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Abstract: We present  the analytic  calculation of  two-loop master  integrals  that  are  relevant  for tW production at
hadron colliders.  We focus  on the  integral  families  with  only  one  massive  propagator.  After  selecting  a  canonical
basis, the differential equations for the master integrals can be transformed into the d ln form. The boundaries are de-
termined by simple direct integrations or regularity conditions at kinematic points without physical singularities. The
analytical results in this work are expressed in terms of multiple polylogarithms, and have been checked via numer-
ical computations.
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I.  INTRODUCTION

Vtb tW

As  the  heaviest  fundamental  particle  in  the  standard
model  (SM),  the  top  quark  has  played  a  special  role  in
testing  the  SM structure.  It  is  also  expected  that  the  top
quark has  a  close  relationship with  new physics  because
its mass is approximately the scale of electro-weak sym-
metry  breaking.  Precise  measurement  of  its  properties  is
an important task for experiments at the large hadron col-
lider (LHC). The single top quark production can be used
to detect  the  electro-weak  coupling  of  top  quarks,  espe-
cially  to  determine  the  Cabibbo-Kobayashi-Maskawa
matrix element . Among the three channels, the  as-
sociated production, of which the leading-order Feynman
diagrams  are  presented  in Fig.  1,  has  the  second  largest
cross section at the LHC, making it experimentally meas-
urable [1-7].

tW

In  comparison  with  experimental  results,  precision
theoretical predictions are indispensable. The fixed-order
corrections  have  been  computed  only  up  to  the  next-to-
leading  order  in  QCD  for  both  the  stable  final  state
[8-11]  or  the  process  with  their  decays  [12].  The  par-
ton shower and soft gluon resummation effects have been
investigated in [13-15] and [16], respectively. Expanding
the  all-order  formula  of  the  threshold  resummation  to
fixed  orders,  the  approximate  next-to-next-to-next-to-
leading order total cross section has been obtained [17-20].

tW−

gg(qq̄)→ tW−b̄
gg(qq̄)→ tt̄

t̄→W−b̄

tt̄
tW(b)

tW

In  the  real  corrections  for  production,  there  is  a
contribution from the  channel, which can
interfere  with  the  top  quark  pair  production ,
followed by the decay . These resonance effects
make the  higher-order  correction excessively  large,  such
that the perturbative expansion is no longer valid. Sever-
al methods  have  been  proposed  in  the  literature  to  ad-
dress  this  problem.  The  Feynman  diagrams  containing
two  top  quark  resonances  can  be  simply  removed  if  the
gauge dependence is negligible [13]. In a gauge invariant
manner, the contribution of the  on-shell production and
decay  can  be  subtracted  from  the  total  cross sec-
tion either globally [9, 21] or locally [13, 14]. The inter-
ference can  also  be  suppressed  by  simply  choosing  spe-
cial cuts on the final-state particles [12, 22-24], such that
there  is  a  clear  definition  of  the  production  channel.
Refer  to  [25] for  a  review  of  these  methods  and  imple-
mentation in MadGraph5_aMC@NLO.

To date, the exact next-to-next-to-leading order QCD
corrections  remain  unavailable,  although  the  next-to-
next-to-leading order N-jettiness soft function of this pro-
cess, one of the ingredients for a full next-to-next-to-lead-
ing  order  differential  calculation  using  a  slicing  method,
has  been  calculated  in  [26, 27].  The  main  bottleneck  is
the  two-loop  virtual  correction,  which  involves  multiple
scales. The objective of this paper is to start the first step

        Received 3 August 2021; Accepted 27 September 2021; Published online 1 November 2021
      * Supported in part by the National Natural Science Foundation of China (11805042, 12005117, 12175048), Taishan Scholar Foundation of Shandong province
(tsqn201909011)
     † E-mail: j.wang@sdu.edu.cn

Chinese Physics C    Vol. 45, No. 12 (2021) 123106

 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-
tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-
lishing Ltd

123106-1



toward addressing this problem.
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The last few decades have witnessed impressive pro-
gress in the understanding of the structure underlying the
scattering  amplitude,  as  well  as  the  calculation  of  multi-
loop Feynman  integrals.  For  a  specific  process  at  a  col-
lider, the  corresponding  Feynman  integrals  can  be  cat-
egorized into different families according to their propag-
ator configurations. Then, the integrals in each family can
be  reduced  to  a  small  set  of  basis  integrals,  which  are
called master integrals, by making use of the algebraic re-
lationships  among them,  such  as  the  identities  generated
via Integration by Parts  (IBP) [28]. The number of  mas-
ter integrals has proven to be finite [29]. This IBP reduc-
tion procedure has been implemented in public computer
programs, such as  [30],  [31],  [32],

 [33],  and  [34], based  on  the  Laporta  al-
gorithm [35]. Consequently, the main objective is to eval-
uate the  master  integrals  either  analytically  or  numeric-
ally;  refer  to  recent  reviews  [36, 37]. For  multi-loop  in-
tegrals with multiple scales, it turns out that the differen-
tial equation is an efficient analytic method [38, 39], as it
avoids the  direct  loop  integration,  which  is  rather  com-
plicated  in  some  cases,  by  transforming  the  problem  to
determining  a  solution  for  a  set  of  partial  differential
equations.  This  method  has  become  widely  adopted  in
many  multi-loop  calculations  after  the  observation  that
the  differential  equations  can  be  significantly  simplified
after selecting a canonical basis [40].

