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Abstract: Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermi-
ons at a physical pion mass, we obtain a parameter-free prediction of QCD’s renormalisation-group-invariant pro-
cess-independent effective charge, &(k?). Owing to the dynamical breaking of scale invariance, evident in the emer-
gence of a gluon mass-scale, my =0.43(1) GeV, this coupling saturates at infrared momenta: &(0)/7=0.97(4).
Amongst other things: @&(k?) is almost identical to the process-dependent (PD) effective charge defined via the
Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement
between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying
roles played by @(k?) suggests that it is a strong candidate for that object which represents the interaction strength in
QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-
defined quantum field theory in four dimensions.
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1 Introduction

QCD fascinates for many reasons, with the feature of
confinement looming large amongst them. At issue here
is the definition. When communicating about confine-
ment, a typical practitioner has a notion in mind; yet the
perspectives of any two different practitioners are often
distinct, e.g. Refs. [1-3]. The proof of one expression of
confinement will be contained within a demonstration
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that quantum S U.(3) gauge field theory is mathematic-
ally well-defined, i.e. a solution to the “Millennium Prob-
lem” [4]. However, that may be of limited value because
Nature has provided light-quark degrees-of-freedom,
which seemingly play a crucial réle in the empirical real-
isation of confinement, perhaps because they enable
screening of color charge at low coupling strengths [2].
The QCD running coupling lies at the heart of many
attempts to define and understand confinement because,
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almost immediately following the demonstration of
asymptotic freedom [5-7], the associated appearance of
an infrared Landau pole in the perturbative expression for
the running coupling spawned the idea of infrared
slavery, viz. confinement expressed through a far-in-
frared divergence in the running coupling. In the absence
of a nonperturbative definition of a unique running coup-
ling, this idea is not more than a conjecture. Notwith-
standing that, and possibly inspired by the challenge, at-
tempts to solve the confinement puzzle by completing the
nonperturbative definition and calculation of a running
coupling in QCD have received ongoing attention. (See
Refs. [8, 9] and citations thereof.)

The archetypal running coupling is that computed in
quantum electrodynamics (QED) more than sixty years
ago [10]: it is now known to great accuracy [11] and the
running has been observed directly [12, 13]. This Gell-
Mann—-Low effective charge is a renormalisation group
invariant (RGI) and process-independent (PI) running
coupling, which is obtained simply by computing the
photon vacuum polarisation. That is because ghost fields
decouple in Abelian theories; hence, one has the Ward
identity [14], which guarantees that the electric-charge
renormalisation constant is equivalent to that of the
photon field. Stated physically, the impact of dressing the
interaction vertices is absorbed into the vacuum polarisa-
tion.

This is not usually true in QCD because ghost fields
do not decouple; consequently, the renormalisation con-
stants associated with the running coupling and the gluon
vacuum polarisation are different. However, there is one
approach to analysing QCD’s Schwinger functions that
preserves some of QED ’s simplicity; namely, the com-
bination of pinch technique (PT) [3, 15-17]and back-
ground field method (BFM) [18]. This framework acts to
make QCD “look ” Abelian: one systematically re-
arranges classes of diagrams and their sums in order to
obtain modified Schwinger functions that satisfy linear
Slavnov-Taylor identities [19, 20]. In the gauge sector,
using Landau gauge, this produces a modified gluon
dressing function from which one can compute a unique
QCD running coupling, i.e., the PT-BFM polarisation
captures all required features of the renormalisation
group. Furthermore, the coupling is process-independent:
one obtains precisely the same result, independent of the
scattering process considered, whether gluon+gluon—
gluon+gluon, quark+quark — quark+quark, etc. This
clean connection between the coupling and the gluon va-
cuum polarisation relies on another particular feature of
QCD, viz. in Landau gauge the renormalisation constant
of the gluon-ghost vertex is unity [19], in consequence of
which the effective charge obtained from the PT-BFM
gluon vacuum polarisation is directly connected with that
deduced from the gluon-ghost vertex [21-23], sometimes

called the “Taylor coupling”, at [24, 25].

