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Abstract: The Ryu-Takayanagi (RT) formula plays a large role in the current theory of gauge-gravity duality and

emergent geometry phenomena. The recent reinterpretation of this formula in terms of a set of “bit threads” is an in-

teresting effort in understanding holography. In this study, we investigate a quantum generalization of the “bit

threads” based on a tensor network, with particular focus on the multi-scale entanglement renormalization ansatz

(MERA). We demonstrate that, in the large ¢ limit, isometries of the MERA can be regarded as “sources” (or “sinks”)

of the information flow, which extensively modifies the original picture of bit threads by introducing a new variable

p: density of the isometries. In this modified picture of information flow, the isometries can be viewed as generators

of the flow. The strong subadditivity and related properties of the entanglement entropy are also obtained in this new

picture. The large ¢ limit implies that classical gravity can emerge from the information flow.
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1 Introduction

One of the most important developments in AdS/CFT
correspondence in the past few years is the discovery of
the Ryu-Takayanagi (RT) entanglement entropy formula
[1]. This formula states that the entanglement entropy of
a subregion 4 of a d + 1-dimensional CFT on the bound-
ary of a d + 2-dimensional AdS is proportional to the area
of a certain codimension-two extreme surface in the bulk:

area(m(A))

Sa= 4Gy (1)
where m(A) is the minimal bulk surface in AdS time slice,
which is homologous to A4, i.e., m(A) ~ A. This formula
connects two important concepts in different fields and
suggests some deep relations between quantum gravity
and quantum information. Recent progress clearly shows
that the RT formula plays a central role in understanding
the emergence of space-time.

When exploring the conceptual implications of the
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RT formula, however, Freedman and Headrick in Ref. [2]
first noticed some subtleties of the formula. For example,
there is a strangely discontinuous transition of the bulk
minimal surface under continuous deformations of 4. To
remove these subtleties, the authors invoked the notion of
“flow ”, which is defined as a divergenceless norm-

bounded vector. Employing the max flow-min cut
(MF/MC) principle, this “flow” interpretation of the RT
formula becomes more reasonable, because the discon-
tinuous jump disappears, and there is a more transparent
information-theoretic meaning of the entanglement en-
tropy properties. In the construction of the flow picture of
the RT formula, the MF/MC theorem plays a central role.
It roughly states that in some idealized limit, the trans-
port capacity of a classical network is a measure of what
needs to be cut to entirely sever the network.

This picture, however, is built on the classical theory
of the network. Recent progress on holography and
quantum information theory implies that the quantum
plays an important role in the studies of space-time. For
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example, the TN/AdS correspondence (MERA/AJS,
quantum error correction/AdS), complexity/action corres-
pondence, etc. A more reasonable picture must be re-
placed by a quantum flow network, which is a tensor net-
work, as describe below. In this sense, the above “flow’
picture of the RT formula is a semi-classical approxima-
tion of some unknown quantum (and fundamental) for-
mulations.

Thus, we employ a tensor network description of
quantum physics. A recent study on entanglement in
strongly coupled many-body systems developed a set of
real-space renormalization group methods, such as the
tensor network state representation [3, 4]. In the past few
years, this has been extensively studied in statistical phys-
ics and condensed matter physics. A tensor network de-
scription of wavefunctions of a quantum many-body sys-
tem has the advantage to tremendously reduce the num-
ber of parameters (from exponential to polynomial)
needed in the computation. This makes it a highly effi-
cient representation of the wavefunction of the system.
Furthermore, the tensor network representation provides
an easy way to visualize the entanglement structure, and
the area law of the entanglement entropy is inherent in
the network. The more attractive property arises from
connections between the tensor network and AdS/CFT
correspondencel), which was first pointed out by Swingle
in Ref. [5]. In this study, the author noticed that the renor-
malization direction along the graph can be viewed as an
emergent (discrete) radial dimension of the AdS space.
From this perspective, the holography stems from phys-
ics at different energy scales, and the AdS geometry can
emerge from QFTs [6]. With regard to the holographic
entanglement entropy, the tensor network-based RT for-
mula can be interpreted as sum of all d.o.f of neighbor
sites from UV to IR.

A natural question arises from these considerations:
what is the “flow” picture of the tensor-network based RT
formula? In this study, we mainly focus on the answer to
this question. The solution requires the quantum MF/MC
(QMF/QMC) theorem, which was recently presented in
Refs. [7, 8]. This theorem, which is a quantum analogy of
the MF/MC for tensor networks, states that the quantum
max-flow of a tensor network is no larger than the
quantum min-cut of the network. Particularly, for some
tensor networks such as MERAZ), the quantum max-flow
is equal to the quantum min-cut, in the large central
charge ¢ limit. Based on this theorem and information-
theoretic considerations, we define a new variable p,
which can be interpreted as the density of the tensor net-
works under question. The physical integral of p over a

b}

region can be viewed as the source (or sink) of the tensor
networks, and it plays a significant role in the flow de-
scription of the RT formula. We show that it determines
the structure of the tensor network on the basis of a fixed
Lorentzian manifold (M,g). More precisely, dVierwork =
p(x) +/gdV of this tensor network. When p(x) =constant, it
reduces to the kinematic space of an AdS; time-slice [9,
10], and the corresponding tensor network is MERA. Fur-
ther, from the informaton viewpoint, p(x = (i, j)) is the
density of compression or decompression of quantum bits
through reducing or expanding the dimensions of Hilbert
space. It encodes to what extent information is shared
between two sites i and j. Hence, p(x) provides the local
contributions of these sites to the total conditional mutual
information.

This paper is organized as follows. In Section 2, we
first provide a brief review of Freedman-Headrick’s pro-
posal of bit threads and holography, followed by a brief
introduction to the QMF/QMC theorem. To determine the
relation between the QMF/QMC theorem and the RT for-
mula for the MERA tensor network, we also review the
MERA in kinematic space. In Section 3, we briefly im-
port our main results from informational points of view.
In Section 4, we propose our “flow” language of a tensor
network with the help of the QMF/QMC theorem. Sec-
tion 5 presents an information-theoretic interpretation of
the MERA, with particular interests in the information-
theoretic meaning of the isometry. Several physical key
points of the picture are also discussed in this section. In
last section, we draw our main conclusions and provide
the discussions.

2 Background setup
2.1 Bit threads and holography

The RT formula (1) can be reinterpreted as a “max-
flow” from the max-flow/min-cut (MF/MC) theorem in
Riemannian geometry first explored in Ref. [2]. This can
be viewed as calibrations to the Ryu-Takayanagi minim-
al surfaces [11]. To elaborate on this point, we define a
divergenceless vector field v as a “flow” satisfying the
following two properties [2] (as shown in Fig. 1):

v <C, (2)
V4 =0, 3)

where C is a positive constant. Then, the flux of v through
an oriented manifold surface m ~ A can be defined as an
integral:

1) Properly speaking, it refers to a special tensor network-the multi-scale entanglement renormalization ansatz (MERA).
2) In this article we all consider the continuous MERA(cMERA) case instead of the lattice MERA case. We all just use "MERA" to denote the continuous case.