The  remainder  of  this  paper  is  organized  as  follows.
In Sec. II, we present the canonical basis and correspond-
ing  differential  equations.  Subsequently,  we  discuss  the
determination  of  boundary  conditions  and  present  the
analytical  results  in  Sec.  III.  Finally,  the  conclusion  is
presented in Sec. IV. 

II.  THE CANONICAL BASIS AND DIFFEREN-
TIAL EQUATIONS

g(k1)b(k2)→W(k3)t(k4)

k2
1 = 0, k2

2 = 0,
k2

3 = m2
W k2

4 = (k1+ k2− k3)2 = m2
t

The  process  contains  two
massive final states with different masses. For the extern-
al  particles,  there  are  on-shell  conditions 

 and .  The  Mandelstam
variables are defined as 

s = (k1+ k2)2 , t = (k1− k3)2 , u = (k2− k3)2, (1)

s+ t+u = m2
W +m2

twith . For later convenience, we define
dimensionless variables y and z as 

t = ym2
t , mW = zmt . (2)

It is usually believed that the more massive propagat-
ors  a  diagram  involves,  the  more  complicated  the  result
is.  The  two-loop  virtual  corrections  can  have  up  to  four
massive propagators. Therefore, it is natural to divide the
calculation  to  different  parts  according  to  the  number  of
the  massive  propagators.  In  this  study,  we first  focus  on
the  diagrams with  a  single  massive  propagator. Figure  2
presents two  of  such  diagrams  with  a  double  box  topo-
logy,  one  being  planar  and  the  other  non-planar.  We
solely discuss  the  planar  diagram in  the  main  text,  leav-
ing the  non-planar  diagram  to  the  appendix.  The  amp-
litude of the planar diagram has been reduced to ten form
factors in [41].

We  define  the  planar  integral  family,  including  the
master integral presented in Fig. 2(a), in the form of 

In1,n2,...,n9
=

∫
DDq1 DDq2

× 1
Dn1

1 Dn2

2 Dn3

3 Dn4

4 Dn5

5 Dn6

6 Dn7

7 Dn8

8 Dn9

9
, (3)

with 

DDqi =

(
m2

t

)ϵ
iπD/2e−ϵ γE

dDqi , D = 4−2ϵ . (4)

The nine denominators are given by 

D1 = q2
1, D2 = q2

2, D3 = (q1− k1)2,

D4 = (q1+ k2)2, D5 = (q1+q2− k1)2,

D6 = (q2− k1− k2)2,

D7 = (q2− k3)2−m2
t ,

D8 = (q1+ k1+ k2− k3)2−m2
t ,

D9 = (q2− k1)2.

k4

D8,D9

q1 q2

D9

Owing to  momentum conservation,  is  not  required  in
the  denominators.  The  first  seven  denominators  can  be
read  directly  from Fig.  2(a).  The  last  two  are  added  to
form a complete basis for all  Lorentz scalars that can be
constructed from two loop momenta and three independ-
ent  external  momenta.  The  denominators  solely
appear  with  non-negative  powers.  They take  a  form that
vanishes  when  the  loop  momentum,  or ,  becomes
soft, and therefore they are less divergent. In addition, the
choice  of  can  be  justified  following  the  method  in
[42].  If  we  put  the  four  massless  propagators  containing

 

gb→ tWFig. 1.    Leading order Feynman diagrams for .
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q1  on-shell, then we obtain a Jacobian 

J =
1

(k1+ k2)2(q2− k1)2 . (5)

q2

D9
q2

From the one-loop calculation, we know that the remain-
ing three uncut propagators containing  already form an
MI in the ϵ-form (up to a factor depending on the extern-
al momenta). Therefore, a  in the numerator would just
cancel the hidden  propagator in the Jacobian.

FIREMaking  use  of  the  package,  we  determine  that
the integrals in the planar family can be reduced to a basis
of 31  MIs  after  considering  the  symmetries  between  in-
tegrals. We first select the MIs in such a form that the dif-
ferential  equations  have  coefficients  linear  in ϵ.  These
MIs are given by 

