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Abstract: The transonic phenomenon of black hole accretion and the existence of the photon sphere characterize
strong gravitational fields near a black hole horizon. Here, we study the spherical accretion flow onto general para-
metrized spherically symmetric black hole spacetimes. We analyze the accretion process for various perfect fluids,
such as the isothermal fluids of ultra-stiff, ultra-relativistic, and sub-relativistic types, and the polytropic fluid. The
influences of  additional  parameters,  beyond the  Schwarzschild  black  hole  in  the  framework of  general  parameter-
ized spherically symmetric black holes, on the flow behavior of the above-mentioned test fluids are studied in detail.
In  addition,  by  studying the  accretion  of  the  ideal  photon gas,  we further  discuss  the  correspondence  between the
sonic  radius  of  the  accreting  photon  gas  and  the  photon  sphere  for  general  parameterized  spherically  symmetric
black holes. Possible extensions of our analysis are also discussed.
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I.  INTRODUCTION

Accretion  around  a  massive  gravitational  object  is  a
basic phenomenon in astrophysics and has been essential
to  the  understanding  of  various  astrophysical  processes
and observations, including the growth of stars, the form-
ation of supermassive black holes, quasar luminosity, and
X-ray emission from compact star binaries [1-3]. The ac-
cretion  of  matter  in  a  realistic  astrophysical  process  is
rather  complicated,  since  it  involves  many  challenging
aspects of general relativistic magnetohydrodynamics, in-
cluding turbulence, radiation processes, and nuclear burn-
ing.  To understand these accretion processes,  it  is  useful
to  simplify  the  problem  by  making  assumptions  and/or
considering simple scenarios.

The simplest accretion scenario describes a stationary,
spherically  symmetric  solution,  as  first  discussed  by

Bondi  [4],  where  an  infinitely  large  homogeneous  gas
cloud, steadily  accreting  onto  a  central  gravitational  ob-
ject, was considered. Bondi's treatment was formulated in
the framework of Newtonian gravity. Later, in the frame-
work of general relativity (GR), the steady-state spheric-
ally symmetric flow of a test  fluid onto a Schwarzschild
black  hole  was  investigated  by  Michel  [5].  Since  then,
spherical accretion has been considered for various spher-
ically symmetric black holes in GR and modified gravit-
ies; see [6-30] and references therein for examples.

One  important  feature  of  spherical  accretion  onto
black holes is the phenomenon of transonic accretion and
the existence of a sonic point (or a critical point). At the
sonic point, the accretion flow transits from the subsonic
to  the  supersonic  state.  Normally,  the  locations  of  the
sonic  points  in  a  given  black  hole  spacetime  are  not  far
from its horizon. What is important and intriguing is that
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the narrow  region  around  the  sonic  point  is  closely  re-
lated  to  some  ongoing  observations  about  the  spectra  of
electromagnetic  and  gravitational  waves.  Therefore,
studying  the  spherical  accretion  problem  can  not  only
help  us  to  understand  accretion  processes  in  different
black holes  but,  importantly,  also  provide  us  with  an  al-
ternative approach to explore the nature of the black hole
spacetimes in the regime of strong gravity.

(42±3)
M = (6.5±0.7)×109M⊙

On the other hand, the EHT collaboration recently re-
ported  their  first  image  concerning  the  detection  of  the
shadow  of  a  supermassive  black  hole  at  the  center  of  a
neighboring elliptical M87 galaxy [31-36]. This image re-
vealed that the diameter of the center black hole shadow
is μ,  leading  to  the  measured  center  mass

 [31]. The outer edge of the shad-
ow  image,  if  one  considers  a  Schwarschild  black  hole,
forms  a  photon  sphere  near  the  black  hole  horizon,  at
which the trajectories of photons create a closed circular
orbit.  Within astrophysical observations, the existence of
a photon sphere is related to the electromagnetic observa-
tions  of  black  holes  via  the  background  electromagnetic
emission and the frequencies of quasi-normal modes. The
latter  is  determined  by  the  parameters  of  null  geodesic
motions  on  and near  the  photon  sphere  of  a  given  black
hole spacetime.

Recently, it was shown that there is a correspondence
between the sonic points of an accreting ideal photon gas
and  the  photon  sphere,  for  static  spherically  symmetric
spacetimes  [37].  This  important  result  is  valid  not  only
for spherical accretion of the ideal photon gas but also for
rotating accretion  in  static  spherically  symmetric  space-
times  [38, 39]. In  an  observational  viewpoint,  as  men-
tioned  in  [39], this  correspondence  connects  two  inde-
pendent  observations,  the  observation  of  light  coming
from sources behind a black hole and the observation of
emission from the accreted radiation fluid onto the black
hole. This is because the size of the hole's shadow is de-
termined by the radius of  the photon sphere,  and the ac-
creted fluid can signal the sonic point.

In light  of  the  above  studies,  it  is  interesting  to  ex-
plore  spherical  accretion  flows  in  different  black  hole
spacetimes.  The  additional  parameters,  beyond  the
Schwarzschild black hole in these spacetimes, may affect
the  accretion  flow  behavior;  thus,  we  have  a  potentially
important approach for studying the strong gravity beha-
vior of  black holes  in  many alternative  theories  of  grav-
ity. Instead of finding the exact solution and studying the
spherical  accretion case by case for each given theory,  a
reasonable  strategy  is  to  consider  a  model-independent
framework  that  parameterizes  the  most  generic  black-
hole  geometry  through  a  finite  number  of  adjustable
quantities.  For  this  purpose,  in  this  paper,  we  consider
spherical accretion flows in general parameterized spher-
ically  symmetric  black  hole  spacetimes  [40]. This  para-
meterized  description  allows  one  to  consider  accretion

phenomena  not  only  for  specific  theories  of  gravity  but
also for analysis in a unified way by exploring the influ-
ence  of  different  black  hole  parameters  on  the  spherical
accretion  process  [40]. Specifically,  we  focus  our  atten-
tion on the perfect fluid accretion onto general parameter-
ized spherically symmetric black hole spacetimes and fur-
ther investigate transonic phenomena for different fluids,
including  isothermal  fluids  and  polytropic  fluids.  By
studying the accretion of the ideal photon gas, we further
reveal the correspondence between the sonic points of the
accreting  photon  gas  and  the  photon  sphere,  for  general
parameterized spherically symmetric black holes.

Our  paper  is  organized  as  follows.  In  Sec.  2,  we
present a  very  brief  introduction  to  general  parameter-
ized  spherically  symmetric  black  holes.  Then,  in  Sec.  3,
we derive the basic equations for subsequent discussions
on  the  spherical  accretion  of  various  fluids  and  present
several useful quantities. Sec. 4 is devoted to performing
a dynamical systems analysis of the accretion process and
finding the critical points of the system. In Sec. 5, we ap-
ply these  results  to  several  known  fluids  and  further  in-
vestigate  the  transonic  phenomena  of  the  accretion  of
these fluids  onto  general  parameterized  spherically  sym-
metric  black  holes.  In  Sec.  6,  by  studying  the  spherical
accretion  of  the  ideal  photon  gas  and  photon  sphere  of
general parameterized spherically symmetric black holes,
we establish the correspondence between the sonic points
of the ideal photon gas and its photon sphere. The conclu-
sion of this paper is presented in Sec. 7.