These observations underly the RGI PI effective
coupling, &(k?), introduced in Ref. [26]. Therein, a com-
bination of continuum- and lattice-QCD methods was
used to complete the first calculation of &(k?), which was
subsequently refined [27]. With improvements in lattice
configurations, it is worth returning to that effective
charge. In Sec. 2 we recapitulate the discussion in Ref.
[26]. Then, in Sec. 3, using the most up-to-date lattice-
QCD (IQCD) configurations available, we update the pre-
diction for &(k*) and comment upon its relevance to con-
finement and the nonperturbative definition of QCD. Sec-
tion 4 draws novel connections between &(k%) and an of-
ten discussed process-dependent effective charge [28-30],
highlighting the possibility that &(k*) may provide an ob-
jective measure of the interaction strength in QCD at any
given momentum scale. Section 5 presents a summary
and offers perspectives.

2 Pl effective coupling

We begin with the mathematical foundation provided
by Refs. [31, 32]; namely, using the PT-BFM method,

one derives the following identities (T, (k) =0,y —
kyky /K?):
A(HDR (k) = d(K*) T, (K), (1a)
2y o 125712 aT(kz)
M=k = e pra e 1
ar(k®) = AP AWR PVFH(K5 0, (Ic)

where:

(i) d(k?) is the RGI PI running-interaction discussed
in Ref. [23];

(i) a(Z?) :=g*(*)/[4n], where g is the Lagrangian
coupling and ¢ the renormalisation scale;

(iil) DjP (k) = APB(k*)T,, (k) is the PT-BFM gluon two-
point function;

(iv) Dy (k) = A(kz)T,JV(k) is the canonical gluon two-
point function;

(v) F is the dressing function for the ghost propagator;

(vi) and L is that longitudinal part of the gluon-ghost
vacuum polarisation, which vanishes at k> = 0 [23].

(The RGI character of d(k?) has explicitly been veri-
fied: numerically via direct calculation [31] and analytic-
ally in the infrared and ultraviolet limits [32].)

Using Egs. (1), QCD’s matter-sector gap equation —
the dressed-quark Dyson-Schwinger equation (DSE) —
can be written (k= p—q)

S7Np) =2y (iy- p+m™™) +2(p), (2a)
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A
Xp) =2 [ 4ndU) TS @Fa.p). @D
4

where fd/; represents a Poincaré invariant regularisation
of the four-dimensional integral, with A the regularisa-
tion mass-scale, which is removed to infinity as the last
step in all calculations; and the usual Z;I'? has become
7,1, with the latter function being a PT-BFM gluon-
quark vertex that satisfies an Abelian-like Ward-Green-
Takahashi identity [17], and Z;, are, respectively, the
gluon-quark vertex and quark wave function renormalisa-
tion constants.

Here it is useful to review the ultraviolet and infrared
limits of the RGI interaction, c’i\(kz), and draw its connec-
tion with the PI effective charge.

At momenta far above Aqcp, the mass-scale charac-
terising QCD perturbation theory,l) one has [32]

3
LUSEFE:E) | = o) +0(@). ()
It is not necessary to specify a renormalisation scheme
because all couplings are equivalent at one-loop level.
Hence, I(k*) in Eq. (1b) is a PI running coupling at ultra-
violet momenta:

ar(k?)
[1 - L(k*; {3 F(k2;0))?

3
1+ Zrar(kz)+0<a%)] . 4)

I(k?) =

=ar(k?)

At the other extreme: k? <« A(chw one encounters a
signature feature of strong QCD; namely, c’f(kz) saturates
to a finite value at k> =0 owing to the nonperturbative
generation of a mass-scale in the gauge sector, e.g., Refs.
[35-45]. In fact [23, 31]

0 < d(k* = 0) =a(HAB (K = 0;¢%)

) @
=2 %)

The appearance of this mass-scale does not alter any
Slavnov-Taylor identities [19, 20]; hence, all aspects and
consequences of QCD’s BRST invariance [46, 47] are
preserved.

