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Dynamic phase transition of charged dilaton black holes”
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Abstract: The dynamic phase transition of charged dilaton black holes is investigated in this paper. The Gibbs free
energy landscape is introduced, and the corresponding Gy, is calculated for the dilaton black hole. We numerically
solve the Fokker-Planck equation constrained by only the reflecting boundary condition. The effects of dilaton grav-
ity on the probabilistic evolution of dilaton black holes are explored. Firstly, the horizon radius difference between a
large dilaton black hole and a small dilaton black hole increases with the parameter a. Secondly, with increasing «,
the system needs much more time to achieve a stationary distribution. Finally, the values attained for p(r,#) and
p(rs, 1) vary with @. Additionally, by resolving the Fokker-Planck equation constrained by both the reflecting bound-
ary condition and absorbing boundary condition, we investigate the first passage process of dilaton black holes. The
initial peak decays more slowly with increasinge, which can also be observed via the slowing decay of X(¢) (the sum
of the probability of the black hole system not having completed a first passage by time #). Moreover, the time cor-
responding to the single peak of the first passage time distribution is found to increase with the parameter «. Consid-
ering these observations, the dilaton field is found to slow down the dynamic phase transition process between a

large black hole and a small black hole.
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I. INTRODUCTION

Dilaton gravity [1-3] has received considerable atten-
tion within the community for its great physical signific-
ance. Firstly, it serves as the low energy limit of string
theory, as one can recover Finstein gravity with a non-
minimally coupled dilaton field and other fields in the
low energy limit. Secondly, its action consists of one or
more Liouville-type potentials. These potentials can be
created by spacetime supersymmetry breaking in ten di-
mensions. Additionally, it has been reported that the
dilaton field may affect both the casual structure and ther-
modynamic properties of black holes. Due to the physic-
al importance of this, various black hole solutions have
been presented and their thermodynamic properties dis-
cussed [1-56]. Interestingly, it was also put forward in
Refs. [14-16] that the cosmological constant is found to
be coupled to Liouville-type potential in the dilaton the-
ory.

Among these solutions, a class of (n+ 1)-dimensional
topological black hole solutions were obtained [26] in
Einstein-Maxwell-dilaton theory, which are neither
asymptotically flat nor anti-de Sitter. The thermodynam-
ic properties of these black holes were carefully analyzed.
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Moreover, the effect of the dilaton field on thermal stabil-
ity was detailed [26]. P—V criticality was investigated in
Refs. [27, 28]. Provided the coupling constant of dilaton
gravity is less than one, the critical values of relevant
physical quantities are physical [28]. Ref. [29] investig-
ated phase transitions and thermodynamic geometry,
while Ref. [30] provided further details on the existence
of a zeroth-order phase transition. The two point correla-
tion function and the entanglement entropy of dilaton
black holes were studied by one of the authors [31],
providing an alternative perspective to observe the critic-
al phenomena in dilaton black holes. Additionally, with
Ruppeiner geometry, Ref. [32] attempted to provide a mi-
croscopic explanation for the phase transitions of charged
dilatonic black holes.

Although many attempts have been made, the dynam-
ic phase transition of this typical class of dilaton black
hole solutions proposed in Ref. [26] and the related kinet-
ics remain inadequately explained. Therefore, the motiva-
tion for this paper was to obtain this “missing puzzle
piece” concerning the phase transition of charged dilaton
black holes. The dynamic phase transition of black holes
has emerged as a popular topic since the recent creative
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works reporting the kinetics of the Hawing-Page phase
transition [57] and the van der Waals-like phase trans-
ition [58]. For the latter, the transition between the large
black hole and the small black hole due to thermal fluctu-
ation can be viewed as stochastic process, which can then
be analyzed via the Fokker-Planck equation [58]. Sub-
sequently, dynamic phase transitions of Gauss-Bonnet
black holes [59-61] and charged AdS black holes sur-
rounded by quinteness dark energy [62] were investig-
ated. Furthermore, it was suggested in a recent study [63]
that the turnover of the kinetics can be used to investig-
ate the microstructure of black holes. It is of significant
interest to generalize these studies to dilaton black holes
considering the physical importance of dilaton gravity, as
stated in the first paragraph. It is expected that this will
reveal novel features of the dynamic phase transition of
black holes.

This paper is organized as follows. Sec. II is devoted
to a short review of the thermodynamic properties of
charged dilaton black holes. Sec. III investigates the dy-
namic phase transition of charged dilaton black holes.
The first passage process for the phase transition of
charged dilaton black holes is explored in Sec. IV. Fi-
nally, conclusions are presented in Sec. V.

