⟨k|Ĥ−Ec|l⟩c|l⟩s|l⟩ fχl(Ql)ξl(ul)ζl(vl) = 0. (9)

Ĥ Ec Ĥ EcThe operator (  - ) is the identity in the flavor basis, whereas the overlap factors are also the (  - ) operator's
flavor matrix elements. Therefore, our potential energy matrix in the spin and color basis is

V ≡ ⟨k|V̂ |l⟩cs = s⟨k|l⟩sc⟨k|V̂ |l⟩c =

 −4
3

(v13̄+ v24̄) −1
2

4
9

(v12− v13̄− v14̄− v23̄− v24̄+ v3̄4̄

−1
2

4
9

(v12− v13̄− v14̄− v23̄− v24̄+ v3̄4̄ −4
3

(v14̄+ v23̄)

 .

The spin overlaps are given as

0⟨V13̄V24̄|V14̄V23̄⟩0 = 0⟨V14̄V23̄|V13̄V24̄⟩0 = −
1
2
, (10)

Vqq̄

K̂
4̄∑

i=1

[mi−Ec]

where  is a vector meson. We now discuss the kinetic

energy  operator.  In  spin  space,  and  are

unit operators. Thus, the matrix elements in the spin-col-
or basis  are similar  to matrix elements in the color basis
multiplied by spin overlaps, i.e.,

⟨k|K̂|l⟩cs = s⟨k|l⟩sc⟨k|K̂|l⟩c, (11)

where k = 1,  2.  Opening the summation over  l,  we have
the following two equations, respectively:

∫
d3u1d3v1ξ1(u1)ζ1(v1)c⟨1|Ĥ−Ec|1⟩cχ1(Q1)ξ1(u1)ζ1(v1)

+

(
−1

2

)∫
d3u1d3v1ξ1(u1)ζ1(v1)c⟨1|Ĥ−Ec|2⟩cχ2(Q2)ξ2(u2)ζ2(v2) = 0, (12)∫

d3u2d3v2ξ2(u2)ζ2(v2)c⟨2|Ĥ−Ec|1⟩cχ1(Q1)ξ1(u1)ζ1(v1)

+

(
−1

2

)∫
d3u2d3v2ξ2(u2)ζ2(v2)c⟨2|Ĥ−Ec|2⟩cχ2(Q2)ξ2(u2)ζ2(v2) = 0. (13)

 

Fig. 2.    Topology B.

J/ψ-J/ψ scattering cross sections of quadratic and Cornell potentials Chin. Phys. C 45, 023103 (2021)

023103-3



Q1 u1
v1 χ1(Q1)

χ1(Q1)

u1 v1 Q2
Q3 u2 v2

In  the  first  integral  equation's  diagonal  part, , ,
and  are  linearly  independent,  so  we  take  out-
side the integral. As  is the only unknown paramet-
er, we can integrate the remaining integrands. In the off-
diagonal part of (12), we replace  and  with  and

, whereas  and  are replaced by a linear combina-

Q1 Q2 Q3 Q1 Q2 Q3tion of , , and . , , and  form a set of lin-
early  independent  vectors.  The  same  steps  apply  for  the
integral equation (13).  After  performing some differenti-
ations  and  integrations,  we  obtain  the  following  two
equations from (12) and (13):
 

3ω
2
−
∇2

Q1

2m
+24C0d2− 8

3
C̄−Ec+4m

χ1(Q1)+
(
−1

2

)∫
d3Q2d3Q3exp−

Q2
1+Q2

2+2Q2
3

2d2


×

[
− 8

6m(2πd2)3 h1+
32

9(2πd2)3 (−2C̄−4CQ2
3)− 8(Ec−4m)

3(2πd2)3

]
χ2(Q2) = 0, (14)

where, written up to accuracy 4,

h1 = 0.0154(−7.2550+Q2
1+Q2

2+Q2
3). (15)

Similarly, we also have3ω
2
−
∇2

Q2

2m
+24C0d2− 8

3
C̄−Ec+4m

χ2(Q2)+
(
−1

2

)∫
d3Q1d3Q3exp−

Q2
1+Q2

2+2Q2
3

2d2


×

[
− 8

6m(2πd2)3 h1+
32

9(2πd2)3 (−2C̄−4CQ2
3)− 8(Ec−4m)