It is useful to connect this outcome with the canonic-
al gluon two-point function, which satisfies, using Egs.
(1):

AR EHFP (K% =

6
APB(R?; £)[1 - LU* Y F (5 81 ©)

One can write

AN = T +my(K 0, ™)

where mg(k*,{) is the canonical dynamical gluon
mass function, and J(k%,() is the associated kinetic term.
For later use, we note [48, 49]:

102,02 1002y + 00, (8a)

J(kz, é,) k2>>’i\écf’ [1[1(]{2 /A(ZQCD)/ 11’1(52 /AéCD)])’o/ﬁn
x(1+0(1/k%)), (8b)

with yo =13/2-2n¢/3, Bg = 11-2ny/3, ny is the number
of active quark flavours. Now

(%) = mg(0;%)/F(0;£%) 9)

follows from Egs. (5)—(7).
Consider the product

D) = A3 2% my(0;4%) [ mg, (10)

which is a RGI function. Now use Eqs. (8) to develop an
interpolation, D(k?), which accurately describes avail-
able results for D(k?) on k?> < ¢? and yet also expresses
the following behaviour:

1 :{ m3+ Ok Ink?) K < Adep an
D(K2) K> +0(1)

2> A,
i.e., in both the far-infrared and -ultraviolet, D(k2) be-
haves as the free propagator for a boson with mass my.
Then, writing
d(k*) = a(k®) D), (12)

one arrives at an effective charge, &(k?), which is:

(a) RGI;

(b) P1, hence, key to the unified description of an ex-
tensive array of hadron observables;

(c) identical to the standard QCD running-coupling in
the ultraviolet, Eq. (4);

(d) saturates to a finite value, ag, on k*> < AZQCD;

and completely determined by those functions from
QCD’s gauge sector, which connect the canonical and
PT-BFM gluon two-point functions. Concretely ex-
pressed,

o D[ F(E/F0,8) r

ak”) = aOD(kZ) [1—L(k2;§2)F(k2;§2) (13a)
ese [ FOEPIFO0:2) T
- aO[l—L(kZ;ﬁ)F(kZ;gZ)} ' (13b)

Crucially, each of these functions can be computed using
continuum and/or lattice methods.

In terms of this PI charge, the quark DSE, Eq. (2), can
be rewritten:

SNp) =2, (iy- p+m"™) +2(p), (14a)

1) Renormalising via momentum-subtraction [33], Aqcp = 0.58 GeV when three quark flavours are active [34].
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A
Xp =24 fd 4 (k) Dy (kyy,S (@)F5(q, p) »
q
where D, (k) =D(k2)T,,V(k). This series of observations
enabled unification of that body of work directed at the
ab initio computation of QCD’s effective interaction via
direct analyses of gauge-sector gap equations and the
studies which aimed to infer the interaction by fitting data
within a symmetry-preserving truncation of those equa-
tions in the matter sector that are relevant to bound-state
properties [31].

It is worth remarking here that &(k%) is RGI and PI in
any gauge. Moreover, it is sufficient to calculate this
charge in Landau gauge, because @(k?) is form-invariant
under gauge transformations, since the identities ex-
pressed by Egs. (1) are the same in all linear covariant
gauges [50]; and gauge covariance ensures that such
transformations are implemented by multiplying a simple
factor into the configuration space transform of the gap
equation's solution and may consequently be absorbed in-
to the dressed-quark two-point function [51].

(14b)

3 Effective charge from modern lattice simu-
lations

3.1 Existing results

Existing analyses of continuum and lattice results for
QCD’s gauge sector yield the PI coupling depicted as the
solid black curve in Fig. 2 of Ref. [27], corresponding to
ao/n=1.00, my=0.47 GeV=m,/2, where m,, is the pro-
ton mass. These results were based on IQCD simulations
obtained with four dynamical flavours of twisted-mass
fermions [24, 25] at pion masses m, > 0.3 GeV.

Today, new simulations exist with three domain-wall
fermions and m, =0.139 GeV. They were recently em-
ployed [34] to compute the Taylor coupling at intermedi-
ate and large momenta; and therefrom deduce the MS-
coupling at the Z° mass, producing a result in agreement
with the world average [11]. We now take advantage of
the gauge-sector two-point Schwinger functions com-
puted with these state-of-the-art lattice configurations in
order to deliver a refined prediction for &(k?).