M1 = ϵ
2 I0,0,0,1,2,0,2,0,0 , M2 = ϵ

2 I0,0,1,0,2,0,2,0,0 ,

M3 = ϵ
2 I0,0,2,0,2,0,1,0,0 , M4 = ϵ

2 I0,0,1,0,2,2,0,0,0 ,

M5 = ϵ
3 I0,0,1,0,2,1,1,0,0 , M6 = ϵ

2 I0,0,1,2,0,0,2,0,0 ,

M7 = ϵ
3 I0,0,1,1,1,0,2,0,0 , M8 = ϵ

2 I0,0,1,1,1,0,3,0,0 ,

M9 = ϵ
2 I0,0,2,1,1,0,2,0,0 , M10 = ϵ

3 I0,1,0,1,2,0,1,0,0 ,

M11 = ϵ
2 I0,1,0,1,2,0,2,0,0 , M12 = ϵ

2 I0,1,1,2,0,0,2,0,0 ,

M13 = ϵ
2 I0,1,1,2,0,2,0,0,0 , M14 = ϵ

3 I0,1,1,2,0,1,1,0,0 ,

M15 = ϵ
4 I0,1,1,1,1,0,1,0,0 , M16 = ϵ

2 I1,0,0,0,2,0,2,0,0 ,

M17 = ϵ
2 I2,0,0,0,2,0,1,0,0 , M18 = ϵ

4 I1,0,1,0,1,1,1,0,0 ,

M19 = ϵ
3 I1,0,1,0,1,1,2,0,0 , M20 = ϵ

3 I1,0,1,1,1,0,2,0,0 ,

M21 = ϵ
2 I1,0,1,1,1,0,3,0,0 , M22 = ϵ

3 I1,1,0,0,2,0,1,0,0 ,

M23 = ϵ
3 I1,1,0,0,2,1,0,0,0 , M24 = ϵ

3(1−2ϵ)I1,1,0,0,1,1,1,0,0 ,

M25 = ϵ
3 I1,1,0,0,2,1,1,0,0 , M26 = ϵ

4 I1,1,0,1,1,0,1,0,0 ,

M27 = ϵ
3 I1,1,0,1,1,0,2,0,0 , M28 = ϵ

4 I1,1,1,1,1,0,1,0,0 ,

M29 = ϵ
4 I1,1,1,1,1,1,1,0,0 , M30 = ϵ

4 I1,1,1,1,1,1,1,0,−1 ,

M31 = ϵ
4 I1,1,1,1,1,1,1,−1,0 . (6)

The  corresponding  topology  diagrams  are  displayed
in Fig. 3.

Subsequently,  we  transform  the  MIs  to  a  canonical
basis  using  a  method  similar  to  that  described  in  [43],

F2 F3

starting  from the  lower  sectors  (with  fewer  propagators)
to higher  sectors  (with  more  propagators).  The  main  lo-
gic is to consider the ϵ parts in the differential equations
as perturbations. After solving the differential equation in
four dimensions,  i.e.,  omitting  the  perturbations,  we  ob-
tain the dominant part  of the MIs.  Then the full  solution
can be obtained by using the variation of constants meth-
od.  The  coefficient  functions  varied  from  the  constants
satisfy  the  canonical  form  of  differential  equations.  For
the integrals in the same sector, we have selected a basis,
such that the differential equations vanish in four dimen-
sional  spacetime.  For  example,  and  belong to  the
same sector. They satisfy differential equations 

dM2

dz
=− 2(1+ ϵ)

z
M2−

2ϵ
z

M3,

dM3

dz
=

(
4(1+ ϵ)

z
− 2(1+ ϵ)

z−1
− 2(1+ ϵ)

z+1

)
M2

+

(
4ϵ
z
− 1+4ϵ

z−1
− 1+4ϵ

z+1

)
M3. (7)

ϵ = 0Solving the above equations at ,  we deduce that the
differential equations for the new basis 

F2 = m2
W M2 ,

F3 = (m2
W −m2

t ) M3−2m2
t M2, (8)

ϵ = 0 4−2ϵare  vanishing  at .  Going  back  to  the  dimen-
sion, we have 

dF2

dz
= ϵ

(
2F2

z
− 2F2+F3

z−1
− 2F2+F3

z+1

)
,

dF3

dz
= ϵ

(
8F2

z
−2

2F2+F3

z−1
−2

2F2+F3

z+1

)
, (9)

d ln

where  the  parameter ϵ of the  spacetime  dimension  ap-
pears only as a multiplicative factor on the right hand side
of the differential equations, which is called the canonic-
al or  form [40].

Accordingly, we obtain the following MIs that satisfy
canonical differential equations.

gb→Wt

k2
3 = m2

W , k2
4 = m2

t k1, k2 k3, k4

Fig. 2.    (color online) Planar (a) and non-planar (b) diagrams of the two-loop master integrals for  with one massive propagat-
or. The massive external momenta are defined by , and we consider that  are ingoing while  are outgoing.
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F1 = m2
t M1 , F2 = m2