3(2πd2)3

]
χ1(Q1) = 0. (16)

Q1We apply a Fourier transform to (14) w.r.t.  and, applying the Born approximation, we use

χ2(Q2) =

√
2
π

eiP2.Q2 (17)

inside the integral to get

 P2
1

2µ12
+3ω−Ec

χ1(P1) =
(
− 1

16π5d6

)(
−1

2

)∫
d3Q1d3Q2d3Q3e−

Q2
1+Q2

2+2Q2
3

2d2

×
[
− 8

6m
h1+

32
9

(
−2C̄−4CQ2

3

)
− 8(Ec−4m)

3

]
ei(P2.Q2+P1.Q1). (18)

χ1(P1) χ1(Q1)Here,  is the Fourier transform of . We write the formal solution of (18) as

χ1(P1) =
δ(P1−Pc(1))

P2
c(1)

− 1
∆1(P1)

1
16π5d6

(
−1

2

)∫
d3Q1d3Q2d3Q3e−

Q2
1+Q2

2+2Q2
3

2d2

×
[
− 8

6m
h1+

32
9

(−2C̄−4CQ2
3)− 8(Ec−4m)

3

]
ei(P1.Q1+P2.Q2) (19)

with

∆1(P1) =
P2

1

2µ12
+3ω−Ec− iε.

P1If the x-axis is chosen along , and the z-axis is chosen
in  such  a  way  that  the xz-plane becomes  the  plane  con-

P1 P2taining  and , the aforementioned equation takes the
following form:

χ1(P1) =
δ(P1−Pc(1))

P2
c(1)

− 1
∆1(P1)

F1, (20)

where, in rectangular coordinates,
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F1 =
1

16π5d6

(
−1

2

)∫
dx1dy1dz1dx2dy2dz2dx3dy3dz3e−

(x2
1+y2

1+z2
1+x2

2+y2
2+z2

2+2(x2
3+y2

3+z2
3))

2d2

×
[
− 8

6m
h1+

32
9

(−2C̄−4C(x2
3 + y2

3+ z2
3))− 8(Ec−4m)

3

]
eiP(x1+x2 cosφ+z2 sinφ). (21)

φ P1 P2Here,  is the angle between  and . As we are con-
sidering elastic scattering,

P1 = P2 = P.

From (20), we can write the 1, 2 element of the T-matrix
[38] as follows:

T12 = 2µ12
π

2
PcF1,

where

Pc = Pc(2) = Pc(1) =
√

2µ12 (Ec− (M1+M2)), (22)

with

M1 = M2 =
3ω
2
.

For the total spin averaged cross sections, we make use of
the following relation [42]:

σi j =
4π

P2
c( j)

∑
J

(2J+1)
(2s1+1)(2s2+2)

|Ti j|2, (23)

s1 s2

J = 0 s1 = s2 = 1
i = 1, j = 2

where J and ,  denote the total spin of the two outgo-
ing mesons  and  spins  of  the  two  incoming  mesons,  re-
spectively.  In  our  situation, ,  and .  Thus,
for , we obtain

σ12 =
4π
P2

c

1
9
|T12|2. (24)

i = 2, j = 1Similarly, for 

σ21 =
4π
P2

c

1
9
|T21|2. (25)

IV.  RESULTS AND DISCUSSION

A.    Results with quadratic potential

Ei

ω ηc(1S ) ηc(2S ) J/ψ(1S )
J/ψ(2S ) Ei = (ω/2)(4n+2l+3)+ c

ω = 0.303 c = 2.61
C = −(3/16)(2µω2)

d =
√

1/2µω C̄ = −(3/4)(c−2m)

To  fit  the  parameters  for  the  quadratic  potential,  we
first take the spin averaged over  to obtain the values of

 and c for  the  set  of  mesons , , ,
and . Here,  [43]. By us-
ing the fitted values of  GeV and  GeV,
the  constant ,  mesons  sizes

,  and  are  obtained.  The

−1

MJ/Ψ
3 C̄

constituent  quark  mass  is  taken  from  Ref.  [44],  and  the
meson  mass  is  obtained  from  [45].  Hence,  the  required
parameters  are d =  1.49  GeV ,  quark  mass m =  1.48
GeV,  =  3.10  GeV, C =  −0.0255  GeV ,  and  =
0.259 GeV. The obtained results are shown below.