Therefore the emerged spacetime is a Lorentzian manifold.

075102-2



Chinese Physics C  Vol. 44, No. 7 (2020) 075102

Fig. 1. (color online) Max-flow min-cut picture of a subre-
gion. Red line depicts the bit threads with maximal density
on a minimal surface (black curve).

f vi= [ Vo, )
m(A) m(A)

where / is the determinant of the induced metric on m,
and n, is the unit normal vector. The maximal flux should
be bounded by a bottleneck

fv = f v<C Vh= Carea(m). 5
A m(A) m(A)

This inequality is saturated by C, where n,v* = C holds.
This indicates that a flow reaches its maximum if and
only if n,»* =C, and the maximal flux is equal to the
minimal area multiplying a constant:
max f v = Cminarea(m). 6)
v A m~A
Two extensions of the theorem must be introduced.
First, when we continuously change 4, the maximal flow
v(A) likewise varies continuously. Second, considering
two disjoint regions 4 and B of the boundary, we gener-
ally cannot find a flow that maximizes the flux through 4
and B simultaneously, i.e.

fv+fv=f v < Carea(m(AB))
A B AB

< Carea(m(A)) + Carea(m(B)). N

We call this the “nesting” property.

Returning to holography, the minimal area can be re-
placed with the maximal flow, and the RT formula can be
rewritten in the following manner:

SA) = mava, (3)
voJA

where C = 1/(4Gy). A magnetic field can be visualized as
field lines. Similarly, these flow lines v can be regarded
as oriented “bit threads” from boundary to bulk. The up-
per bound 1/(4Gy) of flow can be interpreted as follows:
the bit threads cannot be tighter than one per four Planck
arcas in 1/N effects. Then, a thread that emanates from
the boundary region 4 should be viewed as one independ-
ent bit of information originating from 4. From this point
of view, the maximal number of independent information
bits is the entanglement entropy S (A).

From this “flow” language, we can also obtain the
conditional entropy and mutual information. Let v(A;B)
denote the flow that not only maximizes the flux through
A, but also maximizes the flux through 4B, i.e. v(A) or
v(A,B). Then, the conditional entropy H(A|B):=S(AB)-
S (B) can be rewritten as an expression in terms of flows
[2]. Considering two regions case, the conditional en-
tropy can be written as

H(A|B) = f V(B A) - f V(B;A)
AB B

= f v(B;A). 9
A

Simultaneously, the flux through A4 reaches its minima.
Hence, we can express the mutual information
I(A:C):=S(A)— H(A|C). Without loss of generality, we
can choose the entropy of A4: fA v(A;C), then I(A: C) can
be rewritten as

I(A:B):fv(A;B)—fv(B;A)
A A

=f(V(A;B)—V(B;A))- (10)
A

This is the flux that can be shifted between 4 and C. Sim-
ilarly, in the three regions case, we can express the condi-
tional mutual information I(A:C|B):=S(AB)+
S(BC)—S(ABC)-S(B) = H(A|C) — H(A|BC). Without loss
of generality, we can choose H(A|B) = fA v(B,A;C) and
H(A|BC) = fAv(B,C;A). In this way, I(A : C|B) can be ex-
pressed as:

I(A:CIB) = f W(B,A;C)— f V(B,C;A)
A A
=f(V(B,A;C)—V(B,C;A))~ (11)
A

2.2  Quantum max-flow/min-cut

The quantum max-flow min-cut (QMF/QMC) conjec-
ture was first presented in Ref. [7]. Subsequently, in Ref.
[8], Cui et al. showed that this conjecture dose not gener-
ally hold, except for some given conditions. There are
two versions of this conjecture, and we first review the
first version.

The tensor network can be regarded as a graph
G(V,E), which is unoriented with a set of inputs S and a
set of outputs 7. V is a disjoint partition V=S JTUV. E
is a set of edges with a capacity function a:FE — N,
e — a,. In the tensor network, each edge e is associated
with a Hilbert space C*, and the edges capacity corres-
ponds to dimensions of the Hilbert space. Inputs S and
outputs 7' can be thought of as some open edges with
open ends for convenience. V is a set of vertices, such
that for each wvertex v, there are d, edges
e(v,1),e(v,2), -+ ,e(v,d,) incident to v. Associating a tensor
to every vertex vi> 7, €1 := (X)?l:"1 C% thus sends a
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Min-cut

Inputs 3 Outputs

Fig. 2.
two outputs. Blue balls depict vertices associating tensors,

(color online) A tensor network with three inputs and

and black lines depict edges associating different Hilbert di-
mensions. The red line illustrates the minimal cut of this
network.

graph G to a tensor network, G — N(G,a;7") (as an ex-
ample, please see Fig. 2 provides an example). After fix-
ing basis of the Hilbert space of the open edges, we can
determine a state |a(G,a;7)) € Vs X Vr, which is given
by

(G, a:T)) = Z iy

1:1,“wi!sx
Jistsdm)

Xlit, - Lisps it JirpTs (12)

where Vs := ), s C% and Vr := ), C. With these,
we can define a quantum max flow and min cut.

Primarily, the definition of “cut” must be stated. If
there is a partition V =S |JT, such that S ¢ §,7 c T, then
acut 4 is a set that A={(u,v)CE:uecS,veT)}. Intuit-
ively, removing the edges in C will lead to a disconnect
in the path from S'to 7.

Definition 1 (Quantum min-cut). The quantum min-
cut QMC(G, a) is the minimum value of the product of ca-
pacities over all edge cut sets, i.e.

QMC(G.a) = min l_[ag. (13)
ecC
ThereisalinearmapB(G,a; T) € Vi QVr=Hom(Vs, Vr)
from inputs to outputs: Vg — Vy acting on the inputs
state:

BG.a;Tlir,--+ isps = Z Ciy oo in

Juss i

XIjtse e JrpT- (14)
Evidently, in this basis the matrix C is exactly B(G,a; 7).
Then, one can define the quantum max-flow as follows:

Definition 2 (Quantum max-flow). Across all tensor

assignments, there is a maximal value of the rank of map
B(G,a;T), which we define as the quantum max-flow:

QMF(G,a) := m7gx rank(B8(G,a;7)). (15)

Cui et al. [8] stated that QMF(G,a) is generally not
equal to QMC(G,a). In fact, QMF(G,a) is consistently
smaller than QMC(G,a) in a given finite graph G:

QMF(G,a) < QMC(G,a). The equality holds in a special
case, which can be considered as a weak QMF/QMC:
Theorem 1 (Quantum max-flow min-cut theorem).
For a given graph G(V,E), if the capacity a of each edge
is a power of d, where d > 0 is an integer, then
QMF(G,a) = QMC(G, a). (16)
Here, we turn to the entanglement entropy between
inputs and outputs of the tensor network and see its rela-
tion with the QMF and QMC. The Hilbert space of pure
states (13) is H = Vs Q) Vr, and we can obtain the re-
duced density matrix of |«(G,a; 7)) on S by tracing 7:

(|a<G,a;'r)>
’ AT (CCT)

] =Trr |d(G,a;T)Xa(G,a; 7))

cct
- (a7)
TrCCh
where TI'(CCT) = Zih"'ai\s\ajl""vj\l\ |Ciw'»i\xuj'n,-“,jm|2> and —‘a\(/gr’aig;>

is a normalized state. We already know the von Neu-
mann entropy is S (o) := =Tr (plogp). Hence, we define an
entanglement entropy between S and T
cct )
Tr(CCT)
Tr(CC" log(CC™)) +
=— +log(Tr(CC")). (18
THCCh og(Tr(CC")).  (18)

Letting MEE(G,a) denote the maximal of EE(G,a) over
all 7’s, we can prove that in general, MEE(G,a) <
logQMF(G, a) < 1ogQMC(G,a). The equality holds when
we consider the same case as Theorem 1, i.e.

Theorem 2. For a given graph G(V,E), if the capa-
city a of each edge is a power of d, where d > 0 is an in-
teger, then

MEE(G,a) =1logQMC(G,a) = 1ogQMF(G, a). (19)

The second version of the QMF/QMC conjecture is
more restricted. The vertices of the same type must be as-
signed the same tensor. More specifically, we place an or-
dering O to the ends of the edges incident to each vertex
and define a valence type B, of a vertex v to be the se-
quence (Ge(y,1, ---» dev.d,)), Where e q) is the dimension of
the Hilbert space of edge e(v,d,). We denote B(G,a,0) as
the set of valence type of vertices of graph G. The ver-
tices with the same valence type must be assigned the
same tensor 7 = {7 : Be B(G,a,0)}.

From above, we obtain a linear map, which is de-
noted by B(G,a,0;7) in Hom(Vs,Vr). The definition of
the quantum max-flow QMF(G,a, O) for this second ver-
sion is the maximum rank of B(G,a,O;7), similar to the
first version. The difference is as follows: Conditions
stated in Theorem 1 are insufficient to guarantee the
equality QMF =QMC, even when the Hilbert space di-
mension is same in each edge in the graph. The restric-
tion of the tensor, or the quantum gate of the circuit is

EEG,a;T) :=S(
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more nontrivial than the first version of QMF/QMC. The
tensors of MERA network are restricted, and the second
version of QMF/QMC is more suitable for our discus-
sion. We still need some additional conditions, and we
discuss this in the following.

2.3 MERA on kinematic space

For convenience, we provide a brief review on the
kinematic space that was firstly formulated in Refs. [9,
10]. Given a hyperbolic plane H2, which is a time slice of
pure AdS; space-time:

ds? = dp? + sinh’pdd?. (20)

The equation of a space-like geodesic that anchors on
boundary points is:

tanhpcos(d—6) = cosa, 1)

where (0,) are parameters that label a oriented geodesic,
as shown in Fig. 3. The space of all these geodesics (6, )
forms a two-dimensional manifold, which we refer to as
the kinematic space. A geodesic can be described by a
point (6,@) in the kinematic space. Crofton's formula in
H? states that the length of a curve y can be measured by
the number of geodesics that intersect it, i.e.,

1
length of y = 7 f n(g,y)Dg, (22)
K

where n(g,y) is the number of geodesics intersect y, and
Dyg is the measure on the kinematic space

8%S (u,v)

oudv

If the curve is a geodesic with two ends u and v anchor-
ing on the boundary, then S(u,v) is the length of the
geodesic . We used a light-cone coordinate on the kin-
ematic space,

Dg = dudv. (23)

v=0+a. (24)
Eq. (23) also denotes the line element of the kinematic
space multiplied by some coefficient

»S ent(U, V)
dskinematic ~ W

u=0-a,

dudv, (25)

where we have replaced S by Sy (the entanglement en-
tropy) because of the RT formula. Therefore, the entan-
glement entropy can be represented by a volume in kin-
ematic space,

Fig. 3.
mapped to a point (6,@) in kinematic space.

(color online) Space-like geodesic on AdS; timeslice

length of y

nt —
f n(g, 6 Se‘“(“ V)dudv. (26)

Czech et al. [9] argued, cons1der1ng the auxiliary
causal structure of the MERA, it is the vacuum kinematic
space instead of the AdS; time slice that should be viewed
as the corresponding geometry of the MERA. Thus, the
kinematic space becomes an intermediary in the
AdS/CFT.

One of the key points of this argument is the casual
structure of the MERA. This makes it more natural to
match such a network with a Lorentzian manifold, as first
mentioned in Ref. [12]. In the following, we consider an
exclusive causal cone for part of lattices. Boundary of
this causal cone is called as causal cut of the MERA net-
work as shown by the red line in Fig. 4(a). The method to
calculate the entanglement entropy — given a holographic
interest in MERA in Ref. [5] — involves simply counting
the number of edges cut by the causal cut in this network,
with each edge assigning a weight logy, where y is the
Hilbert dimension of edges. In the same footing, we may
also calculate the conditional mutual information by
counting the number of edges. Recall that conditional
mutual information is defined as follows:

I(A:C|B)=S(AB)+S(BC)—-S(ABC)—-S(B). (27)

This means that the conditional mutual information can

/ N\
N 7
N \/\/

€

N
N

Fig.4. (color online) (a) Causal cut of MERA tensor net-
work. (b) Conditional mutual information I(A:C|B) on
boundary can be regarded as the volume of a causal do-
main in kinematic space.
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be obtained by counting the number of edges, which is
the net reduction of edges through a causal diamond from
the bottom up, as shown in Fig. 4(b). This is arguably the
same as counting the number of isometries living in this
diamond, as every isometry has two input edges and only
one output edge from bottom up. Hence, each isometry
soaks up an edge such that counting the number is
equalent to counting the decrease in the number of edges.
This indicates that the conditional mutual information is
proportional to the number of isometries in the causal dia-
mond and to the volume of this diamond, which is easily
found by Eq. (25).

Based on these observations, connections can be built
between conditional mutual information and the volume
in kinematic space. Czech et al. [9] adopted conditional
mutual information as a definition of volume in the
MERA,

PD(isometries) = I(A : C|B). (28)

This formula evaluates the volume after compressing the
state living on its past edges. In this vacuum MERA, the
‘density of compression’ is proportional to the isometry
number. More explicitly, the metric of a discrete tensor
network is given by

dSnetwork =1(Au, Av|B)

MERA, (# of isometries)AuAv, (29)

which is the metric of kinematic space, as well as the
volume element in kinematic space.