W M2 , F3 = (m2
W −m2

t ) M3−2m2
t M2 , F4 = (−s) M4 , F5 = r1 M5 , F6 = (−s) M6 ,

F7 = r1 M7 , F8 = m2
t r1 M8 , F9 = m2

W s M9+m2
t (m2

t −m2
W − s) M8+

3
2

(m2
t −m2

W − s) M7 ,

F10 = r1 M10 , F11 = m2
t (−s) M11−

3
2

(m2
t −m2

W + s) M10 , F12 = m2
W s M12 , F13 = s2 M13 ,

F14 = (−s)r1 M14 , F15 = r1 M15 , F16 = tM16 , F17 = (t−m2
t ) M17−2m2

t M16 , F18 = (m2
W − s− t) M18 ,

F19 = m2
t (−s) M19 , F20 = t (−s)M20 , F21 = m2

t (−s)
(
(t−m2

t )M21−M20
)
, F22 = (t−m2

W ) M22 ,

F23 = (−s) M23 , F24 = r1 M24 , F25 = (t−m2
t )(−s) M25 , F26 = (m2

t − s− t) M26 ,

F27 = − (m2
W t−m2

t (s+ t+m2
W )+m4

t ) M27 , F28 = (t−m2
W )(−s) M28 , F29 = −(t−m2

t )s2 M29 , F30 = (−s)r1 M30 ,

F31 = s2 (M31+M14)+ s
(
−M15−M10+2M7−

3
2

M5+3m2
t M8

)
+ (s+ t−m2

W )
(
s M25−

1
4

M17

)
−

s+ t−m2
W

4(t−m2
t )

[2(m2
t +2m2

W ) M2

−3s M4+ (m2
t −m2

W )M3−2(2t+m2
t )M16+12(s+ t−m2

W )M18+8m2
t s M19].

(10)

s, t,m2
W ,m

2
t

r1 ≡
√

s− (mt −mW )2
√

s− (mt +mW )2

F5, F7

The combination  coefficients  are  generally  just  ra-
tional  functions  in ,  except  the  square  root
product  in  the  basis
integrals such as . This square root also appears in
the differential equations. It is necessary to first rational-
ize the  square  root  before  solving  the  differential  equa-

tions in terms of multiple polylogarithms. To achieve this
objective, we  perform  the  following  change  of  integra-
tion variable, 

s = m2
t

(x+ z)(1+ xz)
x

(11)

M1 M6M2 M4 M5M3

M7 M8 M9 M10 M11 M12

M13 M14 M15 M17M16 M18

M20M19 M21 M22 M23 M24

M25 M28M26 M27
M29,30,31

1

2

3

4

Fig. 3.    (color online) Master integrals in the planar family. The thin and thick lines represent massless and massive particles, respect-
ively. The red line in the final state denotes W. Each block dot indicates one additional power of the corresponding propagator. Numer-
ators are not shown explicitly in the diagram and could be found in the text.
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−1 < x < 1 r1 = (1− x)(1+ x)z/x r1

mW

z = 0
F = (F1, . . . ,F31)

with  so that .  Note that 
is negative (positive) when s is negative (positive). Here,
we also select  or z as a variable because it is easy to
determine  the  boundary  conditions  for  some  integrals  at

.  Hence,  the  differential  equations  for
 can be written as 

d F(x,y,z;ϵ) = ϵ (d Ã) F(x,y,z;ϵ), (12)

with 

dÃ =
15∑
i=1

Rid ln(li), (13)

Ri
li

where  are  rational  matrices.  Their  explicit  forms  are
provided in an auxiliary file. The arguments  of this d ln
form, which contain  the  entire  dependence  of  the  differ-
ential  equations  on the  kinematics,  are  referred to  as  the
alphabet, and they consist of the following letters: 

l1 = x , l2 = x+1 , l3 = x−1 , l4 = x+ z ,

l5 = xz+1 , l6 = x y+ z , l7 = xz+ y , l8 = y ,

l9 = y−1 , l10 = y− z2 , l11 = z , l12 = z2−1 ,

l13 = x2z+ xy+ x+ z , l14 = x2z+ x
(
y+ z2

)
+ z ,

l15 = x2z+ x
(
−yz2+ y+2z2

)
+ z , l16 = x2z+ xy+ z ,

l17 = x2z3+ xy
(
z2−1

)
+2xz2+ z3.

(14)

l16 l17Notice  that  the  last  two  letters,  and , only  ap-
pear  for  the  non-planar  integral  family  discussed  in  the
appendix.

G(x) ≡ 1

Because the  roots  of  the  letters  above  are  purely  al-
gebraic, the solutions of the differential equations can be
directly  expressed  in  terms  of  multiple  polylogarithms
[44], which are defined as  and 

Ga1,a2,...,an
(x) ≡

∫ x

0

dt
t−a1

Ga2,...,an
(t) , (15)

 

G−→
0 n

(x) ≡ 1
n!

lnn x . (16)

(a1,a2, . . . ,an)
weight

The length n of the vector  is regarded as the
transcendental  of multiple polylogarithms. 

III.  BOUNDARY CONDITIONS AND ANALYTIC-
AL RESULTS

To  obtain  the  analytical  solutions  of  the  differential
equations  for  the  canonical  basis  presented  above,  we
need to fix the boundary conditions first.

F1The base  is directly obtained by integration, which
can also be found in [45]. 