II.  PARAMETERIZED SPHERICALLY SYMMET-
RIC BLACK HOLE SPACETIME

(t,r, θ,ϕ)

In this  section,  we present  a  brief  introduction to the
parameterization by L.  Rezzolla and A. Zhidenko's  (RZ)
[40], for generic spherically symmetric black hole space-
times. First, let us consider the line element of any spher-
ically symmetric stationary configuration in the spherical
polar coordinate system , which can be written as

ds2 = −N2(r)dt2+
B2(r)
N2(r)

dr2+ r2(dθ2+ sin2 θdϕ2), (1)

N(r) B(r)
N(r)

where  and  are two  functions  of  the  radial  co-
ordinate r alone.  In the RZ parameterization,  is ex-
pressed as

N2(x) = xA(x), (2)

A(x) > 0 0 < x < 1 x = 1− r0/r
x = 0

x = 1
A(x) B(x)

ϵ ai bi

where  for  with . It  is  obvi-
ous that  represents the location of the event horizon
of  the  black hole,  and  is  the  spatial  infinity.  Then,
the functions  and  can be further parameterized
in terms of the parameters , , and  as
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A(x) = 1− ϵ(1− x)+ (a0− ϵ)(1− x)2+ Ã(x)(1− x)3, (3)

B(x) = 1+b0(1− x)+ B̃(x)(1− x)2, (4)

Ã B̃
x ≃ 0

x = 1 a0 b0

Ã B̃

where  the  functions  and  are  introduced  to  describe
the metric near the horizon (i.e., ) and at the spatial
infinity  (i.e., ).  The  coefficients  and  can  be
seen as  combinations  of  the  PPN  parameters.  The  func-
tions  and  can be expanded using the continuous Padé
approximation as

Ã(x) =
a1

1+
a2x

1+ a3 x
1+···

, B̃(x) =
b1

1+
b2x

1+ b3 x
1+···

, (5)

a1,a2, · · · ,an b1,b2, · · · ,bn

ϵ

where  and  are  dimensionless
constants  that  can  be  determined  by  matching  the  above
parameterization  to  a  specific  metric.  In  addition,  the
parameter  in the RZ parameterization measures the de-
viation of the position of the event horizon in the general
metric from  the  corresponding  location  in  the  Schwarz-
schild spacetime, i.e.,

ϵ =
2M− r0

r0
. (6)

f (R)

The  RZ  parameterization  can  be  matched  to  many
black hole  solutions  which  differ  from  GR.  These  in-
clude the Reissner-Nordström (RN) black hole in GR and
black holes  in  the  Brans-Dicke gravity  (BD),  grav-
ity,  the  Einstein-Maxwell  axion  dilaton  theory  (EMAD),
and the Einstein-Aether theory [40, 41]. Recently, the RZ
parameterization  has  also  been  extended  to  the  rotating
case [42].

III.  BASIC EQUATIONS FOR SPHERICAL AC-
CRETION FLOWS

In this section, we consider the steady-state spherical
accretion flow of matter near an RZ-parameterized black
hole. For this  purpose,  the accreting matter  is  approxim-
ated  as  a  relativistic  perfect  fluid,  by  neglecting  effects
related  to  viscosity  or  heat  transport.  Thus,  the  energy
momentum tensor of the fluid can be described by

T µν = (ρ+ p)uµuν+ pgµν, (7)

ρ
uµ

uµuµ = −1

uθ = 0 = uϕ

ρ

where  and p are the proper energy density and the pres-
sure  of  the  perfect  fluid.  The  four-velocity  obeys  the
normalization  condition .  We  assume  that  the
fluid is radially flowing into the black hole; therefore, we
have . For the same reason, the physical quant-
ities ( , p) and others introduced later are functions of the

ur = u < 0
radial coordinate r only. For the sake of simplicity, we set
the  radial  velocity  as  for  the  accreting  case.
Then, using the normalization condition,  it  is  easy to in-
fer that

(ut)2 =
N2(r)+B2(r)u2

N4(r)
. (8)

Jµ = nuµ

There are two basic conservation laws that govern the
evolution of a fluid in a black hole spacetime. One is the
conservation law of the particle number, and another one
is the conservation law of the energy momentum. The as-
sumption of  the  conservation  of  the  particle  number  im-
plies there is no particle creation and/or annihilation dur-
ing  the  accreting  process.  Defining  the  proper  particle
number density n and number current  in the loc-
al inertial rest frame of the fluid, the conservation of the
particle number gives

∇µJµ = ∇µ(nuµ) = 0, (9)

∇µwhere  denotes the covariant derivative with respect to
the coordinate.  For the RZ parameterization of a generic
spherically  symmetric  black  hole  spacetime,  Eq.  (9)  can
be rewritten as

1
r2B

d
dr

(r2Bnu) = 0. (10)

Integrating this equation, we obtain

r2Bnu =C1, (11)

C1where  is the integration constant.
The conservation law of the energy momentum is ex-

pressed as

∇µT µν = 0. (12)

It  is  also  convenient  to  introduce  the  first  law of  the
thermodynamics  of  the  perfect  fluid,  which  is  given  by
[43]

dp = n(dh−Tds), dρ = hdn+nTds, (13)

where T is the temperature, s is the specific entropy, and
h is the specific enthalpy, defined as

h ≡ ρ+ p
n
. (14)

uµ
Then,  projecting  the  conservation  law of  the  energy-

momentum (12) along , one obtains
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uν∇µT µν = uν∇µ
[
nhuµuν+ pgµν

]
= −nuµ∇µh+uµ∇µp. (15)

∇µ(nuµ) = 0 uµ∇νuµ = uµ∇νuµ =
1
2∇ν(uµuµ) = 0

∇µp = n∇µh−nT∇µs

In  the  above,  we  have  used  the  conservation  of  the
particle  number,  i.e.,  and 

. Noticing  that  the  first  law  of  thermody-
namics  (13)  can  be  rewritten  as ,
from the above projection one arrives at

−nTuµ∇µs = 0, (16)

∂r s = 0 s =

implying that there is no heat transfer between the differ-
ent  fluid elements,  and the specific  entropy is  conserved
along the  evolution  lines  of  the  fluid.  For  a  parameter-
ized  spherically  symmetric  black  hole,  the  conservation
of  the  specific  entropy  reduces  to ,  i.e.,  con-
stant. For this reason, the fluid is isentropic and Eq. (13)
reduces to

dp = ndh, dρ = hdn. (17)

With the  above  thermodynamical  properties  of  the  per-
fect fluid, the conservation law of the energy-momentum
(12) can be written as

∇µT µν = ∇µ(hnuµuν)+∇µ(δµν p)
= nuµ∇µ(huν)+n∇νh
= nuµ∂µ(huν)−nuµΓλµνhuλ+n∇νh = 0. (18)

ν = tThen,  the  time  component  of  the  above  equation
yields

∂r(hut) = 0. (19)

Integrating it  for  the  parameterized  spherically  sym-
metric black hole we consider in this paper, one arrives at

h
√

N2+B2u2 =C2, (20)

C2where  is the  integration  constant.  This  equation,  to-
gether  with  Eq.  (11),  constitutes  the  two basic  equations
describing  a  radial,  steady-state  perfect  fluid  flow in  the
parameterized spherically symmetric black hole.

To  proceed  further,  let  us  introduce  several  useful
quantities for describing the accretion flow, which will be
used in  the  subsequent  analysis.  The first  quantity  is  the
sound speed of the perfect fluid, which is defined by

c2
s ≡

dp
dρ
=

n
h

dh
dn
=

dlnh
dlnn

. (21)

dθ = dϕ = 0
On  the  other  hand,  by  considering  radial  accretion

flows,  i.e., , the  black  hole  metric  can  be  de-
composed as [44]

ds2 = −(Ndt)2+

( B
N

dr
)2
, (22)

from which one can define an ordinary three-dimension-
al velocity v measured by a static observer as

v ≡ B
N2

dr
dt
. (23)

ur = u = dr/dτ ut = dt/dτ τConsidering  and  with  be-
ing the proper time of the fluid, one finds

v2 =
B2

N4

( u
ut

)2
=

B2u2

N2+B2u2 . (24)

u2 u2
t v2Then, one can express  and  in terms of  as

u2 =
N2v2

B2(1− v2)
, (25)

u2
t =

N2

1− v2 . (26)

These quantities will be used in the following dynam-
ical  systems  analysis  for  the  radial,  steady-state  perfect
fluid flow in a parametrized spherically symmetric black
hole.