3.2 Gluon two-point function

The gluon two-point function is obtained via Monte-
Carlo averaging over gauge-field lattice configurations
constrained to Landau gauge [32, 52]. Using the MOM
renormalisation scheme with £ =3.6 GeV, the configura-
tions from Refs. [53-55] yield the results for A(k) depic-
ted in the upper panel of Fig. 1. (¢ =3.6 GeV is chosen,
because it lies within both the domain of reliable lattice
output and perturbative-QCD validity.)

The information required herein is best obtained by
developing an accurate interpolation of the lattice results

W
)

o B=1.63 ]

AK,Q) [GeV7]

(=)

F(k,0)

15 4

PR |
0 1

2
k [GeV]

(color online) Two-point Schwinger functions -

Fig. 1.
gluon (upper panel) and ghost (lower) - obtained from
1QCD simulations: gauge field ensembles with ny =3 do-
main-wall fermions [53-55] at the physical pion mass.
(Renormalisation point: ¢ =3.6 GeV.) Details of the lattice
configurations can be found in Ref. [34]-Table I, save for
those at 8 =1.63. In this case, all features are as described in
connection with Ref. [54]-Table II, except the volume,
which is 483 x64. Solid black curve: upper panel - least-
squares fit to lattice output defined by Egs. (15), (16); and
lower panel - solution of the ghost DSE described in Sec.
3.3. (Sec. 3.4 explains the grey systematic uncertainty
bands bordered by dashed curves in both panels.)

in Fig. I-upper panel. Informed by Egs. (7), (8), as dis-
cussed in connection with Egs. (10), (11), we use (s = k)

()1 +ny5]

Aﬁt s 2 — ,
(5:6°) 1—6sln[1+m%/s]+d1s+d§s2€(s)

(15)

where £(s) = [In([s +£*1/Adep)/ I/ Agyep) P and all
dependence on the renormalisation scale is otherwise car-
ried by 19(¢?). Using this form, a least-squares fit yields
(all quantities in units GeV~2):
/l() ny 0 dl dz (16)
5.041 0.282 0.432 1.887 1.241 °

Here we would like to highlight that we use four distinct
lattice ensembles, every one with 350 configurations.
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Each ensemble locates points at different momentum val-
ues, but all cover a momentum domain of similar extent.
In fitting the collection of all results, we employed a y2-
minimisation procedure that accounts for the error on
each individual point. Finally, a jackknife procedure was
used to verify stability of the central values listed in Eq.
(16).

The fitting function specified by Egs. (15), (16) is
drawn as the solid curve in Fig. 1-upper panel: it provides
an excellent description of the lattice output. Cross-refer-
encing with Eq. (7), and, subsequently, Egs. (10), (11),
one obtains (in GeV)

1/2

n
my = C;— =0428. (17

mg(0;42) = 1/2—0445 -

0

(Estimates of sensitivity to errors on inputs are provided
in Sec. 3.4.)

3.3 Ghost dressing function and L(k?;{?)

The ghost propagator dressing function, F(k%;£?), can
be obtained via inversion of the Faddeev-Popov operator
[32, 52, 56]. Once again, using the configurations in Refs.
[53-55] and MOM renormalisation at ¢ =3.6 GeV, we
obtain the points in Fig. 1-lower panell).

The ghost dressing function can also be obtained by
solving the associated gap equation (p =k+q):

F 0% = 22 A =383

A 2
><f [1—:—q}H1(q PG il g)’ (18)

dg C] P
where Z;3 is the ghost wave function renormalization con-
stant. The function H;(q,p) in Eq. (18) derives from the
dressed ghost-gluon vertex. In Landau gauge, Hi(q,p)
only differs modestly from unity [52, 57, 58]. Herein, we
use the parametrisation of Ref. [52, Eq. (4.6)], which in-
corporates all infrared physics that contributes materially
to the solution of Eq. (18). Stated differently, the para-
metrisation enables one to obtain a solution of Eq. (18) in
excellent agreement with available lattice points, as evid-
enced by the solid black curve in Fig. 1-lower panel.
More complicated parametrisations are available [59], but
they do not improve the computed result for F(k?;7%). In
solving Eq. (18), we use Eqgs. (15), (16) for the gluon
two-point function, g?(Z?)=4.44 at /=3.6 GeV [34],
and choose Z3(¢%; A?) such that F({%;0%) = 1.