F1 = −
1
4
− ϵ2 5π2

24
− ϵ3 11ζ(3)

6
− ϵ4 101π4

480
+O(ϵ5). (17)

mW = 0 (z = 0)

z = 0

1/z z = 0
F2|z=0 = 0

F9 F12 z = 0

The loop integrals in the planar family do not have a
branch  cut  at . Therefore,  the  correspond-
ing  canonical  differential  equations  should  not  have  a
pole at . This regularity condition provides useful in-
formation about the boundaries. As can be observed from
Eq.  (9),  the  coefficient  of  should  vanish  at ,
which  means .  Owing  to  the  same  reason,  the
bases  and , also vanish at , and 

F11

∣∣∣∣
z=0
=

(
F1−

F4

2

) ∣∣∣∣∣
z=0
. (18)

F3 z = 0The boundary condition for  at  is calculated dir-
ectly, 

F3

∣∣∣∣
z=0
= 1+ ϵ2

π2

2
− ϵ3 8ζ(3)

3
+ ϵ4

7π4

40
+O(ϵ5). (19)

{F4,F23}

s = m2
t

z = 0, x = 1

In the bases , the final-state W boson and top
quark can be considered a single particle. All the propag-
ators are massless, and they appear in the massless double
box diagrams. Here we independently derive their values
at ,  which  can  be  used  as  the  boundary  at

. 

F4

∣∣∣∣
s=m2

t

= −1−2ϵ iπ+ ϵ2
13π2

6
+ ϵ3

32ζ(3)+5iπ3

3

+ ϵ4
(
−101π4

120
+

64iπζ(3)
3

)
+O(ϵ5),

F23

∣∣∣∣
s=m2

t

=
1
4
+ ϵ

iπ
2
− ϵ2 11π2

24
− ϵ3

(
13ζ(3)

6
+

iπ3

4

)
+ ϵ4

(
79π4

1440
− 13iπζ(3)

3

)
+O(ϵ5).

{F6,F13}The bases  factorize to a product of two one-
loop integrals, and can be computed easily, 

F6

∣∣∣∣
s=m2

t

= 1+ ϵ iπ− ϵ2 π
2

2
− ϵ3 16ζ(3)+ iπ3

3

+ ϵ4
(
π4

120
− 8iπζ(3)

3

)
+O(ϵ5),

F13

∣∣∣∣
s=m2

t

= 1+2ϵ iπ− ϵ2 13π2

6
− ϵ3 14ζ(3)+5iπ3

3

+ ϵ4
(

113π4

120
− 28iπζ(3)

3

)
+O(ϵ5) .
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{F5,F7,F8,F10,F14,F15,F24,F30}
r1

x = 1

The  integrals  of  are
multiplied  by  in  the  basis,  and  thus  they  vanish  at

.
{F16,F17} {F2,F3}
m2

W y = 0
{F2,F3} z = 0

The bases  are the same as  after re-
placing t by .  Hence,  their  boundaries  at  are
known from  at .

F18,

F22, F26, F27 u = m2
t (l13 = 0), t = m2

W (y = z2),
u = m2

W (l14 = 0), m2
W t−m2

t (s+ t+m2
W )+m4

t = 0 (l15 = 0)

From the definitions of the bases,  we know that 
 vanish  at 

, re-
spectively.

{F19,F20,F21,F25,F28,

F29,F31}
ut = m2

t m2
W (x = −y

z
)

The  boundary  conditions  of 
 are determined from the regularity conditions at

.
With  the  discussion  above,  we  determine  all  the

boundary  conditions  for  the  planar  family.  Accordingly,
the analytic results of the basis from the canonical differ-
ential equations can be obtained directly. We provide the
results of the MIs in electronic form in the ancillary files
attached to the arXiv submission of the paper. Below we
express the first two terms in the expansion of ϵ. 

F1 = −
1
4
+ ϵ ·0+O(ϵ2) , F2 = 0− ϵ · ln

(
1− z2

)
+O(ϵ2) ,

F3 = 1− ϵ ·2ln
(
1− z2

)
+O(ϵ2) ,

F4 = −1+ ϵ ·2ln
(

(x+ z)(xz+1)
x

)
−2iπ+O(ϵ2) ,

F5 = 0− ϵ ·0+O(ϵ2) ,

F6 = 1− ϵ · ln
(

(x+ z)(xz+1)
x

)
+ iπ+O(ϵ2) ,

F7 = 0+ ϵ ·0+O(ϵ2) , F8 = 0+ ϵ ·0+O(ϵ2) ,

F9 = 0− ϵ · ln
(
1− z2

)
+O(ϵ2) , F10 = 0+ ϵ ·0+O(ϵ2) ,

F11 =
1
4
+ ϵ ·

[
− ln

(
(x+ z)(xz+1)

x

)
+ ln

(
1− z2

)
+ iπ

]
+O(ϵ2) ,

F12 = 0− ϵ · ln
(
1− z2

)
+O(ϵ2) ,

F13 = 1+ ϵ ·
[
−2ln

(
(x+ z)(xz+1)

x

)
+2iπ

]
+O(ϵ2) ,

F14 = 0+ ϵ ·0+O(ϵ2) ,

F15 = 0+ ϵ ·0+O(ϵ2) , F16 = 0− ϵ · ln(1− y)+O(ϵ2) ,

F17 = 1− ϵ ·2ln(1− y)+O(ϵ2) , F18 = 0+ ϵ ·0+O(ϵ2) ,

F19 = −
1
6
+ ϵ ·

[
1
2

ln
(

(x+ z)(xz+1)
x

)
− 1

3
ln(1− y)− iπ

2

]
+O(ϵ2) ,

F20 = 0− ϵ · ln(1− y)+O(ϵ2) ,

F21 =
5
8
+ ϵ ·

[
−1

2
ln

(
(x+ z)(xz+1)

x

)
− ln(1− y)