IV.  SONIC POINTS AND DYNAMICAL SYSTEMS
ANALYSIS

The two basic equations (11) and (20) constitute a dy-
namical  system  for  the  radial  accretion  process.  In  this
section, we use these equations to study the accretion pro-
cess in a parametrized spherically symmetric black hole.

A.    Sonic points
In  the  trajectories  of  an  accretion  flow  into  a  black

hole, there exists a specific point called the sonic point, at
which  the  four-velocity  of  the  moving  fluid  becomes
equal to the local speed of sound, and the accretion flow
attains the maximal accretion rate. To determine the son-
ic  point,  let  us  first  take  the  derivative  of  the  two  basic
equations (11) and (20) with respect to r, which leads to

(
v2− c2

s

) dlnv
dr
=

1− v2

BNr

[
c2

s NB
(
2+ r

dln B
dr

)
−B(1− c2

s)r
dN
dr

]
.

(27)
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r∗ c2
s(r∗) = v2(r∗)At the sonic point  ( ), one has

c2
s∗N∗B∗

(
2+ r∗

dln B
dr

∣∣∣∣∣∗
)
−B∗(1− c2

s∗)r∗
dN
dr

∣∣∣∣∣∗ = 0, (28)

∗

c2
s ≡ dp/dρ

where  denotes  the  values  evaluated  at  the  sonic  point.
This equation allows us to determine the sonic point once
the speed of sound  is known. The above equa-
tion can be rewritten as

u2
∗ =

N∗r∗
dN
dr

∣∣∣∣∣∗
B2
∗

(
2+ r∗

dln B
dr

∣∣∣∣∣∗
) . (29)

r∗Therefore, once  is determined, one can use this ex-
pression to find the value of u at the sonic point. The ex-
istence  of  the  sonic  point  in  the  black  hole  spacetime
physically exhibits  a  very  interesting  accreting  phe-
nomenon; it highlights transonic solutions that are super-
sonic  near  and  subsonic  far  from  the  black  hole.  In  the
following  sections,  we  are  going  to  find  sonic  points  by
using the  equations  obtained  in  this  subsection  and  dis-
cuss the transonic phenomenon in detail for different flu-
ids.

B.    Dynamical system and critical points

C1 C2

H

From the  two  basic  equations  (11)  and  (20),  we  ob-
serve that there are two integration constants  and .
For this system, we may treat the square of the left-hand
side of Eq. (20) as a Hamiltonian  of this system,

H = h2(N2+B2u2), (30)

C2
H

so  of every orbit  in the phase space of this system is
kept fixed. Inserting Eq. (25) into the Hamiltonian  one
finds

H(r,v) =
h2(r,v)N2

1− v2 . (31)

Then,  the  dynamical  system  associated  with  this
Hamiltonian reads

ṙ =H,v, v̇ = −H,r, (32)

t̄where the dot denotes the derivative with respect to  (the
time  variable  of  the  Hamiltonian  dynamical  system).
Then, inserting the Hamiltonian, one finds

ṙ ≡ f (r,v) =
2h2N2

v(1− v2)2 (v2− c2
s), (33)

v̇ ≡ g(r,v) = − h2

r(1− v2)

[
rN2
,r(1− c2

s)−4N2c2
s

]
. (34)

(r,v)

(r,h) (r, p) (r,u)

These equations  constitute  an  autonomous,  Hamilto-
nian  two-dimensional  dynamical  system.  Its  orbits  are
composed of the solutions of the two basic Eqs. (11) and
(20).  In the construction of the above dynamical system,
we considered the two quantities  as the two dynam-
ical  variables  of  the  system.  It  is  worth  mentioning  that
there are actually different ways to select dynamical vari-
ables; for  example,  one  may choose  the  dynamical  vari-
ables to be , , or  [45].

ṙ = 0 v̇ = 0

At  critical  points,  the  right-hand  sides  of  Eqs.  (33)
and (34) vanish, and the following equations provide a set
of critical points that are solutions to  and ,

v2
∗ = c2

s , (35)

c2
s =

r∗N2
∗,r∗

r∗N2
∗,r∗ +4N2

∗,r∗
. (36)

(r∗,v∗)
It is easy to see that sonic points are the critical points

of this dynamical system. Hereafter, we use  to de-
note the critical points of the dynamical system. For a dy-
namical system, critical points can be divided into sever-
al different types. To observe which critical points could
arise from the black hole accretion processes,  let  us per-
form the following linearization of the dynamical system
by Taylor-expanding Eqs. (33) and (34) around the critic-
al points, i.e., (

δṙ
δv̇

)
= X

(
δr
δv

)
, (37)

δr δv

(r∗,v∗)

where ,  denote the small perturbations of r, v about
the critical points, and X is the Jacobian matrix of the dy-
namical  system  at  the  critical  point ,  which  is
defined as

X =


∂ f
∂r

∂ f
∂v

∂g
∂r

∂g
∂v


∣∣∣∣∣∣
(r∗,v∗)
. (38)

∆ = det(X)
χ = Tr(X) (r∗,v∗)

Depending on the determinant  of X and its
trace ,  the  types  of  the  critical  points  of
the dynamcial system can be summarized as follows:

∆ < 0● Saddle points if .
∆ > 0 χ < 0 χ2−4∆ > 0● Attracting nodes if , , and .
∆ > 0 χ < 0 χ2−4∆ < 0● Attracting spirals if , , and .
∆ > 0 χ > 0 χ2−4∆ > 0● Repelling nodes if , , and .
∆ > 0 χ > 0 χ2−4∆ < 0● Repelling spirals if , , and .
∆ > 0 χ2−4∆ = 0● Degenerate nodes if , and .
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∆ > 0 χ = 0● Centers if , .
∆ = 0● Line or plane critical points if .

C1
(r∗,v∗)

When the  critical  points  and  their  types  are  determ-
ined, the constant  in Eq. (11) can be rewritten in terms
of the quantities evaluated at the critical point  as

C2
1 =

r4
∗n

2
∗v

2
∗N

2
∗

1− v2
∗
=

r5
∗n

2
∗N

2
∗,r∗

4
. (39)

This equation is satisfied not only at the critical point
but also at any point in the same streamline in the phase
portrait, so one can easily get(

n
n∗

)2

=
r5
∗N

2
∗,r∗

4
1− v2

r4N2v2 . (40)

(r0,v0)
If there is no solution to Eqs. (33) and (34) at the crit-

ical  point,  one  can  introduce  any  reference  point 
from the phase portrait, obtaining [46](

n
n0

)2

=
r4

0N2
0 v2

0

1− v2
0

1− v2

r4N2v2 . (41)

The  above  expressions  will  be  used  later  to  analyze
the spherical accretion processes for some test fluids.

V.  APPLICATIONS TO TEST FLUIDS

In this section, we consider the accretion processes of
several  test  fluids,  using  the  equations  derived  in  the
above sections for a parameterized spherically symmetric
black  hole.  Specifically,  we  consider  the  isothermal  and
polytropic fluids in the following subsections.