It remains only to compute L(k*;¢?), the longitudinal
part of the gluon-ghost vacuum polarisation. This func-
tion vanishes at k>=0 and is perturbatively small on

0.15- b

0.1+ -

L0

0.05— -

2
k [GeV]

L(k,0) F(k,5)

0.05H .

[ S —— \\\\\\\\\\é\\\\\\\\\\ wwwwwwwww ]
k [GeV]

Fig. 2. Upper panel - L(k*;¢%) obtained from Eq. (19). Lower
panel - product L(k*;7)F(k*;¢%) that appears in computing
d(k?); and hence, @(k?). (Sec. 3.4 explains the grey system-
atic uncertainty bands bordered by dashed curves in both
panels.)

K2 > AéCD, but, its behaviour at intermediate momenta
has a significant effect on d(k%) and, hence, the PI effect-

ive charge [26]. Following Ref. [23]:
LK*:¢) =82

A 2
k Fp*8%) (19)
xf [4k2 *q —1]Hl(q N Nt
p?
As described above, every element in the integrand is ac-
curately known; and using these inputs, one obtains the
results in Fig. 2.

3.4 Effective interaction

We now have all information required for calculation
of d(k*) and, hence, the RGI PI effective charge, a(k?).
However, before proceeding we provide an estimate of
the sensitivity of our prediction to uncertainties on the in-
puts. To that end, consider Fig. 1-upper panel. The res-

1) Our inversion algorithm was ill-adapted to the 8 = 1.63 ensemble, which has the largest volume but an awkward geometry: T X L3 ,T=64,L=48, T/L=4/3,
whereas 7/L =2 for all other configurations. Hypercubic artefacts are more difficult to remove when 7'/L is not an even integer; hence, S = 1.63 results are not

reported.
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ults from all four lattices are in perfect agreement, except
at the two lowest momenta. At these positions, the devi-
ation between our fit and the lattice points is < 1%. Nat-
urally, low-momentum lattice results are suspect owing to
finite-volume effects. Acknowledging that, then by ap-
plying a uniform 1% error to Afi'(s), we express a conser-
vative uncertainty estimate. Afi(s) is the key element in
the linear kernel of Eq. (18); hence, F(k?*;¢?) can also be
uncertain at the level of 1%. The same is true for
L(k*;2%). (Given the precise agreement between our DSE
solution and the lattice results for F(k*;¢?), we neglect
any error in H,.) Following this reasoning, we sub-
sequently report results obtained by including a propag-
ated 1% uncertainty in each of these inputs. In all figures,
this is depicted using a grey band bordered by dashed
curves.

In Fig. 3 we depict our prediction for the RGI func-
tion d(k?) defined in Eqgs. (1). It is characterised by the in-
frared value (in GeV'z):

d(k* = 0) = 16.6(4); (20)
and in combination with Egs. (5), (15)—(17), one obtains
ap =mid(k* =0)=0.974)r. (21)

Earlier analyses yielded [26, 27, 31]: a¢/n=0.9-1.0.
(N.B. Eq. (14) only supports emergence of a nonzero
chiral-limit dressed-quark mass when ag = 0.37 [60].)

In Fig. 3, we have also drawn the results for d(k?)
computed previously [31, 32]: quantitative differences are
evident. The first calculation [31] used quenched 1QCD
results for A(k*;/?); the second [32] employed
ng=2+1+1 flavours of twisted-mass fermions with
my 2 0.3 GeV; and herein, we used configurations built

\ ‘ \
15 [ i m 7
7
% 107
O
—t
-~ L
N
<O r
5 = —
[ | = This work
r |- — Binosi et al. (2017), m >300 MeV
I | — Binosi etal. (2014), N=0
| Ll Ll
00.01 0.1 1
k [GeV]
Fig. 3. (color online) d(k?), RGI interaction reported in Ref.