3 Information-theoretic viewpoint

As stated in the previous section, we prefer to treat
MERA as a discrete kinematic space rather than the ori-
ginal slice of the AdS space. This statement is based on
the following two advantages: (a) they share the same
causal structure, and (b) regarding entanglement as a
“flux ” through the causal cut, which is equivalent to
counting the number of lines on the causal cut, has a
more natural interpretation in kinematic space [9]. Con-
sequently, bit threads in the AdS time slice should have
an information-theoretic interpretation on kinematic
space. To see this, we first recall flows in the AdS time
slice. A flow v is a vector field, and we can define a set of
integral curves of v, whose transverse density equals |v|.
Each flow line, the so-called “bit threads”, is an oriented
thread connecting two different points on the boundary.
For example, given a time slice of AdS, we can split the
boundary into two parts 4 and A¢, such that the informa-
tion (flow) shared between 4 and A€ is

I(A: A9) =25 (A). (30)
A thread between 4 and A¢ connects two points on 4 and

A¢, one of which is the start point of the thread (belongs
to 4), whereas the other is the end point (belonging to

A°). These two end points can be mapped to a point in the
kinematic space, which is denoted by (u,v). We therefore
obtain a picture between the original and kinematic
spaces, as shown in Fig. 5.

In the previous section, we mentioned that one of the
important properties of the bit threads is |v| < 1/(4Gy),
which means that one cannot contain more than 1/(4Gy)
information in the unit area. The flow density is saturated
at the minimal surface m(A), i.e., |v| = 1/(4Gy). This im-
plies that we have 1/(4Gy) entanglement flow per unit
area on the surface. From Eq. (30), we can assume that 4
and A¢ share 2 x 1/(4Gy) bits of information per unit area
of the minimal surface, or equivalently, [u—Au,u] and
[v,v+Av] on the boundary share 2x 1/(4Gy) bits of in-
formation. Mapping this “area ” (which actually is a
geodesic length in 2D) to the kinematic space yields a
“volume” (an area in 2D) of some region, as shown in
Fig. 5. This implies that 2 x 1/(4Gy) bits of information in
a unit area of the minimal surface correspond to
2x 1/(4Gy) bits of information in AuAv in the kinematic
space (we set the radius of kinematic space to one). Re-
garding these partial contributions to the total /(A : A°),
the relation between AdS and kinematic space is given by
Fig. 6.

This can be also seen from the causal structure per-
spective. The shared information between [u— Au,u] and
[v,v+Av] can be naively regarded as non-intersecting

AdS

v+ Av

Kinematic space

domain between (u,v) and (v — Au,v + Av)

v v+ Av

(b)

Fig. 5. (color online) Conditional mutual information
between [u—du,u] and [v,v+dv], located in minimal surface
can be interpreted as 2 x 1/4Gy decompressed information in
kinematic space.

075102-6



Chinese Physics C  Vol. 44, No. 7 (2020) 075102

~

I(number of shared
information between I(number of
[u— Au,u] and

[v, v+ Av])| 4q9

isometries) AuAV|y; pmaric

Fig. 6. Relation between AdS and kinematic space.

geodesics included in the tube ([u—Au,ul,[v,v+Av]) in
AdS [13], which are time-like between [u,v] and
[u— Au,v+ Av]. In kinematic space, these are isometries in
a causal diamond between (u,v) and (u—Au,v+Av),
which, as expected, is the region where the conditional
mutual information I([u,u— Au] : [v,v+ Av]|[u,v]) is calcu-
lated. I([u,u—Au] : [v,v+Av]|[u,v]), as a part of the total
I(A: A9, is only related to the degrees of freedom
between [u— Au,u] and [v,v+ Av]. Therefore, we must in-
troduce a local quantity associated with the isometries of
the MERA in accordance with the above discussion.

The above analysis strongly suggests to view the iso-
metries as “sources” (or “sinks”) of information. Indeed,
if we deem the information flow 1/4Gy from top to bot-
tom in the MERA through isometries, then these isomet-
ries decompress the bits. The decompression result is
2% 1/(4Gy), which is the conditional mutual information
between [u—Au,u] and [v,v+Av]. The isometries play
roles in sharing the information in these two intervals on
the boundary, as shown in Fig. 5. Hence, isometries
provide a local “density of compression (or decompres-
sion)” of the network, and such s MERA network can be
regarded as an iterative compression algorithm, which
maps the density matrix of a interval to a compressed
state on the causal cut. The entangler also plays a key role
but not important for our discussion and can be neglected
[141".

In this study, we attempt to further investigate the
holography of tensor network from a different perspect-
ive: the QMF/QMC theorem. We discuss the quantum
version of the network, which is different from the clas-
sical one of Headrick-Freedman. We attempt to set up a
holography picture of the quantum network and study
some general properties between the tensor network and
space-time. The main results of this work are listed in the
following:

1) For a quantum network, we introduce a density
p(x) to describe the QMF of a general tensor network. We
focus on the MERA, which has some important proper-
ties (such as symmetry) for holography. We find from the
QMF = QMC case that each edge has the same entangle-

ment flow (assuming all edges have the same Hilbert di-
mension), and hence if there is isometry in the tensor net-
work, the source (or sink) has to be introduced to pre-
serve conservation of entanglement flow. Therefore, the
quantum bit threads are studied in kinematic space, and
we extend the picture of Czech et al. by introducing p.

2) We realize that in MERA, the density p encodes
the local contributions of each degree of freedom to the
total conditional mutual information between two inter-
vals on the boundary. This is similar to the so-called en-
tanglement contour recently studied in holography [15,
16]. We find that the definition of p meets some require-
ments similarly to the contour.

3) We argue that in the MERA tensor network, which
has the same type isometry everywhere, the “classical”
limit QMF = QMC is equivalent to the classical limit of
emerged space-time. This is the large central charge limit
of the tensor network dual to classical gravity, which
lacks discussion in other articles.

4 Towards a tensor network/flow correspond-
ence

4.1 QMF = QMC implies a isometric tensor

In this subsection, we consider the QMF=QMC case.
Under this condition, the tensor between a causal cut and
boundary is an isometric tensor, defined in Ref. [17]. We
set the causal cut as the inputs S of the network and the
corresponding boundary region as the outputs 7' of the
network. Identifying V¢ with Vg by using the chosen basis
in Vs, one can determine a state a(G,a;7 ). We denote the
basis of Vs, Vr as li)s,|j)r, respectively, and let matrix of
B(G,a;T) be C on this basis. Hence, we obtain

a(Ga;T) = Cilprli)s. (31)
iJ
Thus, B is a tensor that maps from the causal cut to the
boundary:

B liys = > Cilir. (32)
J

We assume that S is a minimal cut and dim(S) < dim(7T).
If the QMF/QMC conjecture holds in this tensor network
QMF = QMC, then after an appropriate ordering of the
basis elements in Vs and Vr, the map 8 assumes a simple
form [8]:

1) The entangler, however, dose not contribute to the ow in the domain. In MERA, entangler plays a role of creating new entan- glement between neighboring sites.
So in this quantum channel, the entangler plays the same role as in MERA. They mix the information and create the entanglement between sites. From space-time point
of view, these entanglers entangle the space. Geometrically, as one decreases the entanglement between the degrees of freedom for two regions, the distance between
points increases. In other words, entangler plays a role in gluing" the space together that we cannot ignore it.
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(33)

0

Letting M = QMC(G,a) be the dimension of inputs, the
upper block matrix becomes M x M. So we have

Zﬁ;j ji = Oii- (34)
J

Here, B is the so-called isometric tensor. The difference
lies in that the tensor mentioned in Ref. [17] is defined in
a negative curvature space, whereas ours is in kinematic
space, which is a positive curvature space. Such a tensor
network has an important property: the RT formula holds
See =1S]-logy. After a bipartition of the network, this
implies that the two parts of this network have maximal
entanglement. (|S| is the number of cut legs and y is the
Hilbert dimension of each edge). From Eq. (18), we know
that the entanglement entropy is given by the tensor C(or
B), which is more related to QMF. If the QMF/QMC
holds asymptotically, the second term in Eq. (18) will be
leading, and the entropy is given by the QMC in Eq. (19).
In this case, each edge through the bipartition cut has a
maximal entropy flow logy. In the following subsection,
our model is considered in the QMF = QMC case, and
further interpretations are provided in Section 5.2.

4.2 General setup

We start by explaining a tensor network in terms of
“flow” language, which is convenient for our discussion.
Supposing there is a flow through a boundary, which can
be denoted by f*. Its flux ¥ through a boundary region 4
is obtained by integration f* over this region:

re o= e oo

where / is the determinant of the induced metric on A
(because of the IR divergence, we should choose an IR
cut-off surface A, but we still use 4 for simplicity). The
addition is thus satisfied:

fAf+fo: [ ¥, (36)

Next, we consider a cut C4 ~A to be an oriented codi-
mension-one submanifold in the network, which is homo-
logous to A. As claimed in the last section, isometries in
the tensor network may play a role of the source (or sink).
Therefore, different from bit threads in the original AdS
slice, generally fA f# fC4 f. Instead, one extra term that
describes the contributions from tensors should be added

1) Detailed explanation will be made in section 5.3.

fCAf=fAf+fDAp, (37)

where [ p:= [ py=gdw, and g is the determinant of
the metric on this Lorentzian manifold. D, is the region
enclosed in A J C4. From Eq. (37), we obtain

O:_‘fABf_chf-’-fABcf-FLf
SN R N
+fwf+fﬂ(‘f‘fmf—fgf=po+ D f. (38)

where D is the region Dapc + D — Dap — Dpc. That means
that for an arbitrary region in a network, the Gaussian
theorem is consistently valid. p can be viewed as a dens-
ity of tensors and must satisfy the following two proper-
ties:

lol < pu, (39

V' =-p, (40)
where py, is a positive constant. The first constraint im-
plies finiteness of the density. The second term of the last
equality in Eq. (38) is the flux and can be denoted by D.
Eq. (38) indicates that the flux D of the region D can also
be calculated by a volume integral instead of a surface in-
tegral

= =- . 41
D= 1 po @1)

This implies that a flow is incoming from the bottom of
the casual diamond. Meanwhile, the constraint |o| < oy
implies that the flux is bounded by

DI < o f Vigldw = pu V. (“2)
D

Hence, what does the flux represent in this picture? It
is more reasonable if we regard the flux ch f asthe log-
arithm of the rank of B(G,a;7") b Thus, we have treated
edges on A as inputs and edges on C, as outputs, as
shown in Fig. 7, and the flux is given by

f =log{rank B(Dy)} = f o+ ff. (43)
C, D, A

Assuming that we have chosen a tensor assignment
that makes the rank B(D,) maximal, from the QMF/QMC
conjecture, we have:
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Outputs
fDAl p
A B C
T u—du T UT T T T Tzr T T vrdv
Inputs

Fig. 7. (color online) Cutoff legs as inputs A’ and causal cut
legs as outputs C,.. The blue triangle (including region D) is
Dy. For a general network, we can determine the causal cut
of intervals 4, B, C, AB, BC, and ABC. They determine a
causal domain D (white region).

Jo=gyee L

=— f p +maxlog{rankB(Dy)} <
Dy

- f p+1ogQMC(Dy). (44)
D,

The second equality holds when the QMF/QMC theorem
is satisfied.

Let us consider a case where all the cuts (Cap, Cpe,
Capc, and Cp) in Eq. (38) are causal cuts. This thus de-
termines a causal diamond D. We thus define coordin-
ates (u,v) on this network and arbitarily choose 4 and B,
as shown in Fig. 7. Then, we propose that the flux
through this region D defines a volume measure of the

network:
fdvnetwork = fp ‘ . (45)
D D

The quantum max-flow/min-cut theorem [8] states
that for a tensor network, whose Hilbert space dimension
of every edge is a power of an integer y, QMF = QMC.
Hence, in the following considerations, we pay attention
to tensor networks, where each edge's capacity is a power
of an integer. In this case, the Hilbert space dimensions of
edges associated with a tensor of degree m are given, re-
spectively, by x%, x®, ---, x*, where d, d», ---, d,, are
all nonnegative integers. We can map this graph to a
graph of degree (d; +d>+---+d,,), such that the Hilbert
space dimension of each edge is y. For instance, consider
a simple case 7;j, where m =3, i.e., two input edges and
one output edge. The output edge has y? capacity, and the
remaining edges have y, as shown in Fig. 8. Supposing
we have a graph that has two parallel edges connecting a
and b. Clearly, there is a one-to-one mapping between the
left and right side in Fig. 8, which preserves the rank, and

2 ko
X ky

i J
Fig. 8. (color online) A leg k£ whose Hilbert space dimen-
sion is y? can be reshaped into two legs & and k,, whose

Hilbert space dimensions are y .

each tensor 77; in Hilbert space ®?:1C“" can be re-
shaped as 7;ji,. After decomposition, the capacity of
each edge of the tensor becomes y. In summary, any
tensor where the capacity of each edge is to the power
(maybe different) of an integer can be reshaped to a
tensor whose capacity of each edge has the same power
of the integer.

43 QMF/QMC yields the density of compression in
MERA

Here, we consider the potential applications of
QMF/QMC to the MERA tensor network. One aspect
must be carefully addressed. Generically, given a tensor
network, we have the freedom to assign tensors in the
network. MERA, however, is usually homogeneous. We
typically place the same isometries and entanglers every-
where. If this is the case, instead of the first version of the
QMF/QMC, we must adopt the second version. This
leads to a problem: we cannot ensure whether there is a
type of tensor that satisfies QMF = QMC. Fortunately,
this equality holds asymptotically under specific condi-
tions, as we discuss in Section 5.3.