A.    Isothermal test fluid
In this  subsection,  we  consider  the  accretion  pro-

cesses  for  isothermal  (constant-temperature)  fluids.  The
corresponding system can be viewed as an adiabatic one,
owing to the fast movement of the fluid. For such a sys-
tem, we define its equation of state (EoS) w as

w ≡ p/ρ. (42)

ρ
0 < w ⩽ 1

c2
s ≡

dp
dρ
= w

where  and p represent the energy density and pressure
of the fluid, respectively. It is worth noting that 
for isothermal fluids [20]. In addition, the adiabatic speed

of sound is given by .
h = (ρ+ p)/n = (1+w)ρ/n c2

s =

dlnh/dlnn = w
According  to  and 

, we have

ρ = ρ0

(
n
n0

)1+w

, (43)

and

h =
(w+1)ρ0

n0

(
n
n0

)w

, (44)

n0 ρ0 ρwhere  and  denote the values of n and  evaluated at
some reference point. Using Eq. (40), we arrive at

h2 = K
(

1− v2

r4N2v2

)w

, (45)

t̄→ Kt̄
H →H/K

t̄

where K is a constant. Through the transformation 
and ,  the  constant K is absorbed  into  the  re-
defined time . Then, the new Hamiltonian becomes

H(r,v) =
N2(1−w)

(1− v2)1−wv2wr4w . (46)

Considering the first-order RZ parameterization (tak-
ing only the first three items of Eq. (3)), one can approx-
imately write

N2 ≃
(
1− 2M

r(1+ ϵ)

)[
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]
. (47)

Then, Eq. (46) can be approximately rewritten as

H ≃

(
1− 2M

r(1+ ϵ)

)1−w [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1−w

(1− v2)1−wv2wr4w .

(48)

c2
s = wAt the sonic point, with , Eq. (34) reduces to

w =
rN2
,r

rN2
,r +4N2

∣∣∣∣∣∣
r=r∗

. (49)

With Eq. (47), Eq. (49) can be approximately rewrit-
ten as

w =
M[−12M2ϵ + r2

∗(1+ ϵ)
3+4a0M(3M− r∗(1+ ϵ))]
LT1

, (50)

where

LT1 =4M3ϵ −3Mr2
∗(1+ ϵ)

3+2r3
∗(1+ ϵ)

3

+4a0M2(−M+ r∗+ r∗ϵ). (51)

w = 11..    Solution for an ultra-stiff fluid ( )
Let us first consider an ultra-stiff fluid, whose energy

density is equal to its pressure. In this case, the equation
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w = p/ρ = 1of  state  is . The  Hamiltonian  (48)  for  the  ul-
tra-stiff fluid becomes

H = 1
v2r4 . (52)

|v| < 1

Hmin = r−4
0

For  physical  flows,  one  has .  Therefore,  the
Hamiltonian  (52)  for  the  ultra-stiff  fluid  has  a  minimal
value . With Eq. (52), the two-dimensional dy-
namical system (33), (34) is

ṙ = − 2
r4v3 , (53)

v̇ =
4

r5v2 . (54)

M = 1 a0 = 0.001
ϵ = 0.1

v < 0

v > 0

It is easy to see that this dynamical system has no crit-
ical  points.  The  phase  space  portrait  of  this  dynamical
system for the ultra-stiff fluid with , , and

 for a general parameterized black hole is depicted
in Fig. 1, in which the physical flow of the ultra-stiff flu-
id in the general parameterized black hole is represented
by several curves with arrows. It is shown that the curves
with  have  arrows  directed  toward  the  black  hole,
representing  the  accreting  flow  of  the  ultra-stiff  fluid,
while  the curves with  have arrows directed toward
the  outside,  representing  the  outflow  fluids.  The  green

Hmin

H >Hmin

and red curves represent the flows with minimal Hamilto-
nian  for  the  accretion  outflow.  All  of  the  flows  in
Fig. 1 between the red and green curves are physical and
have Hamiltonian .

Hmin

r0 H ϵ

ϵ
Hmin = 1/r4

0
ϵ

The values of the minimal Hamiltonian  depend
on  the  RZ  parameterization  parameters.  In Table  1,  the
values of  and  for the different values of parameter 
for the ultra-stiff fluid are presented. Since the horizon ra-
dius  decreases  with  respect  to ,  it  is  shown clearly  that
the  minimal  Hamiltonian  increases with  in-
creasing .

w = 1/22..    Solution for an ultra-relativistic fluid ( )

w = 1/2 p = ρ/2

w = 1/2

Let  us  now  consider  an  ultra-relativistic  fluid,  for
which  the  equation  of  state  is ,  i.e., .  In
this case, the fluid's isotropic pressure is less than its en-
ergy  density.  With , the  Hamiltonian  (48)  be-
comes

H =

(
1− 2M

r(1+ ϵ)

)1/2 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/2

r2|v|(1− v2)1/2 , (55)

and  then,  the  two-dimensional  dynamical  system  (33),
(34) is

ṙ =

(
1− 2M

r(1+ ϵ)

)1/2 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/2

r2(1− v2)3/2

−

(
1− 2M

r(1+ ϵ)

)1/2 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/2

r2v2(1− v2)1/2 , (56)

v̇ =
2
(
1− 2M

r(1+ ϵ)

)1/2 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/2

r3|v|(1− v2)1/2

−

(
1− 2M

r(1+ ϵ)

) [
−8M2(a0− ϵ)

r3(1+ ϵ)2 −
2Mϵ

r2(1+ ϵ)

]
LT2

−
2M

(
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

)
r2(1+ ϵ)LT2

, (57)

r0 Hmin ϵ w = 1

M = 1 a0 = 10−4

Table 1.    Values of  and  for different values of the black hole parameter  for the ultra-stiff fluid with . In the calculation,
we set  and .

ϵ 0 0.1 0.2 0.3 0.4 0.5

r0 2 1.81818 1.66667 1.53846 1.42857 1.33333

Hmin 0.0625 0.0915063 0.1296 0.178506 0.2401 0.316406

 

w = 1

M = 1 ϵ = 0.1 a0 = 0.0001

Fig. 1.    (color online) Phase space portrait of the dynamical
system (33), (34) for the ultra-stiff fluid ( ) with the black
hole parameters , , and .
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where

LT2 =2r2|v|(1− v2)1/2
(
1− 2M

r(1+ ϵ)

)1/2

×
[
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/2

. (58)

H v2For some given value of , one can obtain  from Eq. (55),

v2 =

1±
√

1+
4F(r)
r4H2

0

2
, (59)

where

F(r) =−1+
2M

r
+

8M3

r3(1+ ϵ)3 +
8a0M3

r3(1+ ϵ)3

− 8M3

r3(1+ ϵ)2 −
4a0M2

r2(1+ ϵ)2 . (60)

M = 1 ϵ = 0.1
a0 = 0.0001
(r∗,±v∗) (2.30139,−0.707107) (2.30139,
0.707107)

(r∗,±v∗)
H∗ =

0.160335 r∗ ±v∗ H∗

w = 1/2 M = 1
a0 = 0.0001

ϵ

r∗
r0
±v∗

r∗ ϵ

a0
r∗

In  addition,  one  can  obtain  the  critical  points  of  the
accretion process  for  the  ultra-relativistic  fluid  by  solv-
ing  the  two-dimensional  dynamical  system,  when  both
right hand sides of Eq. (56) and Eq. (57) vanish. With the
black  hole  parameters  set  to , ,  and

,  one  obtains  the  physical  critical  points
,  i.e.,  and 

 for the outflow and the accreting flow, respect-
ively.  Inserting  these  critical  point  values  into
Eq.  (55),  one  finds  the  critical  Hamiltonian 

.  The  values  of , ,  and  at  the  sonic
point  with  different  values  of  the  black  hole  parameters
are  summarized  in Table  2 for , ,  and

. Clearly, as the value of the black hole para-
meter  increases,  the  following occurs:  (1)  the value of

 at  the  sonic  point  decreases,  while  the  distance  from
horizon  to the critical point increases; (2) the values of
velocity  at the  sonic  points  are  two  constants,  be-
cause they are equal to the fluid's speed of sound; and (3)
the  value  of  the  Hamiltonian  for  the  fluid  at  the  critical
points increases. We also show the behavior of the critic-
al radius  with respect to the black hole parameter  for
different  values  of  parameter  in Fig.  2,  which  shows
that  the  critical  radius  decreases  with  increase  in  the

ϵ a0black hole parameters  and .