+
1
2

ln
(
1− z2

)
+

iπ
2

]
+O(ϵ2) ,

 

F22 = 0+ ϵ ·
[
1
2

ln(1− y)− 1
2

ln
(
1− z2

)]
+O(ϵ2) ,

F23 =
1
4
+ ϵ ·

[
−1

2
ln

(
(x+ z)(xz+1)

x

)
+

iπ
2

]
+O(ϵ2) ,

F24 = 0+ ϵ ·0+O(ϵ2) ,

F25 =
5

12
+ ϵ ·

[
−1

2
ln

(
(x+ z)(xz+1)

x

)
− 7

6
ln(1− y)

+
1
2

ln
(
1− z2

)
+

iπ
2

]
+O(ϵ2) ,

F26 = 0+ ϵ ·0+O(ϵ2) , F27 = 0+ ϵ ·0+O(ϵ2) ,

F28 = 0+ ϵ ·
[
1
2

ln(1− y)− 1
2

ln
(
1− z2

)]
+O(ϵ2) ,

F29 = −
11
24
+ ϵ ·

[
1
2

ln
(

(x+ z)(xz+1)
x

)
+

4
3

ln(1− y)

−1
2

ln
(
1− z2

)
− iπ

2

]
+O(ϵ2) ,

F30 = 0+ ϵ ·0+O(ϵ2) , F31 =
1

24
− ϵ · 1

6
ln(1− y)+O(ϵ2) .

(20)

mW

mW = mt z = 1

gg→ tt̄
z = 1

F1
F2 z = 1

m2
W = m2

t
F2|z=1 , F1

z2 < 1 z→ 1 (1− z)nϵ

In  our  calculation,  we  have  varied  to  select  a
proper boundary condition. A question on the possibility
of  taking  the  boundary ,  equivalently ,  can
be asked.  If  the  answer is  yes,  then all  the  results  of  the
two-loop integrals  can be adopted for .  However,
this  is  non-trivial  because  is  the  point  where  a
branch  cut  starts.  For  example,  we  can  take  as  a
boundary for  at  because they are the same if set-
ting  in  the  integrands.  However,  we  see  from
the above analytic results expanded in ϵ that .
The  reason  is  that  the  analytic  results  are  valid  only  for

. In the  limit, the  terms cannot be ex-
panded  in  a  series  of ϵ for  the  master  integrals.  Instead,
the differential equation in Eq. (9) should be solved with
full ϵ dependence, 

F2 = c1(1− z)−4ϵ − c2, F3 = 2c1(1− z)−4ϵ +2c2. (21)

Comparing these with the analytic results in Eq. (20),
we deduce that 

c1 =
1
4
− ϵ ln2+O(ϵ2), c2 =

1
4
+O(ϵ2). (22)

(1− z)−4ϵ → 0 z = 1
F2|z=1 = F1 z = 1

F2 F3 −c2 2c2
c1

z = 1

Subsequently,  taking  at ,  we  infer
that . If the boundary values at  are adop-
ted  for  and ,  which  are  and ,  respectively,
the  information is still required to obtain the results at
general z. However,  this  information  can  only  be  ob-
tained at a point other than .

All the  analytic  results  are  real  in  the  Euclidean  re-
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(s < 0, t < 0, u < 0)
s > (mt +mW )2, t0 < t < t1,

0 < m2
W < m2

t

gions .  In  this  work  we  are  interested
in  the  physical  region  with 

,1) where 

t0 ≡
m2

t +m2
W − s− r1

2
, t1 ≡

m2
t +m2

W − s+ r1

2
. (23)

0 < x < 1, −2z/x < y < −2zx,
0 < z < 1

This region corresponds to 
.  The analytic continuation to this region can be

performed by assigning s a  numerically  small  imaginary

iε (ε > 0) s→ s+ iε

GiNaC

part ,  i.e., .  This  prescription  provides
correct numerical results in both the Euclidean and phys-
ical regions, when the multiple polylogarithms are evalu-
ated using  [46, 47].

FIESTA

(s = 10, t = −2, m2
W =

1
4
,

mt = 1)

All the analytical results have been checked with the
numerical  package  [48],  and  they  agree  within
the computation errors in both Euclidean and physical re-
gions. For  example,  we  present  the  results  of  two integ-
rals at a physical kinematic point 

,

Ianalytic
1,0,1,0,1,1,1,0,0 =

0.00475421+1.48022009i
ϵ

+ (−5.24410651+1.22399295i), (24)
 

IFIESTA
1,0,1,0,1,1,1,0,0 =

0.004754+1.48022i±0.000056(1+ i)
ϵ

+ (−5.24410+1.22399i) ± (0.000416+0.000415i) , (25)

and
 

Ianalytic
1,1,1,1,1,0,1,0,0 =

0.0308065
ϵ3

+
−0.06040731

ϵ2
+

0.22341495−0.06475586i
ϵ

+ (−0.26302494+0.62749975i), (26)