[31] - dashed blue curve; in Ref. [32] - dot-dashed green
curve; and computed herein - solid black curve within
bands. The advances over time are largely driven by im-
provements in 1QCD results for the gluon two-point func-
tion. (Sec. 3.4 explains the grey systematic uncertainty band
bordered by dashed curves.)

with ny = 3 flavours of domain-wall fermions and a phys-
ical pion mass. It is this steady advance in 1QCD results
for the gluon two-point function that is behind our im-
proved prediction for d(k?).

3.5 Effective charge

The RGI PI effective charge is now available via Egs.
(13), (21), and the prediction deriving from the above
analysis is drawn in Fig. 4. Despite the differences evid-
ent in Fig. 3, the earlier predictions for &(k?) [26, 27] lie
within the grey shaded band, as illustrated using the res-
ult from Ref. [27]. This is because the differences appar-
ent in Fig. 3 owe largely to decreases in my as the IQCD
configurations have improved, modifications which leave
ap largely unchanged.

Figure 4 shows that QCD’s RGI PI coupling is every-
where finite, i.e. there is no Landau pole and the theory
likely possesses an infrared-stable fixed point. The pre-
ceding discussion reveals that these features owe to the
emergence of a nonzero mass-scale in QCD’s gauge sec-
tor, something which must be an integral part of any solu-
tion to the S U.(3) “Millennium Problem” [4]. Indeed, the
fact that mg = m, /2 indicates that the magnitude of scale-
invariance violation in chiral-limit QCD is very large [85]
and seems tuned to eliminate the Gribov ambiguity [86].
Moreover, in concert with asymptotic freedom, such fea-
tures support a view that QCD is unique amongst known
four-dimensional quantum field theories in being defined
and internally consistent at all energy scales. This is in-
trinsically significant and might also have implications
for attempts to develop an understanding of physics bey-
ond the Standard Model based upon non-Abelian gauge
theories [32, 87-93].

T T L

. Exp.a

— This work
F--——|f----2_=% -— R-Qetal (2018)

< I
<3
05— -1
ol
0 005 0.1 I
k [GeV]
Fig. 4. (color online) Solid black curve within grey band --

RGI PI running-coupling, &(k?)/x, obtained herein using
Eqgs. (13), (21); and dot-dashed green curve - earlier result
(R-Q et al. 2018) [27]. (Sec. 3.4 explains the grey systemat-
ic uncertainty band bordered by dashed curves.) For com-
parison, world data on the process-dependent charge, a,, , is
also depicted [28, 29, 61-84].
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4 Process-dependent charge

Another approach to determining an “effective
charge” in QCD was introduced in Ref. [9]. This is a pro-
cess-dependent procedure; namely, an effective running
coupling is defined to be completely fixed by the leading-
order term in the perturbative expansion of a given ob-
servable in terms of the canonical perturbative running
coupling. A potential issue with such a scheme is the pro-
cess-dependence itself. In principle, effective charges
from different observables can be algebraically related
via an expansion of one coupling in terms of the other.
However, expansions of this type would typically con-
tain infinitely many terms [94]; consequently, the connec-
tion does not readily imbue a given process-dependent
charge with the ability to predict any other observable,
since the expansion is only defined a posteriori, i.e. after
both effective charges are independently constructed.

One example is the process-dependent effective
charge ay, (k?), defined via the Bjorken sum rule [95, 96]:

1 2
fo dx[ g} (x. k%) - g} (x, k%) | =: ‘%A [1 - %k)} ., (22

where g/ are the spin-dependent proton and neutron
structure functions, whose extraction requires measure-
ments using polarised targets, on a kinematic domain ap-
propriate to deep inelastic scattering, and g4 is the nucle-
on isovector axial-charge. Merits of this definition are
outlined elsewhere [94]; and they include: the existence
of data for a wide range of k* [28, 29, 61-84], tight sum-
rules constraints on the behaviour of the integral at the IR
and UV extremes of k2, and the isospin non-singlet fea-
ture of the difference, which both ensures the absence of
mixing between quark and gluon operators under evolu-
tion and suppresses contributions from numerous pro-
cesses that are hard to compute and hence might obscure
interpretation of the integral in terms of an effective
charge.