M = 1 a0 = 0.0001
ϵ = 0.1

(r∗,v∗) (r∗,−v∗)

H0 = {H∗−0.05, H∗−0.02, H∗, H∗+0.03, H∗+0.08}

H =H∗+0.08
H =H∗+0.03

v < −v∗
v > v∗

−v∗ < v < v∗
H =H∗−0.02

H =H∗−0.05

The phase space portrait of this dynamical system for
the  ultra-relativistic  fluid  with , ,  and

 for a general parameterized black hole is depicted
in Fig.  3,  in which the physical  flow of the ultra-relativ-
istic fluid  for  a  general  parameterized  black  hole  is  rep-
resented  by  several  curves.  Clearly,  both  the  critical
points in Fig. 3,  and , are saddle points of
the  dynamical  system.  The  five  curves  in Fig.  3 corres-
pond  to  the  different  values  of  the  Hamiltonian

.
This  plot  shows  several  different  types  of  fluid  motion.
The  magenta  (with )  and  blue  (with

) curves correspond to the purely superson-
ic  accretion  (  branches), purely  supersonic  out-
flow  (  branches), or  purely  subsonic  accretion  fol-
lowed  by  the  subsonic  outflow  (  branches).
The  red  (with )  and  green  (with

) curves correspond to the non-physical be-
havior of the fluid.

v < 0
(r∗,−v∗)

The  most  interesting  solution  of  the  fluid  motion  is
depicted by the black curves in Fig. 3, revealing the tran-
sonic behavior of the fluid outside the black hole horizon.
For , there are two black hole curves that go through
the sonic point . One solution starts at the spatial
infinity  with  a  sub-sonic  flow  followed  by  a  supersonic
flow after it crosses the sonic point, which corresponds to
the  standard  nonrelativistic  accretion  considered  by
Bondi in [4]. Another solution, which starts at the spatial
infinity  with  a  supersonic  flow  but  becomes  sub-sonic

r∗ v∗ H∗ ϵ

w = 1/2 M = 1 a0 = 0.0001
Table 2.    Values of , , and  at the sonic point, for different values of the black hole parameter  for the ultra-relativistic fluid
with . We use  and  in the calculation.

ϵ 0 0.1 0.2 0.3 0.4 0.5

r0 2 1.81818 1.66667 1.53846 1.42857 1.33333

r∗ 2.49998 2.30139 2.14917 2.04111 1.97876 1.96016

v∗ 0.70711 0.70711 0.70711 0.70711 0.70711 0.70711

H∗ 0.14311 0.16034 0.17465 0.18507 0.19098 0.19271

 

r∗ ϵ

a0

w = 1/2

Fig.  2.    (color  online)  Relation between  and  for differ-
ent  in the spherical accretion process for the ultra-relativist-
ic fluid ( ).
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v > 0

v < 0

after  it  crosses  the  sonic  point,  is  unstable,  according  to
the analysis presented in [46]; such a behavior is very dif-
ficult  to  achieve.  For ,  there  are  two  solutions  as
well. One solution, which starts at the horizon with a su-
personic  flow  followed  by  a  sub-sonic  flow  after  it
crosses the sonic point, corresponds to the transoinc solu-
tion of the stellar wind, as discussed in [4] for the non-re-
lativistic accretion. Another solution, similar to the 
case, is unstable and too difficult to achieve [46].

H

Here, we would like to add several remarks about the
physical  explanations of  the flows in Fig.  3 for  different
values of Hamiltonian .  In general,  different  values of
the  Hamiltonian  represent  different  initial  states  of  the
dynamical system. For the transonic solution of the ultra-
relativistic  fluid,  its  Hamiltonian  can be  evaluated  at  the
sonic  point.  The  Hamiltonian  with  values  different  from
the transonic  one  does  not  represent  any  transonic  solu-
tions of the flow. For example, the green curve shows the
subcritical  fluid  flow  since  such  a  flow  does  not  pass
through  the  critical  point  and  fails  to  reach  the  critical
point.  In  fact,  such solutions have a  turning or  bouncing
point, which is the nearest point reachable by such fluids,
beyond which they are bounced back or turned around to
infinity.  A  similar  explanation  holds  for  the  red  curves.
The curves shown in blue and magenta can be termed su-
per-critical flows. Although such fluids do not go through
the  critical  point  either,  they  already  possess  velocities
above the allowed critical value. Such flows end up enter-
ing  the  black horizon.  It  is  also  worth  mentioning that  a
similar analysis also applies to other fluids, including ra-
diation, sub-relativistic, and polytropic fluids.

w = 1/33..    Solution for a radiation fluid ( )
w = 1/3For a radiation fluid, the equation of state is .

In this case, the Hamiltonian (48) becomes

H =

(
1− 2M

r(1+ ϵ)

)2/3 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]2/3

r4/3|v|2/3(1− v2)2/3 , (61)

and  then,  the  two-dimensional  dynamical  system  (33),
(34) is

ṙ =
4v1/3

(
1− 2M

r(1+ ϵ)

)2/3 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]2/3

3r4/3(1− v2)5/3

−
2
(
1− 2M

r(1+ ϵ)

)2/3 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]2/3

3r4/3|v|5/3(1− v2)5/3 ,

(62)

v̇ =
4
(
1− 2M

r(1+ ϵ)

)2/3 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]2/3

3r7/3|v|2/3(1− v2)2/3

−
2
(
1− 2M

r(1+ ϵ)

) [
−8M2(a0− ϵ)

r3(1+ ϵ)2 +
2Mϵ

r2(1+ ϵ)

]
LT3

−
4M

(
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

)
r2(1+ ϵ)LT3

, (63)

where

LT3 =3r4/3|v|2/3(1− v2)2/3
(
1− 2M

r(1+ ϵ)

)1/3

×
[
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/3

. (64)

r∗ ±v∗ H∗
ϵ

w = 1/3 M = 1 a0 = 0.0001

ϵ H∗
r∗

ϵ a0

The  sonic  points  can  be  found  by  solving  the  above
two-dimensional dynamical system, when both right hand
sides  of  Eq.  (62)  and Eq.  (63)  vanish.  The values  of  the
critical  radius ,  sound  speed ,  and  critical  for
different  values  of  are  summarized  in Table  3 for

, ,  and .  Similar  to  the  ultra-re-
lativistic fluid,  the  critical  radius  decreases  with  increas-
ing ,  while  the  critical  Hamiltonian  increases.  We
also illustrate the behavior of the critical radius  for the
radiation fluid with respect to  for different values of 
in Fig. 4.