II. A SHORT REVIEW ON THERMODYNAMIC
PROPERTIES OF CHARGED DILATON
BLACK HOLES

The Einstein-Maxwell-Dilaton action in (n+ 1)-di-
mensional spacetime reads [§]

1

S =—o f d"x \/—_g(R— i(Vc1>)2—V(c1>)
167 n—1

_ e_4aq)/(n_1)F'quﬂy), (1)

where R, ®, and F,, denote the Ricci scalar curvature,
dilaton field, and electromagnetic field tensor, respect-
ively. The parameter a describes the strength of the coup-
ling between the electromagnetic and dilaton fields.

To obtain a solution, one must adopt a specific form
of the potential of the dilaton field V(®); in this case,
V(D) =2A0e*® +2Ae%? [8, 17, 18, 26]. Note that if the
power-law Maxwell field is considered [22], an addition-
al term should be added to the above potential.

One can take the general form of the metric as [26]

1
f(r)
where h;;jdx'dx/ corresponds to an (n— 1)-dimensional hy-

persurface with constant scalar curvature (n—1)(n—2)k,
where & can be taken as -1, 0, 1, corresponding to hyper-

ds* = —f(Ndf + —dr* + PR*(Dhdx'dx/,  (2)

bolic, flat, and spherical constant curvature hypersur-
faces, respectively.

Employing the ansatz R = e?*®/*=D the solution can
be derived [26] as

k(n—2)(1 +a®)2b~2r % m
(@ -1)(@2+n=-2) by
2AD% (1 +a?)* 1Y)
(n—1)(a?-n)
2q2(1 + a2)2b72(n—2)7r2(n—2)(y— 1)
n-Dn+a?2-2)

fr) =

; €

_ (n-Da b
(D(r) = mln(;), (4)

where b is an arbitrary constant and vy is related to a by
y=a*/(@®>+1). The coefficients in the expression of
V(®) are [26]

_k(n—l)(n—2)a2 _ 2 _ 2a
=T w7

)

n—1

The mass, charge, Hawking temperature, and entropy
are obtained as [26, 27]

B DY (- Dw,oim

M= ; 6
167(a+ 1) ©)
Wp-19
= Yn1d 7
0 A ™
—(1+a)[k(n=2)(n—1) 2y 2y 122
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n— ~1)(1-
@ pln=1y =D o

4

where the parameter m can be derived via f(r,) =0.

By considering the conditions that the electric poten-
tial A; should be finite at infinity and the parameter m
should vanish at spacial infinity, the restrictions on a for
dilaton black holes coupled with the power-law Maxwell
field were obtained [22] as 0<a? <n-2 for the case

1
where 5 <P< g, and as 2p—n<a*<n-2 for the case
where = < p <n—1, where p describes the nonlinearity of

the electromagnetic field. For the Maxwell field con-
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sidered here, p =1, reducing the corresponding restric-
tionto 0 <a?<n-2.

III. DYNAMIC PHASE TRANSITION OF
CHARGED DILATON BLACK HOLES

To investigate the dynamic phase transition of
charged dilaton black holes, we introduce the “Gibbs free
energy landscape” and define the corresponding Gibbs
free energy G as G = H-TgS. Here, Ty denotes the
temperature of the ensemble. Via Egs. (6) and (9), GL of
the dilaton black hole is calculated as

Wn-1 b(n—l)yr"*QJr(] -n)y Zb—Z(n—Z)yq2 ’,2("*2)()’* 1]
G =2 + +
L 167 {[ n-1)(@®+n-2)
_ kn=2p7¥r 167Pp? T }

@-1)a?2+n-2) m-Dn-a?)

x (n—1)(1 +a'2)—47rr+TE}, (10)

where we have introduced the extended phase space and
set the thermodynamic pressure as P = —A/8x.

To observe the behavior of GGy it is plotted for
various temperatures in Figs. 1(b)-1(f). We chose five
characteristic temperatures, namely, 7y, T,, T3, T4, and
Ts. From Fig.1(a), we observe that 7| and Ts each cor-
respond to a single phase, T, and T4 correspond to three
phases, and T3 corresponds to two phases (one being a

T T T
090} (@) | 111 1
| 111 |
SBH D F I 1
085 1BH
Al BY 1
(U]
| | |
0.80 | 111 SO
I 1n 1,
0.75 | 111
Ty TyTy Ty Ty

0.0440 0.0445 0.0450 0.0455 0.0460 0.0465 0.0470

T
0.870

T,=0.0451

0.865
0.860
© 0.855

0.850

0.845

0.87

0.86

0.85f

GL

0.841

0.83F

0.82

0 1 2 3 4 5 6

Fig. 1.
(e) G-ry for T4 =0.0456, and (f) G —r, for Ts = 0.0466.