The world's data on g, (k?) are depicted in Fig. 4 and
therein compared with our prediction for the RGI PI run-
ning-coupling &(k?). As discussed in connection with Eq.
(4), all reasonable definitions of a QCD effective charge
must agree on k> > m% Our approach guarantees this con-
nection, e.g., in terms of the widely-used MS running
coupling [11]:

a(k?) = ags(KH) (1 + 1.09 a5 (k) +..), (23a)

g, (k) = agg(k®)(1+ L14aggkD) +...), (23b)
where Eq. (23b) may be built from, e.g., Refs. [97, 98].
Evidently, & and «,, differ by <0.5a55(k*) onany do-

main within which perturbation theory is valid.
Significantly, there is also excellent agreement

between & and g, on the IR domain, k* < m?. We attrib-
ute this to the isospin non-singlet character of the Bjorken
sum rule, which ensures that contributions from many
hard-to-compute processes are suppressed, and these
same processes are absent from &(k?).

The RGI PI charge, @(k?), has been used in an explor-
atory calculation of the proton's elastic electromagnetic
form factors in the hard-scattering regime [27]. More re-
cently, it has been employed to develop the kernel for
DGLAP evolution [99-102] of the pion's parton distribu-
tion functions (PDFs) [103, 104]. Here we provide a nov-
el perspective on this latter application.

To establish a context, we recall that the first DSE ap-
plications to the calculation of hadron observables [105]
(and many subsequent studies), chose a renormalisation
scale deep in the spacelike region: £ =19 GeV, largely to
simplify nonperturbative renormalisation. This procedure
ensures that, for all observables, the DSE quasiparticle
solutions are the primary degrees-of-freedom. Whilst sat-
isfactory for long-wavelength qualities, e.g., hadron
masses, because reliable results are preserved by the con-
nection with QCD and the possibility of refining a
model's parameters, the scheme leads to errors in parton
distributions and form factors. For the latter, although
power-laws are correct, the anomalous dimensions lead-
ing to scaling violations are wrong [106]; and regarding
the PDFs, one loses the link between ¢ and the starting
scale for evolution owing to suppression of parton loops
through renormalisation at a large scale and consequent
error in the calculated anomalous dimension.

These problems are solved by renormalising the DSE
solutions at ¢y < m,, the hadronic scale, at which point
the correct degrees-of-freedom are the dressed-quasi-
particles [103, 104, 107-111]. In this way, one can en-
sure that the meson wave function and related vertices
evolve properly with ¢ [112-114]; namely, enable the
dressed-quark and -antiquark, used to express the wave
function at £, to undress as required by QCD dynamics
and reveal their component sea-quarks and gluons. When
the complete quark-antiquark scattering kernel is used,
these effects are automatically incorporated. However,
any truncation will cause facets to be lost.

Recognising this, the initial predictions for the pion
PDFs in Refs. [103, 104] were presented at the scale g,
whereat the pion is constituted solely from a dressed-
quark and -antiquark; hence, sea and glue distributions
are zero. At any ¢ > (g, each distribution is then obtained
via QCD evolution from these initial forms. Here arises
the question: “What is the natural value of (y? 7,
something which has been asked in all studies since Ref.
[115].

Refs. [103, 104] provided an answer and prediction in
terms of &. Namely, capitalising upon the fact that QCD
possesses a RGI PI effective charge, which saturates in
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the infrared, because the gluon acquires a dynamically
generated mass, it introduced the simplified running
coupling:

4r
BoIn[(mg +k2)/ Adepl”

with m, chosen to reproduce the known value of «y, Eq.
(21). Here, m, ~ my serves as an essentially nonperturbat-
ive scale, whose existence ensures that parton modes with
k*> s m? are screened from interactions. Thus, m, marks
the boundary between soft and hard physics; accordingly,
Refs. [103, 104] identified

CH=my (25)
and used Eq. (24) to define evolution of all PDF mo-
ments.