 

IFIESTA
1,1,1,1,1,0,1,0,0 =

0.030807±0.000005
ϵ3

+
−0.060407±0.000027

ϵ2
+

0.223415−0.064756i± (0.000116+0.000124i)
ϵ

+ (−0.263019+0.627484i) ± (0.000392+0.000395i).
(27)

 

IV.  CONCLUSION

tW
We  analytically  calculate  two-loop  master  integrals

for  hadronic  productions  that  solely  contain  one
massive propagator. After choosing a canonical basis, the
differential  equations  for  the  master  integrals  can  be
transformed  into  the dln form.  The  boundaries  are  de-
termined by simple direct integrations or regularity condi-
tions  at  kinematic  points  without  physical  singularities.
The analytical results in this study are expressed in terms
of  multiple  polylogarithms,  and  have  been  checked  via
numerical computations. A significant amount of work is
still required in the future to obtain the complete two-loop
virtual corrections in this channel. 

APPENDIX: RESULTS OF THE NON-PLANAR IN-
TEGRAL FAMILY

For  the  master  integral  presented  in Fig.  2(b),  we
define the non-planar integral family as
 

Jn1,n2,...,n9
=

∫
DDq1 DDq2

× 1
Pn1

1 Pn2

2 Pn3

3 Pn4

4 Pn5

5 Pn6

6 Pn7

7 Pn8

8 Pn9

9
(A1)

with the denominators

P1 = q2
1, P2 = (q1−q2)2, P3 = q2

2, P4 = (q1+ k1)2, P5 = (q1−q2− k2)2, P6 = (q2+ k1+ k2)2,

P7 = (q2+ k1+ k2− k3)2−m2
t , P8 = (q1− k3)2, P9 = (q2+ k1)2.

Analytic two-loop master integrals for tW production at hadron colliders: I Chin. Phys. C 45, 123106 (2021)

0 < s < (mt −mW )2, t1 < t < t0, 0 < m2
W < m2

t t→Wbg1) Notice that the physical region with  corresponds to top quark decay , and our prescription for the analyt-
ic continuation is applicable in this case.
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The canonical bases are selected to be
 

B1 = m2
t N1 , B2 = m2

W N2 , B3 = (m2
W −m2

t ) N3−2m2
t N2 , B4 = (−s) N4 , B5 = r1 N5 , B6 = (m2

W +m2
t − s− t) N6 ,

B7 = (m2
W − s− t) N7−2m2

t N6 , B8 = (m2
W − s− t) N8 , B9 = s N9 , B10 = t N10 , B11 = (t−m2

t ) N11−2m2
t N10 ,

B12 = (t−m2
W ) N12 , B13 = r1 N13 , B14 = m2

t (−s) N14−
3
2

(m2
t −m2

W + s) N13 , B15 = r1 N15 , B16 = s(s+ t−m2
W ) N16 ,

B17 = (t−m2
t ) N17 , B18 = m2

t (−s) N18 , B19 = r1 N19 , B20 = (t−m2
t )(−s) N20 , B21 = (m2

W − s− t) N21 ,

B22 = m2
t (−s) N22 , B23 = (m2

t − s− t) N23 , B24 = −(t m2
W − (m2

W + s+ t)m2
t +m4

t ) N24 , B25 = (t−m2
W ) N25 ,

B26 = (m2
W (s+ t−m2

W )−m2
t (t−m2

W )) N26 , B27 = (−s) N27 , B28 = (t−m2
t )(m2

W − s− t) N28 , B29 = (m2
W −m2

t )s N29 ,

B30 = (t−m2
W ) N30+ (m2

W − s− t) N27 , B31 = s2 N31 ,

B32 = (s+ t−m2
W )

(
s2 N32+ s N33− s N29+

1
4

(s+ t−m2
t )N28+

N11

8

)
+

(s+ t−m2
W )

(t−m2
t )

(3
2

N21
(
−m2

W + s+ t
)
+N22sm2

t

+
1
4

N2
(
m2

t +2m2
W

)
+

1
8

N3
(
m2

t −m2
W

)
− 1

4
N10

(
m2

t +2t
)
− 3N4s

8

)
+

1
4ϵ +1

[
− 1

8
(2N28s+N7+N11)

(
−m2

W + s+ t
)

+N18sm2
t +

1
4

N6
[
2
(
−m2

W + s+ t
)
−3m2

t

]
+

3
2

N17
(
m2

t − t
)

+
s+ t−m2

W

t−m2
t

(
−3

2
N21

(
−m2

W + s+ t
)
+N22(−s)m2

t +
1
4

N10
(
m2

t +2t
))

+
s+m2

t −m2
W

t−m2
t

(
−1

4
N2

(
m2

t +2m2
W

)
+

1
8

N3
(
m2

W −m2
t

)
+

3N4s
8

)]
,

B33 = (t−m2
t )(−s) N33 ,

B34 = r1

[
N34+ sN33−N30−

1
4

(s+ t−m2
W )N28+

1
2

N17−
1

12
N11+

1
t−m2

t

(
m2

t

4
N1−

m2
t +2m2

W

4
N2−

m2
t −m2

W

8
N3

+
3 s
8

N4+
2t+m2

t

6
N10−

3
2

(s+ t−m2
W )N21−m2

t sN22

)]
.