M = 1 a0 = 0.001 ϵ = 0.1
The phase space portrait of this dynamical system for

the  radiation  fluid  with , ,  and  is
displayed in Fig. 5, in which the physical flow of the radi-

 

w = 1/2

M = 1 ϵ = 0.1 a0 = 0.0001
(r∗,±v∗)

H =H∗, H∗ −0.02,H∗ −0.05,H +0.03,
andH∗ +0.08

Fig. 3.    (color online) Phase space portrait of the dynamical
system  (33),  (34)  for  the  ultra-relativistic  fluid  ( ),  for
the black hole parameters , ,  and . The
critical  (sonic)  points  of  this  dynamical  system  are
presented  by  the  black  spots  in  the  figure.  The  five  colored
curves  (black,  red,  green,  magenta,  and  blue)  correspond  to
the  Hamiltonian  values 

.
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(r∗,v∗) (r∗,−v∗)

w = 1/3 w = 1/2

ation fluid for a general parameterized black hole is rep-
resented by several curves. One can see that both the crit-
ical points in Fig. 5,  and , are saddle points
of the dynamical system. From Fig. 5, one also observes
that the radiation fluid shares the same types of the fluid
motion  ( )  as  the  ultra-relativistic  fluid  ( ),
as  shown  in Fig.  3.  Similar  to Fig.  3,  the  magenta  and

v < −v∗
v > v∗
−v∗ < v < v∗

v < 0

(r∗,−v∗)

v > 0

blue curves represent the supersonic flows for  or
,  while  they  correspond  to  sub-sonic  flows  if

. The transonic solutions are presented by the
black  curves.  For ,  one  of  the  black  curves,  which
starts at the spatial infinity with a sub-sonic flow and then
becomes  supersonic  after  it  crosses  the  sonic  point

, corresponds to the standard transonic accretion,
and  another  black  curve  represents  an  unstable  solution.
For ,  one  black  curve  corresponds  to  the  transonic
outflow of  wind,  and another  one represents  an  unstable
flow, similar to the case of the ultra-relativistic fluid. The
green and red curves are non-physical solutions.

w = 1/44..    Solution for a sub-relativistic fluid ( )

w = 1/4

Let us now consider a sub-relativistic fluid, whose en-
ergy  density  exceeds  its  isotropic  pressure;  the  equation
of  state  for  such  a  fluid  is .  In  this  case,  the
Hamiltonian (48) takes the form

H =

(
1− 2M

r(1+ ϵ)

)3/4 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]3/4

r
√
|v|(1− v2)3/4

, (65)

and then the two-dimensional dynamical system is

ṙ =
3
√
|v|

(
1− 2M

r(1+ ϵ)

)3/4 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]3/4

2r(1− v2)7/4

−

(
1− 2M

r(1+ ϵ)

)3/4 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]3/4

r |v|3/2(1− v2)3/4 , (66)

v̇ =

(
1− 2M

r(1+ ϵ)

)3/4 [
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]3/4

r2
√
|v|(1− v2)3/4

−
3
(
1− 2M

r(1+ ϵ)

) [
−8M2(a0− ϵ)

r3(1+ ϵ)2 +
2Mϵ

r2(1+ ϵ)

]
LT4

−
4M

(
1+

6M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

)
r2(1+ ϵ)LT4

, (67)

r∗ v∗ H∗ ϵ

w = 1/3 M = 1 a0 = 0.0001
Table 3.    Values of , ,  and  at the sonic point, for different values of the black hole parameter  for the radiation fluid with

. We use  and  in the calculation.

ϵ 0 0.1 0.2 0.3 0.4 0.5

r0 2 1.81818 1.66667 1.53846 1.42857 1.33333

r∗ 2.99996 2.8096 2.67692 2.59413 2.55246 2.54108

v∗ 0.57735 0.57735 0.57735 0.57735 0.57735 0.57735

H∗ 0.20999 0.22082 0.22845 0.23316 0.2355 0.23613

 

r∗ ϵ

a0

w = 1/3

Fig.  4.    (color  online)  Relation between  and  for differ-
ent  in the spherical accretion process for the radiation fluid
( ).

 

w = 1/3

M = 1 ϵ = 0.1 a0 = 0.0001
(r∗,±v∗)

H =H∗, H∗ −0.03,H∗ −0.05,H +0.05,
andH∗ +0.1

Fig. 5.    (color online) Phase space portrait of the dynamical
system  (33),  (34)  for  the  radiation  fluid  ( )  for  black
hole  parameters , ,  and .  The  critical
(sonic) points  of this dynamical system are presented
by  the  black  spots  in  the  figure.  The  five  colored  curves
(black, red,  green,  magenta,  and  blue)  correspond to  the  val-
ues  of  Hamiltonian 

, respectively.
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where

LT4 =4r
√
|v|(1− v2)3/4

(
1− 2M

r(1+ ϵ)

)1/4

×
[
1+

4M2(a0− ϵ)
r2(1+ ϵ)2 −

2Mϵ
r(1+ ϵ)

]1/4

. (68)

r∗ v∗ H∗
ϵ w = 1/4 M = 1

a0 = 0.0001
r∗

ϵ a0
r∗

For  this  dynamical  system,  similar  to  the  above  two
cases, we present the values of , , and  for differ-
ent  values  of  in Table.  4 for , ,  and

. We also plot the behavior of the critical radi-
us  for the sub-relativistic fluid with respect to the black
hole parameter  for different values of ; this is shown
in Fig. 6. Clearly, the critical radius  decreases with in-

ϵ a0creasing  and .

w = 1/4
w = 1/2

w = 1/3 v > v∗
v < −v∗
−v∗ < v < v∗

v < 0
v > 0

The phase space portrait of the dynamical system for
the sub-relativistic fluid is shown in Fig. 7. From this fig-
ure,  we observe that  the type of  the fluid motion for  the
sub-relativistic fluid ( ) is same as those for the ul-
tra-relativistic  fluid  ( )  and  the  radiation  fluid
( ).  For ,  the  magenta  and  blue  curves  are
purely  supersonic  outflows,  while  for , they  rep-
resent  supersonic  accretions.  For ,  these
curves  are  sub-sonic  flows.  The  black  curves  shown  in
Fig.  7 are more interesting since they represent  the tran-
sonic  solution  of  the  spherical  accretion  for  and
spherical outflow for  around the black hole. Similar
to the results for the ultra-relativistic and radiation fluids,
the red and green curves represent non-physical solutions.

B.    Polytropic test fluid
The state of a polytropic test fluid can be described by

p = κnγ, (69)

κ γ
γ > 1

where  and  are  constants.  For  ordinary  matter,  one
generally works with the constraint . Following [45],
we obtain  the  following  expressions  for  the  specific  en-
thalpy:

h = m+
κγnγ−1

γ−1
, (70) where the constant of integration has been identified with

the  baryonic  mass m.  The  three-dimensional  speed  of
sound is given by

 

r∗ v∗ H∗ ϵ

w = 1/4 a0 M = 1 a0 = 0.0001
Table 4.    Values of , , and  at the sonic point, for different values of the black hole parameter  for the sub-relativistic fluid

. The black hole parameters M and  are set to  and .

ϵ 0 0.1 0.2 0.3 0.4 0.5

r0 2 1.81818 1.66667 1.53846 1.42857 1.33333

r∗ 3.49993 3.32303 3.20741 3.13980 3.10743 3.09881

v∗ 0.5 0.5 0.5 0.5 0.5 0.5

H∗ 0.26557 0.27281 0.27750 0.28022 0.2815 0.28184

 

r∗ ϵ

a0

w = 1/4

Fig.  6.    (color  online)  Relation between  and  for differ-
ent  in the spherical accretion process for the sub-relativist-
ic fluid ( ).