For example, with ¢"(x;y) being the pion's valence-
quark distribution function and

ak?) =

24)

1
M,(n) = fo dxx" " (x;£(1)), (26)

£(1) = {ye'’?, then Refs. [103, 104] expressed the PDF at
any scale ¢ > £y via the moments
TR
5 [ % ;z»] e
Yo =-4/3)3+2/(n+1)/(n+2) —42?:11(1/1')). This is
leading-order QCD evolution based on & ~ &.

Given that the perturbative expansion parameter in
Eq. (27) is a(0)/[4n] s 1/4 V¢ > ¢y, Refs. [103, 104] ar-
gued that leading-order evolution should provide a good
approximation; and, in fact, working from this assump-
tion, the resulting prediction for ¢"(x;¢ = 5.2GeV) agrees
very well with existing data [116, 117]. Additionally,
sound predictions for the sea-quark and glue distribu-
tions in the pion were also delivered.

Such phenomenological successes support a broader
view of &. Namely, this RGI PI running coupling can
also be interpreted as that special process-dependent ef-
fective charge, for which evolution of the moments of all
pion PDFs is defined by the one-loop formula, expressed
in terms of @ ~ & [118]. It then unifies the Bjorken sum
rule with pion (meson) PDFs. From this perspective, the
question of the size of an expansion parameter no longer
arises. Instead, introduction of & into the leading-order
formula for these observables serves to express the ca-
nonical all-orders resummed and infrared finite result for
each quantity.

As remarked following Eq. (22), it has usually been
thought that there is a different process-dependent charge
for each observable. However, it is now apparent that &,
itself RGI and PI, unifies two very distinct sets of meas-
urements, viz. the pion's structure function and the lead-

M, (1) = M,(0) exp

ing moment of nucleon spin-dependent structure func-
tions. Hence, a(k?) is emerging as a good candidate for
that quantity, which truly describes the strength of QCD’s
interaction at all momentum scales [8].

5 Summary and perspective

Using modern lattice-QCD configurations generated
with three domain-wall fermions at the physical pion
mass, we computed QCD’s renormalisation-group-invari-
ant (RGI) process-independent (PI) effective charge,
&(k*) [Fig. 4], which, in being completely determined by
the gluon two-point function, is a unique strong-interac-
tion analogue of the Gell-Mann—-Low effective coupling
in QED. Owing to the dynamical breakdown of scale in-
variance, expressed through emergence of a RGI gluon
mass-scale, with calculated value m/GeV = 0.43(1) [Eq.
(17)], this running coupling saturates at infrared mo-
menta: &(k> =0)/7=0.97(4) [Eq. (21)]. Our results are
parameter-free predictions.

The calculated RGI PI charge is smooth and mono-
tonically decreasing on k*>>0 and is known to unify a
wide range of observables, inter alia: hadron static prop-
erties [119-122]; parton distribution amplitudes of light-
and heavy-mesons [123-126] and associated elastic and
transition form factors [107-111]. In addition, a(k?) is: (i)
pointwise (almost) identical to the process-dependent
(PD) effective charge, «,,, defined via the Bjorken sum
rule; (i7) capable of marking the boundary between soft
and hard physics; and (iii) that PD charge, which, used at
one-loop in the QCD evolution equations, delivers agree-
ment between pion parton distribution functions calcu-
lated at the hadronic scale and experiment. In playing so
many diverse roles, a(k%) emerges as a strong candidate
for that object, which properly represents the interaction
strength in QCD at any given momentum scale.

Our study supports a conclusion that the Landau pole,
a prominent feature of perturbation theory, is screened
(eliminated) in QCD by the dynamical generation of a
gluon mass-scale, and the theory possesses an infrared
stable fixed point. Accordingly, with standard renormal-
isation theory ensuring that QCD’s ultraviolet behaviour
is under control, QCD emerges as a mathematically well-
defined quantum field theory in four dimensions.

We are grateful for insights from L. Chang, M. Ding,
J. Pawlowski, J.-L. Ping, K. Raya, S. M. Schmidt, and H.-
S. Zong, and to the RBC/UKQCD collaboration, espe-
cially P. Boyle, N. Christ, Z. Dong, C. Jung, N. Garron,
B. Mawhinney, and O. Witzel, for access to the lattice
configurations employed herein.
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