(A2)

with
 

N1 = ϵ
2 J1,2,0,0,0,0,2,0,0 , N2 = ϵ

2 J0,0,0,1,2,0,2,0,0 , N3 = ϵ
2 J0,0,0,2,2,0,1,0,0 , N4 = ϵ

2 J0,0,1,2,2,0,0,0,0 ,

N5 =;ϵ3 J0,0,1,1,2,0,1,0,0 , N6 = ϵ
2 J0,1,0,2,0,0,2,0,0 , N7 = ϵ

2 J0,2,0,2,0,0,1,0,0 , N8 = ϵ
3 J0,1,0,2,0,1,1,0,0 ,

N9 = ϵ
3 J0,1,1,2,0,1,0,0,0 , N10 = ϵ

2 J1,0,0,0,2,0,2,0,0 , N11 = ϵ
2 J2,0,0,0,2,0,1,0,0 , N12 = ϵ

3 J1,0,0,0,2,1,1,0,0 ,

N13 = ϵ
3 J1,2,0,0,0,1,1,0,0 , N14 = ϵ

2 J1,2,0,0,0,1,2,0,0 , N15 = ϵ
3(1−2ϵ) J0,1,1,1,0,1,1,0,0 , N16 = ϵ

3 J0,1,1,2,0,1,1,0,0 ,

N17 = ϵ
4 J0,1,1,1,1,0,1,0,0 , N18 = ϵ

3 J0,1,1,1,1,0,2,0,0 , N19 = ϵ
3(1−2ϵ) J1,0,1,0,1,1,1,0,0 , N20 = ϵ

3 J1,0,1,0,2,1,1,0,0 ,

N21 = ϵ
4 J1,0,1,1,1,0,1,0,0 , N22 = ϵ

3 J1,0,1,1,1,0,2,0,0 , N23 = ϵ
4 J1,1,0,0,1,1,1,0,0 , N24 = ϵ

3 J1,1,0,0,1,1,2,0,0 ,

N25 = ϵ
4 J1,1,0,1,0,1,1,0,0 , N26 = ϵ

3 J1,1,0,1,0,1,2,0,0 , N27 = ϵ
4 J1,1,0,1,1,0,1,0,0 , N28 = ϵ

3 J1,1,0,1,1,0,2,0,0 ,

N29 = ϵ
4 J1,1,0,1,1,1,1,0,0 , N30 = ϵ

4 J1,1,0,1,1,1,1,0,−1 , N31 = ϵ
4 J1,1,1,1,1,1,0,0,0 , N32 = ϵ

4 J1,1,1,1,1,1,1,0,0 ,

N33 = ϵ
4 J1,1,1,1,1,1,0,0,−1 , N34 = ϵ

4 J1,1,1,1,1,1,1,0,−2 . (A3)

B =
(B1, . . . ,B34)

The  canonical  differential  equations  for 
 can be written as

 

d B(x,y,z;ϵ) = ϵ (dC̃) B(x,y,z;ϵ), (A4)

with
 

dC̃ =
17∑
i=1

Qid ln(li), (A5)

Qiwhere  are rational matrices.
The non-planar and planar diagrams share some com-

mon integrals. For the non-planar family, we deduce that
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B1 = F1 , B2 = F2 , B3 = F3 , B4 = F4 , B5 = F5 ,

B9 = −F23 , B10 = F16 , B11 = F17 , B12 = F22 , B13 = F10 ,

B14 = F11 , B19 = F24 , B20 = F25 , B23 = F26 , B24 = F27 .
(A6)

B6 u = 0(l16 = 0)
B7 u = 0 B3

mW = 0 B8 u = m2
W

{B15,B34} s = (mt +mW )2 B17

Regarding  the  other  unknown  integrals  in  the  non-
planar  family,  their  boundary  conditions  are  obtained  as
follows.  The  base  vanishes  at ,  and  the
boundary  conditions  for  at  are  equal  to  at

.  The  base  vanishes  at .  The  bases
 vanish at . The base  vanishes

t = m2
t B21 u = m2

t
B27 s = 0 B30 u = m2

W
B26 m2

W (s+ t−m2
W )−m2

t (t−
m2

W ) = 0 l17 = 0 B31

{B16,B18,B22,
B25,B28,B29,B32,B33}

ut = m2
t m2

W

GiNaC

at . The base  equals to zero at . The base
 is vanishing at . The base  is zero at .

The  base  equals  to  zero  at 
,  i.e. .  The  result  of  can  be  found  in

Ref. [49]. The boundary conditions for bases 
 are  determined  from  the  regularity

conditions  at . The  analytical  results  are  ex-
pressed in terms of multiple polylogarithms. We provide
them  in  the  ancillary  file,  which  can  be  evaluated  using

. In the physical region, s and t need to be assigned
to numerically small but positive imaginary parts.
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