Next, we suppose that all edges of the MERA are as-
sociated with the same Hilbert space dimension y, and
QMF = QMC is satisfied. We now consider an exclusive
causal cone of region 4 as a sub network D4 of the entire
network. The edges living on the UV cutoff of the net-
work D, are set to be inputs, while the edges emanating
from the exclusive causal cone are regarded as outputs
(details are shown in Fig. 7). For the MERA network, it is
evident that the edges that are cut by the causal cone form
a minimum cut set of the network D,4, because the num-
ber of edges living on a space-like cut is consistently lar-
ger than the one living on a causal cut. For simplification,
we assume that the number of output edges is & so that
the dimension of that Hilbert space(also QMC of this sub
network) is equal to y*. Then, we can simply obtain the
quantum max-flow of Dy as x* due to the QMF/QMC
theorem.

From Section 4.1, we know that the entanglement en-
tropy between inputs and outputs for this network reaches
its maximum MEE(D,) = log QMC(D,) =log x* = klog .
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Clearly, this shows that the entanglement entropy is equi-
valent to counting the number of edges cut by the causal
cut, where the weight of each edge is just log y. That is to
say, if a network satisfies the QMF/QMC theorem every-
where, then the flux of each edge would achieve its max-
imum value. Recalling our argument (38) and (44) in
Section 2.1, Eq. (44) holds because of the QMF/QMC
theorem, and one can obtain the flux of a causal diamond
D by replacing QMF with QMC in Eq. (38)

ooc{f o [ Lo
~Af-L L))

QMC(Dyp) - QMC(Dpc)
QMC(Dagc)- QMC(Dp)

In the second line, p is taken out from integral, because
MERA has same isometries everywhere, so it is inde-
pendent of (u,v). The last line of Eq.(46) can be ex-
pressed as (kap+kpc —kapc —kg)-logy, where kap is the
number of min-cut edges of D43, etc.

Evidently, canceling incoming and outgoing flow will
yield the flux D. In Ref. [9] the authors claimed that the
number of remaining edges is equal to the number of iso-
metries inside the diamond considered. This is the case
where density p is a constant. Each isometry contains
1/(4Gy) bits of information. However, p(x) is related to
location x in a tensor network when the type of isomet-
ries is unconstrained. A different isometry may contain a
different number of bits, and the emerged space-time has
an entirely different structure. If p is constant, Eq. (46) in-
dicates that the number of isometries is directly propor-
tional to the volume. This recovers the argument given in
Ref. [9]. In that article, the density of compression of a
compression network is proportional to the number dens-
ity of isometries for a vacuum MERA. Based on these ob-
servations, the authors claimed that 9PD(isometries) =
I(A,C|B), which is a relation between the number of iso-
metries and the corresponding volume. This statement is
consistent with our argument given above (46), namely,
as the QMF/QMC theorem holds for a given network,
pVp can be interpreted as the density of compression.
From this point of view, physically, p can be viewed as
density of isometries or equivalently density of compres-
sion.

From Fig. 8(b) clearly shows that a causal diamond
contains numbers of tilted chessboards, and each of them
corresponds to an isometry. This implies that the volume
of every minimum chessboard (or unit chessboard) is the
same, because it contains only one isometry. This prop-
erty is the key for the tensor network to have the geo-
metry of dS,. This can be also obtained from Eq. (46),
when D is an infinitesimal causal diamond. Indeed, it fol-
lows from Refs. [8, 9] and Eq. (46) that

=-pVp =log (46)

udv
2

d
dVietwork = D = |plVp = I(A,C|B) = 410g)(' ( 47)

v—u
We obtain the last equality in the following discussion.
We can find directly that

lol =2logy. (48)

4.4 Holographic entanglement entropy

In this subsection, we return to the discussion of the
holographic entanglement entropy, in the framework of
our flow language. Primarily, we should claim two im-
portant properties of this flow, which are useful in our
following discussion. Considering a tensor network,
which includes coarse-graining (or isometries), first we
assume that the Hilbert space dimension of each edge is
equal. For such a network, following the renormalization
flow in each step of coarse-graining will reduce the num-
ber of edges. That means that in a causal domain D, the
lower cut number is consistently larger than the upper cut
number. We assume that the flow runs along the RG flow
direction. The first property is that the flux of this region
55(9 pJ 18 always nonnegative, hence from Eq. (38),

fD p<0. (49)

The second property is apparently deduced from the first
property. Suppose we have two regions A, B of the
boundary, then the flux D,p is consistently larger than
the sum of D4 and Dp:

flmp<f‘4p+f8p- (50)

Generalization to more than two regions is the same. This
inequality implies that D,p includes some densities of
compression, which are not included in D4 and Djp. In-
deed, these densities provide the conditional mutual in-
formation between A and B on the boundary, as shown in
Ref. [9].

For a given flow, it is simple to check from the
second property that

| N A N W R

:f/‘f+ CBf. (51)

Returning to the MERA network, which properly ex-
hibits these two properties, the RT formula is represented
by

S(A) = max f 1 (52)
CA

which is the maximum flux through the causal cut C4. We
can simply denote it as fc f(A). After using the second
property (50), and choosing a flow f(AB), which maxim-
izes the flux through 4B, we have
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S(A)+S(B)>f f(AB)+ff(AB)
Cy Cy

> | f(AB)=SAB). (53)
Cin

This simply represents the subadditivity of the entan-
glement entropy. Similarly, for the case including three
regions, we choose a flow f(A,B,C), which maximizes
the flux through 4, B, AB, BC, and ABC simultaneously.
Eq. (49) leads to the strong subadditivity of the entangle-

ment entropy

I(A:ClB):f f(A,B,C)+f f(A,B,C)
Cus Cae

—ff(A,B,C)—f f(A,B,C)
B C/\BC
=S(AB)+S(BC)-S (B)—S(ABC)

=—po>0. (54)

5 Interpretation

In this section, we attempt to provide further detail on
the quantum bit threads model from a physical point of
view. First, we show the meaning of p(x) and some re-
quirements of such local contribution of a certain condi-
tional mutual information. Second, we find that because
o = constant, the 2D space-time structure constructing by
a coarse-graining tensor network is dS,, which is the
same as kinematic space. As mentioned above, to main-
tain the entanglement flow conserved, one has to intro-
duce a density p of the isometry tensor. This can be ob-
served when the QMF/QMC theorem holds. Generally, p
depends on the position of isometry: p(x) and is related to
the structure of tensor network (Fig. 9). From Eq. (45),
the emerged manifold is determined by such density p(x).
For the MERA case, p is a constant, and the emerged
space-time is scale invariant as discussed later (i.e., it is a
de Sitter space-time). We can also obtain the relation of
Hilbert dimension y and central charge ¢ of boundary

\

—

Inputs ——

Composition of isometries Outputs

Ip p

Fig. 9.
emerged manifold is determined by the general density p(x)

(color online) For a general tensor network, the

theory. Finally, we will talk about the role of the central
charge ¢ in QMF/QMC and space-time.