coexistent phase). All phases are denoted by black dots in
Fig. 1. When Tg =T, and Tg = Ts, there is only one local
minimum (forming one well in the curve). For Tg =T>
and Tk = T4, there are two local minimums and one local
maximum (leading to two wells of different depths). For
the case of Tg = T3, there are two local minimum points
(denoting the stable black hole phases) and one local
maximum point (denoting the unstable black hole phase),
that is, there are two wells also in the curve. However, in
contrast to the Tg =T, and Tg =T4 cases, these wells
have the same depth. Therefore, Fig. 1(d) represents the
phase transition between the small black hole and large
black hole.

Based on Gp, we can utilize the following Fokker-
Planck equation [64-68] to investigate the probabilistic
evolution of the black hole after the thermal fluctuation,

Oprt) _ 0 [ g6 r.pn 9 [ pG.T.Pr)
v —Dar{e ol G 0] | RER

where p(r,f) denotes the probability distribution. Addi-

. |
tionally, the parameter S8 = T incorporates kg as the
B
o . ksT
Boltzman constant, and the diffusion coefficient D = B
incorporates ¢ , which denotes the dissipation coefficient.
Without loss of generality, £ and kg can be set to one. For
conciseness, we employ 7 to replace the notation r, for
the black hole horizon radius here and hereafter.
Before solving the above equation, the boundary con-
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(color online) @ =0.2 and P =0.003. (a) G-T, (b) G-r, for T; =0.0444, (¢) G-r, for T, =0.0451 , (d) G-r; for T3 =0.0453,
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dition and the initial condition must first be imposed. The
initial condition can be chosen as a Gaussian wave pack-
et located at the small and large di}aton black hole states,
respectively. Namely, p(r,0) = ——e ")/ with r

and rs denoting the horizon radius7i)af the large and small
dilaton black holes, respectively, and a denoting the
width of Gaussian wave packet. In this study, we set
a=0.1.

There are several types of boundary conditions, such
as the reflecting boundary condition, absorbing boundary
condition, and periodic boundary condition. Here, as G
is not periodic, the periodic boundary condition is not
considered. To investigate the dynamic phase transition
of black holes, we consider the reflecting boundary con-
dition and the absorbing boundary condition. The former
condition can ensure the normalization of p. This can be
considered as BG’(r)p(r,1)+p'(r, t)|r=r0 =0 , while the ab-
sorbing boundary condition can be considered as
o(rm,t) =0 (the meaning of r, is discussed in the next
paragraph).

We numerically solve Eq. (11), constrained by both
the initial condition and the reflecting boundary condi-
tion. Fig. 2 shows the time evolution of the probability

1500

Fig. 2.

distribution p(r,7) of charged dilaton AdS black holes,
where the thermodynamic pressure was chosen as
P =0.003. For the top, middle, and bottom rows of Fig. 2,
the values of parameter «, which characterizes the
strength of coupling between the electromagnetic field
and the dilaton field, were chosen as 0.4, 0.2, and 0, re-
spectively, to compare the effect of dilaton gravity on the
probability evolution.

For Figs. 2(a), (c), and (e), the initial condition was
chosen as a Gaussian wave packet located at the large
dilaton black hole state. This is reflected in the graphs, as
the initial peak of p(r,7) corresponds to the radius of the
large dilaton black hole. With time evolution, the initial
peak decreases, while the peak corresponding to the radi-
us of the small dilaton black hole increases. Eventually,
these two peaks reach a stationary distribution in which
they appear equal to each other. This demonstrates the
dynamic process of the large dilaton black hole evolving
into the small dilaton black hole. Therefore, the left three
graphs correspond to the case where the large dilaton
black hole evolves dynamically into the small dilaton
black hole.

In contrast, the initial condition for Figs. 2(b), (d), and

(color online) Time evolution of p(r,7) for charged dilaton black hole with =1, g=1, P=0.003. (a) =04, (b) =04 (c)

a=0.2,(d) =02 (e) @=0, and (f) @ =0. For (a), (c), and (e), the initial condition was chosen as a Gaussian wave packet located at the
large dilaton black hole state, while for (b), (d), and (f), the initial condition was chosen as a Gaussian wave packet located at the small

dilaton black hole state.
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(f) was chosen as a Gaussian wave packet located at the
small dilaton black hole state. The initial peak located at
the small dilaton black hole decays over time, while the
peak corresponding to the radius of the large dilaton
black hole grows. Eventually, these two peaks approach a
stationary distribution. Therefore, the right three graphs
of Fig. 2 correspond to the case where the small dilaton
black hole evolves dynamically into the large dilaton
black hole.