Tc

The  results  shown  in Table  1 clearly  indicate  that,
with  an  increase  in ,  the  total  cross  section  gradually
decreases.

B.    Results with Cornell potential
αs

χ2

ηc J/ψ hc χc0

χc1 χc2 σ

−1

MJ/ψ αs bs
2

For the Cornell potential, the parameters  and C are
adjusted  by  minimizing  between  the  masses  taken
from [45]  and  a  spectrum generated  by  using  Cornell  in
the quark potential model for the mesons , , , ,

, and . The other parameters, i.e., string tension, ,
and quark mass, are taken from [46]. For the (linear plus
Coulombic) potential,  the values of the fitted parameters
are d =  0.995  GeV ,  constituent  quark  mass m =  1.93
GeV,  =  3.10 GeV,  =  0.5,  and  =  0.18 GeV .
The results obtained are shown in Table 2.

A graphical  comparison  of  the  scattering  cross  sec-
tion  results  obtained  through  the  Cornell  and  quadratic
potentials, respectively, is shown in Figures 3 and 4.

Table 1.    Total spin averaged cross sections versus selected
values of Tc for quadratic potential.

Total COM energy Tc /GeV) σTotal cross section /mb

0.01 1.33

0.02 1.06

0.03 0.852

0.1 0.158

0.19 0.00886

0.2 0.00570

Table 2.    Total spin averaged cross sections versus selected
values of Tc for Cornell potential.

Total COM energy Tc /GeV σTotal cross section  /mb

0.02 0.15

0.04 0.11

0.1 0.07

0.2 0.03

0.3 0.01

0.5 0

J/ψ-J/ψ scattering cross sections of quadratic and Cornell potentials Chin. Phys. C 45, 023103 (2021)
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C.    Results with Coulombic plus quadratic potential
After a discussion of the Cornell and quadratic poten-

tials, we  also  incorporate  Coulombic  plus  quadratic  po-
tential in our study. It is defined as

vi j =Cr2
i j−

4
3
αs

ri j
+ C̄, (26)

i, j = 1,2, 3̄, 4̄.where 

αs C̄ χ2

ηc J/ψ hc χc0 χc1
χc2

= 1.00 −1

MJ/ψ αs
3

C̄

For Coulombic plus quadratic potential,  the paramet-
ers , C, and  are adjusted by minimizing  between
the masses taken from [42] and a spectrum generated by
using the Coulombic plus quadratic potential in the quark
potential model for the mesons , , , , , and

.  The  quark  mass  is  taken  from  [46]. For  the  Cou-
lombic plus  quadratic  potential,  the  values  of  the  para-
meters  are d  GeV ,  constituent  quark  mass m =
1.93 GeV,  = 3.10 GeV,  = 0.3, C = −0.047 GeV ,
and  = 0.792 GeV. The results are shown in Table 3.

r0 V(r0)

It is observed in Figure 5 that if we replace the linear
confinement  with  the  quadratic  one  in  the  Coulombic
plus linear potential, the magnitudes of the cross sections
lie in between the two, i.e., the quadratic and Cornell po-
tentials.  As  noted  in  our  earlier  work  [47],  the  meson
sizes obtained  via  two  potential  models  show  a  remark-
able difference in magnitude, i.e., the meson size d calcu-
lated  for  the  quadratic  potential  is  approximately  1.5
times  greater  than  its  value  for  the  Cornell  potential.  A
possible explanation could take into account the respect-
ive shapes of the two potentials for any given value of en-
ergy E.  Thus,  for  a  specific  energy E,  the  value  of  the
classical  turning  point  (E = )  is  greater  for  the

V(r)

0.995 −1 −1 d =
√

1
2µω

quadratic potential  than  the  Cornell  potential,  and  bey-
ond the classical turning point (where E < ), the state-
function dampens rapidly. This means that a greater value
of the classical turning point for quadratic potential gives
us a larger rms radius compared to the Cornell potential.
The rms radii for the Cornell and quadratic potentials are

d =  GeV  and d = 1.49 GeV  (where  

[39]), respectively.