5.1 pis the local contribution to conditional mutual in-

formation

In the previous section, we initially set up the
quantum bit threads by defining p in the tensor network.
This can be understood as a source (or sink) that counts
how many quantum bits are decompressed (or com-
pressed) in the isometry. In this subsection, we attempt to
provide more interpretation of such density in MERA.

Recently, a concept called the “entanglement con-
tour” of quantum systems has been studied in holography
[15, 16]. In general, the contributions to entanglement en-
tropy come from not only degrees of freedom near the
boundary between A and A, but also degrees of freedom
further away from this boundary. The entanglement con-
tour s4(x) is defined as a local quantity [15, 16]:

S(A) = fA s4(x), (55)

that aims to quantify how many degrees of freedom in re-
gion A contribute to the total entanglement entropy. In
this paper, we propose that, similar to the entanglement
contour, the density p(x) contributes local degrees of free-
dom between two intervals to the total conditional mutu-
al information. As mentioned in Section 3, the isometries
encode the density of compression indicating the quant-
ity of information (qg-bits) sharing between two infinites-
imal intervals [u— Au,u] and [v,v+ Av]. Hence, p(x)dV en-
codes the conditional mutual information of a local de-
gree of freedom only between local region [u— Au,u] and
[v,v+Av]. We further find that such density p(x) satisfies
some requirements similar to those of the entanglement
contour [15, 16].

The requirements of p in the MERA tensor network is
as follows. Here, we denote pp(x) as the density of condi-
tional mutual information I(A;,A3z|A;), where D corres-
ponds to the causal domain in the kinematic space of
boundary subregion A;UA,UA3;=A. Let us denote
op(x) = —pp(x). Then the requirements of gp(x) are given
by:

(1) Positivity: pp(x) >0,Yx € D.

(2) Normalization: I(A;,A3|A;) = fDﬁD(x).

(3) Invariance under symmetry transformations: Con-
sider four sites ij,ir€A; and ji,j,€A3; and
lj1 — i1l =1j2 —ial. Let T be a symmetry of reduced density
matrix o4, that exchanges two sites i, j € A. After exchan-
ging two points x;,x; € D, where x| = (i, j1), x2 = (i2, j2),
we have pp(x1) = pp(x2).

(4) Invariance under local unitary transformations: If
0, = Uxoa U;, where Uy is a local unitary transformation
supported on X C A, then gp(K) is equal for both o4 and
0. K € D is a causal domain corresponding to a; Uay Uas
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where a; C Ay and a3 C As.

(5) Upper bound: If we decompose D into a causal

domain Dgq and D, and K is contained within Dq, then
Pp(K) <I(Dq),

where I(Dg) is the conditional mutual information given

by DQ.

In our toy model, requirements (1) and (2) have been
discussed in the last section, see Eqgs. (49) and (54). The
positivity is due to the amount of isometry tensors in the
MERA tensor network, and pp(x) is regarded as a sink in
the network.

Requirement (3) is actually the symmetry of the
MERA tensor network. 7 is a symmetry of o4, i.c.,
ToaT" = o4, that exchange two sites. Therefore, if we ex-
change i; & i and j; & j, at the same time, the system
would remain unchanged. This requirement ensures that
pp(x) is the same on two points x; and x, of D.
lj1 — i1l = j2 — 2| implies x; and x, are two sites in the
same layer of MERA tensor network. This reflects the
translation symmetry of the quantum system, and gp(x)
plays an equivalent role in the MERA tensor network.

Requirement (4) refers to the subregion K within re-
gion D. The definition of gp(K) is similar to the one of
entanglement contour, which extends the density of
single point to the density of a causal domain K C D:

Bo(K) = fK Bp(). (56)

Similar to the entanglement contour [16], for two disjoint
subsets K1,K, C D, with K; N K, = 0, the density is addit-
ve:

Pp(K1 UK>) =pp(Ky) +pp(K2). (57)
Then, if K| C K5, the density must be larger on K; than
Ky

pPp(K1) < pp(Kz), if K CK,. (58)

This is the monotonicity of 5p. These two properties are
observed directly from the kinematic space.

It can be learned from Eq. (43) that requirement (4)
holds in our bit threads language. As we mentioned in
Section 2.2 (below Eq. (16)), after choosing an appropri-
ate basis, one can let 8 under this basis be matrix C.
Then, the reduced matrix o4 = Trsla)a| = CCT/Tr(CCT).
The unitary transformation Uy is defined on a Hilbert
space V4 ® Vj, but only nontrivial on X. Hence, it does not
affect X = A— X 2 A. After performing this unitary trans-
formation, the reduced matrix is o/, = C’C""/Tr(C'C")). C’
is the new matrix under the unitary transformation C’ =
UXCU; =UxCU%, i.e., matrix C’ and C have the same
rank. Therefore, the local unitary transformation does not
affect the term log{rank C} in Eq. (43). Assuming that the
causal domain K in the kinematic space is given by
a; CAj and a3 € A3 on the boundary (Fig. 10). The subre-
gion density on K is given

Fig. 10.
space.

(color online) Sketch of causal domain in kinematic

Pp(K) = f Pp(x). (59)
Dayares +Duy=Dayy =D

After applying formula (43), the second term f f in the
left-hand side of Eq. (43) is cancelled, such that it cannot
be affected by the unitary transformation. The remaining
terms are the rank of matrix C, which are unchanged un-
der the transformation. In summary, the density gp(K) is
invariant under unitary transformation. Requirement (5)
is easy to obtain in our bit threads of the MERA tensor
network. In this case, g is a constant, and we obtain

ﬁD(K)=fﬁD(X)<f ﬁD(X)=f Pp,(x) =1(Dg). (60)
K Da D,

ayay

5.2 Auxiliary space-time

The kinematic space of an AdS; time slice, which is
equivalent to an auxiliary dS, according to the first law of
entanglement entropy [18, 19], can be constructed by the
conditional mutual information of a boundary system.

It follows from Eq. (46) that the conditional mutual
information can be written as log, x - (kap+kpc—kapc—kg),
where kap, kpc--- are, respectively, the numbers of edges
cut by Cap, Cpc, etc. For such a coarse-graining tensor
network, a region with length .5 satisfies Iyp-e7%#/2 ~ 1,
namely,

kAB=210g lAB- (61)
Consider the case where regions A : (u—du,u), B: (u,v),
and C: (v,v+dv) construct a volume element on (&,v) in
the kinematic space. We obtain
v—u+du)(v—u+dv)
—u+dv+du)(v—u)

anetwork ~2 lOgX' lOg

d

=2logy - ——— +O(dudv), (62)
V—1u)

which is the conditional mutual information /(A : C|B) =

0,0,S ent(u,v)dudv. Comparing it with the entanglement

entropy of the boundary interval (u,v), ie, Sen =

(c¢/3)log (v—u)/e, we have

logy =~ —. (63)

AN o
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One aspect requires further emphasis. The above dis-
cussion is applied in the planar coordinates of dS,. The
topology is a plane R! x R! rather than a cylinder S! xR!.
A plane implies that its cylinder circumference is signi-
ficantly larger than the interval, 2 > (v—u) (actually it is
infinite). Hence, if we consider a lattice model on the
boundary, the number of sites in (v—u) is considerably
lower than those in its complement (v —u)“. If we do not
distinguish the direction of geodesics in the AdS; time
slice, this kinematic space only covers a half of the full
dS,, which is the planar patch O*(or O7) [20, 21].