The effect of dilaton gravity can be observed by com-
paring the top two graphs (a=0.4) to the middle two
graphs (e =0.2) and the bottom two graphs (@ =0) in
Fig. 2. Firstly, the difference in horizon radius between
the large and small dilaton black holes increases with the
parameter «. Secondly, with increasing «, the system re-
quires more time to reach a stationary distribution. Fi-
nally, the greater the overlap of the two waves, the lesser
the amount of time taken for the phase transition, as it is
much easier for the phase transition to take place if the
two phases are more similar.

Figure 3 provides a complementary, more quantitat-
ive picture of the time evolution of p(r,7) and p(r,1). The
effect of the dilaton gravity is quite obvious. It is ob-
served that for a larger « , the phase transition is more
gradual. This can be explained by the analysis in Table 1;
the larger the value of «, the deeper the well of Gibbs
free energy. Moreover, the final values of p(r,r) and
p(rs,t) vary with @. The values can be read from the

I L (a)
(I, 1)
0.8

0.6

t

Table 1. Height of the barrier AGL as a function of o with
b=1,¢=1, P=0.003.
a 0 0.2 0.4
AGL 0.00115 0.00951 0.11993

graph, with 0.229 for ¢ =0.4, 0.250 for @ =0.2, and
0.297 for a=0. This difference can be viewed as the
third effect (in addition to the two observations men-
tioned in the former paragraph) of the dilaton gravity on
the dynamic phase transition of black holes. A small dif-
ference is also observed in the evolution time for the
same «. It takes longer for the small black hole to trans-
ition into the large black hole, which is related to the dis-
tance between r,, of the unstable and large (small) black
holes.

IV. FIRST PASSAGE PROCESS FOR THE PHASE
TRANSITION OF CHARGED DILATON
BLACK HOLES

To further investigate the dynamic phase transition of
dilaton black holes, the first passage process was con-
sidered. This process describes how the initial black hole
state approaches the intermediate transition state for the
first time. To numerically investigate this process, both
the reflecting boundary condition and absorbing bound-
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Fig. 3.
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(color online) Time evolution of p(r;,7) and p(rs,7) for charged dilaton black hole with =1, g=1, P=0.003. (a) a =04, (b)

=04, (c) =02, (d) =02, (¢) @ =0, and (f) @ =0. For the left three graphs, the initial condition is chosen as a Gaussian wave pack-
et located at the large dilaton black hole state, while for the right three graphs, the initial condition is chosen as a Gaussian wave packet

located at the small dilaton black hole state.
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ary condition were imposed. Note that the absorbing
boundary condition p(#,,,t) =0 [58] was imposed at the
intermediate transition state with the horizon radius de-
noted as r,,.

Through resolving the Fokker-Planck equation con-
strained by these two boundary conditions, the first pas-
sage process of charged dilaton black holes is displayed
in Fig. 4. Similarly, the initial condition was chosen as a
Gaussian wave packet located at the large dilaton black
hole state for the left three graphs, while the Gaussian
wave packet located at the small dilaton black hole state
was chosen for the right three graphs. Regardless of the
initial black hole state, the initial peaks decayed rapidly.
We also compared the time evolution for different values
of a@. For the top, middle, and bottom rows of Fig. 4, «
values were chosen as 0.4, 0.2, and 0, respectively. From
this, we observed that the initial peak decays more slowly
with increasing «, which is consistent with the results
displayed in Fig. 2 and Fig. 3.

The time needed for the first passage process is de-
noted as the first passage time. Its distribution F,(f) can
be obtained via [57]

200°

Fig. 4.

dz
Ry =-E0, (12)

where Z(¢) is the sum of the probability of the black hole
system not having completed a first passage by time ¢.

Figure 5 shows the time evolution of Z(¢). Irrespect-
ive of the initial state, X(r) decays quickly. The effect of
dilaton gravity can also be observed, with « values
chosen as 0.4, 0.2, and 0 for the top, middle, and bottom
rows of Fig. 5, respectively. With increasing «, the de-
cay of X(r) slows down.

Fp(t) can also be derived via Eqgs. (11) and (12) as
[58]

F,(t)=-D

Op(r,1)
or (13)

m

This distribution of first passage time is depicted in
Fig. 6. Only a single peak is present in each graph of
Fp(1), suggesting that the first passage process takes place
very quickly. Additionally, the time corresponding to the
peak increases with the parameter «.