 

w = 1/4

M = 1 ϵ = 0.1 a0 = 0.0001
r0 ≃ 1.81818 r∗ ≃ 3.32303 v∗ ≃ 0.5

r∗,v∗ r∗,−v∗
H =H∗ ≃ 0.272806

H =H∗ −0.03
H =H∗ −0.05
H =H∗ +0.03
H =H∗ +0.1

Fig. 7.    (color online) Phase space portrait of the dynamical
system (33), (34) for the sub-relativistic fluid ( ), for the
black  hole  parameters , ,  and .  The
parameters  are , , .  Black  plot:
the solution curve through the saddle CPs ( ) and ( )
for which . Red plot: the solution curve for
which . Green plot: the solution curve for which

.  Magenta  plot:  the  solution  curve  for  which

.  Blue  plot:  the  solution  curve  for  which
.
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c2
s =

(γ−1)Y
m(γ−1)+Y

(Y ≡ κγnγ−1). (71)

Using Eq. (41) in Eq. (71), we obtain

h = m

1+Z
(

1− v2

r4N2v2

)(γ−1)/2 , (72)

where

Z ≡ κγ

m(γ−1)
|C1|γ−1 = const. > 0, (73)

and Z is a positive constant. If critical points exist, Z takes
the special form

Z ≡ κγn
γ−1
∗

m(γ−1)

 r5
∗N

2
∗,r∗

4

(γ−1)/2

= const. > 0. (74)

κn∗/m

The constant Z depends on the black hole parameters
and  the  test  fluid.  From  Eq.  (74),  it  is  clear  that Z is
roughly  proportional  to  for  a  given  black  hole
solution and certain test fluids.

Inserting  Eq.  (72)  into  Eq.  (31),  we  evaluate  the
Hamiltonian by

H = N2

1− v2

1+Z
(

1− v2

r4N2v2

)(γ−1)/22

, (75)

m2 (t̄,H)
N2(r) > 0 N2

,r > 0
Z > 0 γ > 1

where  has been absorbed into a redefinition of .
Obviously,  and  for all r. This means that
the constant  (recall that ). It is easy to see that
there are  no  global  solutions,  since  the  Hamiltonian  re-
mains constant along the solution curves.

γ > 1
v = 0 r , r0

(r0,0) r = r0
N2(r) = 0

Notice  that  since ,  the  solution  curves  do  not
cross  the r axis  at  points  where  and ; other-
wise,  the  Hamiltonian  (75)  would  diverge  there.  The
point on the r axis which the solution curves may cross is
only .  The  horizon  is  a  single  root  to

, in the vicinity of which v behaves as

|v| ∝ |r− r0|
2−γ

2(γ−1) . (76)

1 < γ < 2
H(r0,0) H(r,v) (r,v) →

(r0,0) 1 < γ < 2 p = κnγ

We  see  that  only  solutions  with  may  cross
the r axis. Here,  is the limit of  as  

.  When ,  the  pressure  diverges  at
the horizon as

p ∝ |r− r0|
−γ

2(γ−1) . (77)

Then, inserting

Y = m(γ−1)Z
(

1− v2

r4N2v2

)(γ−1)/2

(78)

into Eq. (71), we obtain

c2
s = Z(γ−1− c2

s)
(

1− v2

r4N2v2

)(γ−1)/2

. (79)

c2
s(r∗) = v2(r∗) = v2

∗

This, along with Eq. (36), takes the form of the following
expressions at the critical points (  ):

c2
s(r∗) = Z(γ−1− v2

∗)
(

1− v2
∗

r4
∗N2
∗v2
∗

)(γ−1)/2

, (80)

v2
∗ =

M[−12M2ϵ + r2
∗(1+ ϵ)

3+4a0M(3M− r∗(1+ ϵ))]
LT1

. (81)

(r∗,v∗)

n∗

Here, we have used Eq. (36) to obtain the right-hand side
of Eq. (81). If there are critical points, the solution of this
system  of  equations  in  provides  all  the  critical
points,  with  a  given  value  of  the  positive  constant Z.
Then,  one can use the  values  of  critical  points  to  reduce

 from Eq. (74).

−1 < v < 0

Numerical solutions to the dynamical system of Eqns.
(80)  and (81)  are  shown in Fig.  8.  Clearly,  there  is  only
one critical point, a saddle point, in accretion ( )

 

γ = 5/3 Z = 5

M = 1 ϵ = 0.1 a0 = 0.0001
r0 ≃ 1.81818 r∗ ≃ 2.30998 v∗ ≃ 0.704098

r∗,v∗
r∗,−v∗ H =H∗ ≃ 5.5208

H =H∗ −0.3
H =H∗ −1.0

H =H∗ +0.5
H =H∗ +1.0

Fig.  8.    (color  online)  Accretion  of  a  polytropic  test  fluid.
Contour  plots  of  the  Hamiltonian  (75)  for  and ,
for  the  black  hole  parameters , ,  and .
The  parameters  are , , .
Black  plot:  the  solution  curve  through the  saddle  CPs  ( )
and ( ) for which . Red plot: the solution
curve  for  which .  Green  plot:  the  solution  curve
for  which .  Magenta  plot:  the  solution  curve  for
which .  Blue  plot:  the  solution  curve  for  which
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w = 1/2
w = 1/3 w = 1/4

of a polytropic test fluid. The motion types for the poly-
tropic test fluids, as shown in Fig. 8, are the same as the
motion  types  for  the  isothermal  test  fluids  with 
(c.f. Fig. 3),  (c.f. Fig. 5), and  (c.f. Fig. 7).

VI.  CORRESPONDENCE BETWEEN SONIC
POINTS OF PHOTON GAS AND PHOTON

SPHERE

Recently,  a  correspondence  was  shown  between  the
sonic points of the ideal photon gas and the photon sphere
in static spherically symmetric spacetimes [37]. This im-
portant  result  is  valid  not  only  for  spherical  accretion  of
the ideal photon gas but also for rotating accretion in stat-
ic  spherically  symmetric  spacetimes  [38, 39, 47].  In  this
section, we  establish  this  correspondence  for  parameter-
ized spherically symmetric black holes.

Let  us  first  consider  the  spherical  accretion  of  the
ideal  photon  gas  and  derive  the  corresponding  sonic
points. The equation of state for the ideal photon gas in d-
dimensional space is

h =
kγ
γ−1

nγ−1, (82)

with

γ =
d+1

d
, (83)

where k is  a  constant  of  the  entropy  [37].  The  speed  of
sound for the ideal photon gas is constant

c2
s ≡

dlnh
dlnn

= γ−1. (84)

d = 3
For  general  parameterized  spherically  symmetric

spacetimes  ( ),  the  equation  of  state  of  the  ideal
photon gas becomes

h = 4kn1/3, (85)

c2
s = 2

r∗

and the speed of sound for the ideal photon gas is .
For the  accretion  of  the  ideal  photon  gas  in  parameter-
ized  spherically  symmetric  spacetimes,  the  radius  of
the sonic point is specified by

d
dr

(N
r

)
= 0. (86)

To proceed, let us derive the photon sphere by analyz-
ing the evolution of a photon in a parameterized spheric-
ally  symmetric  black  hole.  The  photon  follows  the  null
geodesics in a given black hole spacetime. As the space-

θ = π/2
time is spherically symmetric, we can perform the calcu-
lations  in  the  equatorial  plane .  To  find  the  null
geodesics around the black hole we can use the Hamilton-
Jacobi equation, given as follows:

∂S
∂λ
= −1

2
gµν
∂S
∂xµ
∂S
∂xν
, (87)

λwhere  is the affine parameter of the null geodesic, and
S denotes the Jacobi action of the photon. The Jacobi ac-
tion S can be separated in the following form:

S = −Et+Lϕ+S r(r), (88)

S r(r)
where E and L represent the energy and the angular mo-
mentum  of  the  photon,  respectively.  The  function 
depends only on r.