φ

0◦ 30◦ 60◦ 90◦

φ

Lastly,  we  can  also  study  the  effect  of  scattering
angles on the aforementioned cross sections for the quad-
ratic potential. The results for different angles (such as 
= , , , )  between  the  two  incoming  waves  can
be  plotted.  However,  it  can  be  shown  that  varying  the
scattering angle has no effect whatsoever on the respect-
ive cross  sections,  i.e.,  the graphs for  different  values  of
scattering  angle  overlap  if  plotted  simultaneously.
Hence,  the  scattering  cross  sections  are  independent  of
the angles between the two incoming waves.

V.  CONCLUSIONS

J/ψ J/ψWe have considered  -  scattering using quad-
ratic  and  Cornell  potentials.  The  qualitative  behavior  of
both  graphs  is  identical,  i.e.,  with  an  increase  in  total
COM energy,  the  scattering  cross  sections  gradually  de-
crease. However, by using quadratic potential, we obtain

Table 3.    Total spin averaged cross sections versus selected
values of Tc for Coulombic plus quadratic potential.

Total COM energy Tc /GeV σTotal cross section  /mb

0.01 0.282

0.02 0.269

0.03 0.244

0.04 0.222

0.1 0.121

0.2 0.0472

0.3 0.0173

0.4 0.00544

0.5 0.00121

 

Fig. 3.    Total spin averaged cross sections versus Tc for Cor-
nell potential.

 

Fig.  4.    Total  spin  averaged  cross  sections  versus Tc for
quadratic potential.

 

Fig. 5.    Total spin averaged cross sections versus Tc for Cou-
lombic plus quadratic potential.
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higher magnitudes  of  scattering  cross  sections.  It  is  per-
tinent  to  mention  that,  throughout  our  discussion,  we
have  reported  our  model-dependent  results  up  to  three
significant figures.

>

At low energies, only S-wave scattering is significant.
The  contribution  to  scattering  cross  sections  from  other
partial waves, with I  0, is negligible. As we are study-
ing the case of S-waves, it can be seen that, as the energy
increases, the  scattering  cross  sections  decrease,  in  ac-
cordance with the experimental results (lattice QCD sim-
ulations) for  other  scatterings.  The  quadratic  confine-
ment is  a  good approximation of  the  more  realistic  Cor-
nell  potential  regarding  the  properties  of  conventional
hadrons. However, this comparison shows that, for tetra-
quark systems,  the  quadratic  confinement  does  not  ap-
pear to be a good approximation of Cornell confinement.
Therefore,  to  find  the  properties  of  four  quark  systems,
such as  the  spectra  of  four  quark states,  it  is  recommen-
ded to  not  use  the  quadratic  confinement  as  a  replace-
ment for the Cornell potential for future studies.

ππ
I = 3/2 Kπ I = 0,1 K,N

As heavy  quarkonia  decay  strongly,  it  is  very  diffi-
cult to directly measure the dissociation cross sections in
hadron  scattering  experiments.  As  we  mentioned  in  our
introduction, the cross sections are calculated using theor-
etical  approaches.  One  such  theoretical  approach,  called
the  quark-interchange  model  [47],  has  been  successfully
supported with light hadron scattering data (I = 2  [31],

  [48],  and   [49]).  While  we  have
retained the basic features of the quark-interchange mod-
el,  our  improvements  to  certain  treatments  in  it  suggest
that  our  calculations may be reasonably sound regarding
heavy hadron-hadron scattering.  However,  a  direct  com-
parison with experimental  data on heavy hadron interac-
tion  is  not  possible.  In  future,  it  may be  useful  to  verify
our  predicted  cross  sections  using  detailed  Monte-Carlo
simulations.  If  our  findings  are  shown  to  be  reasonably
accurate, it  will  be clearly beneficial  to include these in-
sights  in  simulations  involving  hadron  processes  in
heavy-ion collisions  and  other  studies  concerning  tetra-
quark states.
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