(color online) Time evolution of p(r,7) in the first passage process of a charged dilaton black hole with b=1, g=1, P =0.003.

(a) a=04, (b) =04, (c) =02, (d) =02, (¢) =0, and (f) @ =0. For the left three graphs, the initial condition was chosen as a
Gaussian wave packet located at the large dilaton black hole state, while for the right three graphs, the initial condition was chosen as a

Gaussian wave packet located at the small dilaton black hole state.
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Fig. 5. Time evolution of (¢) for charged dilaton black hole
with b=1,¢=1, P=0.003. (a) =04, (b) =04, (c) =02,
(d) @=0.2, (¢) =0, and (f) @ =0. For the left three graphs,
the initial condition was chosen as a Gaussian wave packet

located at the large dilaton black hole state, while for the right
three graphs, the initial condition was chosen as a Gaussian
wave packet located at the small dilaton black hole state.

V. CONCLUSIONS

We investigated the effect of dilaton gravity on the
dynamic phase transition of black holes with a focus on
charged dilaton black holes. Specifically, we considered
the variation of the parameter a , which describes the
strength of the coupling between the electromagnetic
field and the dilaton field.

We introduced the Gibbs free energy landscape and
calculated the corresponding Gy, of the dilaton black hole.
Based on GL, we numerically solved the Fokker-Planck
equation. To investigate the probabilistic evolution of
dilaton black holes, we first considered the reflecting
boundary condition. When the initial condition is as-
signed to the large dilaton black hole, the initial peak of
p(r,1), corresponding to the radius of the large dilaton
black hole, decreases with time. Concurrently, a second
peak corresponding to the radius of the small dilaton
black hole is observed to grow. Eventually, these peaks
reach a stationary distribution where the values of p(r, 1)
and p(rs, ) are the same. This process illustrates how the
initial large dilaton black hole evolves dynamically into
the small dilaton black hole. A similar but converse res-
ult was observed when the initial condition was assigned
to the small dilaton black hole. The effect of dilaton grav-
ity on the probabilistic evolution of dilaton black holes
was also investigated. Firstly, the horizon radius differ-
ence between the large dilaton black hole and small
dilaton black hole increased with the parameter «.
Secondly, with increasing «, the time required to achieve

0.0035¢£ ()
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1000 2000 3000 4000 5000 200 400 600 800 1000 1200 1400

£ ©  oosstpl @
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0.05 0.08
0.04

0.03

0.02
0.01 0.02

t t
0.00¢ 0.00

50 100 150 200 20 40 60 80
Fig. 6. F,(t) for charged dilaton black hole with
b=1,g=1, P=0.003. (a) =04, (b) =04, (¢) a=0.2, (d)
a=0.2, (¢) =0, and (f) a=0. For the left three graphs, the
initial condition was chosen as a Gaussian wave packet loc-
ated at the large dilaton black hole state, while for the right
three graphs, the initial condition was chosen as a Gaussian

wave packet located at the small dilaton black hole state.

a stationary distribution also increased. Note that these
two observations do not depend on the initial condition.
Finally, the values of p(r,7) and p(rs,f) varied with the
parameter a (0.229 for the case of a=0.4, 0.250 for
a=0.2,and 0.297 for a = 0).

To further investigate the dynamic phase transition of
dilaton black holes, we considered the first passage pro-
cess, which describes how the initial black hole state ap-
proaches the intermediate transition state for the first
time. Both the reflecting boundary condition and the ab-
sorbing boundary condition were imposed in this case.
Resolving the Fokker-Planck equation constrained by
these two boundary conditions, we demonstrated the first
passage process of charged dilaton black holes intuit-
ively. Regardless of the initial state of the black hole, the
initial peak decreased rapidly. We compared the evolu-
tion for different values of a, which revealed that the ini-
tial peak decayed more gradually with increasing a. We
also studied the distribution of the first passage time F,(t)
and the sum of the probability X(¢) of the black hole sys-
tem not having completed a first passage by time ¢. Irre-
spective of the initial state, X(r) decays very quickly. The
effect of dilaton gravity was also observed. With increas-
ing a, the decay of X(¢) slowed down. There was only a
single peak in each graph of F,(¢), suggesting that the
first passage process takes place very quickly. Addition-
ally, the time corresponding to the peak was found to in-
crease with a.

In conclusion, the dilaton field was found to slow
down the dynamic phase transition process between a
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large black hole and a small black hole. Furthermore, it
will be interesting to investigate the effect of the dilaton
field on the dynamic process of the novel phase trans-
ition described in Ref. [30].
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