Substituting  the  Jacobi  action  into  the  Hamilton-Jac-
obi equation, we obtain

S r(r) =
∫ r B2(r)

√
R(r)

r2N2(r)
dr, (89)

where

R(r) = − r2N2(r)L2

B2(r)
+

r4E2

B2(r)
. (90)

The variation of the Jacobi action gives the following
equations of motion for the evolution of the photon:

dt
dλ
=

E
N2(r)

, (91)

dϕ
dλ
=

L
r2 , (92)

dr
dλ
=

√
R(r)
r2 . (93)

To  determine  the  radius  of  the  photon  sphere  of  the
black  hole,  we need to  find  the  critical  circular  orbit  for
the photon, which can be derived from the unstable con-
dition

R(r) = 0,
dR(r)

dr
= 0. (94)

For a parameterized spherically symmetric black hole,
from the above conditions, one finds
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d
dr

(N
r

)
= 0. (95)

r∗

This is the condition for determining the radius of the
photon  sphere.  Clearly,  Eq.  (86)  is  actually  the  same  as
Eq. (95), which means that the critical radius  of a son-
ic point, for the accretion of the ideal photon gas in para-
meterized  spherically  symmetric  spacetimes,  is  equal  to
the radius of the photon sphere.

r∗With  Eq.  (95),  one  obtains  the  critical  radius  and
the radius of the photon sphere in parameterized spheric-
ally symmetric spacetimes

r∗ =
(

1
N

dN
dr

)−1
∣∣∣∣∣∣∣
r=r∗

. (96)

r∗
By substituting  Eq.  (47)  into  the  above  equation,  we

obtain the expression for ,

r∗ =M+
(1+ i

√
3)M2(1+ ϵ)[−8a0+3(1+ ϵ)2]

2LT5

+
(1− i

√
3)LT5

6(1+ ϵ)3 , (97)

where

LT5 =[−27M3(1+ ϵ)6(1+a0(6−4ϵ)−7ϵ +3ϵ2+ ϵ3)

+6
√

3
√

LT6]1/3,
(98)

and

LT6 =M6(1+ ϵ)12[128a3
0−9a2

0(−11+68ϵ +4ϵ2)

−135ϵ(1−2ϵ +3ϵ2+ ϵ3)+135a0(1−3ϵ +7ϵ2+ ϵ3)].
(99)

a0 ϵ

r∗ = 3M

It is  easy to verify that  when the additional  paramet-
ers (  and ) are set to zero, the critical radius reduces to

.  In Fig.  9,  we  schematically  show  the  spherical
accretion of the ideal photon gas onto a spherically sym-
metric  black  hole  and  its  photon  sphere  (represented  by
the red circle). The red circle in Fig. 9 thus has a two-fold
meaning,  since  it  represents  both  the  photon  sphere  and
the  sonic  radius  of  the  spherical  accretion  of  the  ideal
photon gas.

VII.  CONCLUSIONS AND DISCUSSION

In this paper, we studied the spherical accretion flow
of a  perfect  fluid  onto  a  general  parameterized  spheric-
ally symmetric black hole. For this purpose, we first for-
mulated two basic  equations for  describing the accretion

w = 1
w = 1/2

w = 1/3
w = 1/4 ϵ r0, r∗, andH∗ v∗

w = 1/2 w = 1/3 w = 1/4

process and presented the general formulas for determin-
ing the sonic points  (or  critical  points).  These two equa-
tions were derived from the conservation laws of energy
and particle  number  of  the  fluid.  Using  these  two  equa-
tions, we analyzed the accretion processes of various per-
fect fluids, such as the isothermal fluids of the ultra-stiff,
ultra-relativistic, and sub-relativistic types,  and polytrop-
ic fluids. The flow behaviors of these test fluids around a
general  parameterized  spherically  symmetric  black  hole
were studied in detail and are shown graphically in Figs.
1, 3, 5, 7. For the isothermal fluid, it is interesting to men-
tion  that  the  sonic  point  does  not  exist  for  the  ultra-stiff
fluid with  alone; thus, transonic solutions exist for
the  ultra-relativistic  fluid  with ,  for  the  radiation
fluid  with ,  and  for  the  sub-relativistic  fluid

. The value of  affects  but not ,
which indicates the effect of the position of the event ho-
rizon. For the polytropic fluid, Fig. 8 shows that it exhib-
its  a  similar  flow  behavior  as  the  isothermal  fluids  with

, ,  and .  Here,  we  would  like  to
mention  that  the  results  presented  in  this  paper  can  also
be reduced to specific  cases in several  modified theories
of gravity.  For example,  one can map the results  here to
the  first-type  Einstein-Aether  black  hole  in  [48, 49]  by
setting

ϵ =
M−
√

M2−æ2

M+
√

M2−æ2
, (100)

a0 =
æ2

(M+
√

M2−æ2)2
, b0 = 0, (101)

 

Fig. 9.    (color online) Schematic of the spherical accretion of
the ideal  photon gas onto a  spherically symmetric  black hole
and its photon sphere (the red circle). The red circle has a two-
fold  meaning,  since  it  represents  both  the  photon  sphere  and
the sonic radius of the spherical accretion of the ideal photon
gas.
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ai = 0, bi = 0, (i > 0), (102)

where

æ2 = −2c13− c14

2(1− c13)
M2, (103)

c13 c14with  and  being the coupling constants in the Ein-
stein-Aether theory. It is interesting to mention that flow
behaviors for different test fluids in this paper are qualit-
atively consistent with those studied in [50] for the spher-
ical accretion in the Einstein-Aether theory.

We  further  considered  the  spherical  accretion  of  the
ideal photon gas and derived the radius of its sonic point.
Comparing the radius with that of the photon sphere for a
general  parameterized  spherically  symmetric  black  hole,
we  studied  the  correspondence  between  the  sonic  points
of  the  accreting  photon  gas  and  the  photon  sphere  for  a
general parameterized spherically symmetric black hole.

With the  above  main  results,  we  would  like  to  men-
tion several  directions  that  can be pursued for  extending
our analysis. First,  spherical accretion is the simplest ac-
cretion scenario, in which the accreting matter falls stead-
ily  and  radially  into  a  black  hole.  This  is  an  extreme
simple case. Therefore, it is interesting to explore the ac-

creting  behaviors  of  various  types  of  matter  when  the
spherical symmetry  approximation  is  relaxed  by  consid-
ering a non-zero relative velocity between the black hole
and the  accreting matter.  This  scenario  is  also  known as
wind accretion or Bondi–Hoyle–Lyttleton accretion [51-
53]  (see  [54]  for  a  review).  We  will  consider  the  more
complicated accretion disk model,  which is  more related
to real observations, in our future work.

Second, it is also interesting to extend our analysis to
rotating  black  holes.  In  a  rotating  background,  one  may
consider  rotating  fluids  accreting  onto  a  rotating  black
hole. The rotation of the fluids can lead to the formation
of  a  disc-like  structure  around  the  black  hole,  and  such
accretion  discs  are  the  most  commonly  studied  engines
for  explaining  astrophysical  phenomena  such  as  active
galactic  nuclei,  X-ray  binaries,  and  gamma-ray  bursts.
However,  considering  rotation  introduces  complications
into the accretion problem, in which case, the study heav-
ily relies on numerical calculations.

Finally, when one considers a rotating black hole, its
shadow  does  not  correspond  to  a  photon  sphere  but  a
photon  region.  An  immediate  question  now  arises  as  to
what structure in the rotating accretion of the ideal photon
gas  corresponds  to  the  photon region of  a  rotating  black
hole. This is still an open issue.
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