However, we must note that the present flow model is
a toy model in the sense that the edges are maximally en-
tangledl), as mentioned in Section 4.1. Thus, the flow in
each edge has the same flux and reach their maxima logy
simultaneously. This is a strict constraint and only works
for some special tensor networks, such as a prefect tensor
[17] or random tensor [22]. A recent attempt in construct-
ing a continuous tensor network based on path-integral
optimizations [23, 24] may have clues to overcome this
difficulty. For MERA, as an effective simulation for the
ground state of real CFT, the entanglement entropy must
not be maximal. However, one can control the degree of
entanglement in MERA for approximating the real CFT
[25]. We argue that under this control the corresponding
space-time is still dS, but with different density o (Ap-
pendix A).

5.3 Large c limit

The central charge ¢ is a measure of the number of
degrees of freedom. In a strong coupling limit of the field
theory, when the number of degree of freedom is very
large ¢~ N?> 1, the string interaction becomes weak,
and we just consider the classical string limit [26, 27]. In
such a limit we can discuss the dynamics of quantum
CFT by studying a dual semiclassical gravitational phys-
ics in space-time.

In Eq. (46), we take out p from the integral, because
we restricted all the isometries tensor in the tensor net-
work of the same type. This corresponds to the second
version of QMF/QMC conjecture, as we lose the free-
dom to assign tensors. In this circumstance, the
QMF/QMC conjecture is not always valid, even when
each edge has the same capacity, just like the MERA.
Hence, we have a bound for QMF: QMF(G,a)<
QMC(G,a), i.e., the flux in each edge cannot reach its
maximal capacity. This is what a MERA of a real CFT
requires.

Fortunately, recent work from Hastingss [28] demon-
strated that this conjecture is “asymptotically” true in the
limit as y — oo. Hence, the ratio of the QMF to the QMC

1) We would like to thank T. Takayanagi for bringing this point to our notice.

converges to one as y tends to infinity. We write
QMF(G, y, O) to denote the QMF for a given graph G with
ordering O and capacity y in every edge. Ref. [28]
showed that

QMEF(G,x,0) = QMC(G, ) - (1 - O(1)). (64)

In the higher-order term O(1), we consider as an
asymptotic function of y, which may also depend on G
and O. Eq. (63) this implies that the QMF/QMC conjec-
ture is asymptotically true in a large central charge limit.
The entanglement entropy S(A) = fa f is asymptotically
equal to log QMC, and we can simply count the number
of cut legs. We therefore have a dual classical, or at least
semiclassical gravitational theory in the auxiliary dS,
space-time. This can be simplified in such a large ¢ limit,
and computations of entanglement entropy can be made
by a holographic map to a volume in auxiliary space.

We show that max-flow/min-cut in the classical net-
work is always valid. This, however, fails for a tensor
network: the quantum version of max-flow/min-cut con-
jecture does not hold in general, except for large y.
Hence, this result (64) indicates that a quantum phe-
nomenon (QMF # QMC) disappears in the large system
limit. This is our claim that the classical space-time can
emerge from the tensor network model. The network be-
comes “classical”, and we can define the flow in it, which
constructs the gravitational theory. This agrees with the
argument that in the large ¢ limit, the quantum fluctu-
ations of emergent space-time can be effectively sup-
pressed. This is evident from the relation ¢ ~ GLN We con-
sider the large ¢ limit, because we adopted the second
version of QMF/QMC, whose tensor was restricted. This
will result a nontrivial complexity of the MERA circuit.
The duality between the tensor network and gravity in our
model is supported from the point of view of complexity,
which explains that the complexity corresponds to the
gravitational action on the gravity side [29]. The quantum
corrections may be considered in our toy model of the
tensor network. These corrections correspond to correc-
tions in the holographic entanglement entropy. We
provide a brief discussion in the following section.

Recently, the quantum Hamiltonian complexity has
made rich connections to the physical system. Physicists
are concerned about some properties of local Hamiltoni-
an in the condensed system, such as the ground state or
entanglement properties. In Ref. [8], it was shown that
the quantum max-flow is related to the so-called quantum
satisfiability problem, QSAT, which is defined as the
quantum version of k—SAT in Ref. [30]. In some specif-
ic cases, the problem of QSAT and QMF were found to
be equivalent. Thus, they yield a conjecture similar to one
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in QSAT, that the QMF/QMC conjecture holds when the
Hilbert space dimensions of edges become very large.
This conjecture was demonstrated in Ref. [28]. However,
machine learning is also related to the tensor network
through renormalization in condensed matter physics [31]
and possibly has significant holographic meaning [32,
33]. Ref. [34] showed that the quantum max-flow
provides a non-trivial measure of the ability of tensor net-
work to model correlations in a so-called deep convolu-
tional network. All of these imply a possible understand-
ing on emergent gravity.

6 Conclusions and discussions

By making use of the QMF/QMC theorem developed
recently in the tensor network, we proposed a tensor net-
work/flow correspondence, which is a quantum generaliz-
ation of the flow description of the RT formula in Ref.
[2]. Based on information-theoretic considerations, we
suggest that for the MERA, we need to introduce a new
variable p, which is interpreted as the density of the
tensor networks. Physically, this term is viewed as the
source (or sink) of the tensor networks, and thus plays a
significant role in the flow description of the RT formula.
o(x = (u,v)) 1s a local contribution to a certain conditional
mutual information between local degrees of freedom
only in sites u and v. Its value is not only closely related
to the geometric structure of the tensor network (equival-
ently, the metric of emergent space-times from the emer-
gent point of view), but also the density of compression
or decompression of quantum bits through reducing or
expanding the dimension of Hilbert space, which implies
a naive picture that the evolution of our universe can be
regarded as a huge and complex quantum circuit. The
density p is the main role for the space-time's construc-

tion in the large ¢ limit. The MERA circuit is a program,
which continuously entangles quantum bits, and the com-
plexity C is given by counting the number of entangled
pairs in isometry in such a limit,

C~f\/—_gp- (65)

We can relate this complexity to the gravitational action
of the de Sitter space, and p plays the role of gravitation-
al constant [29].

Our proposal of quantum bit threads provides a new
perspective on the holographic tensor network and is dif-
ferent from the one presented by Headrick-Freedman.
The bit threads of Headrick-Freedman are constructed in
an AdS time slice. However, we propose the quantum bit
threads in kinematic space instead of its original AdS
time slice. We would like to emphasize that the classical
limit of our quantum version of bit threads is not the clas-
sical network of Headrick-Freedman's because of the dif-
ference between the quantum and classical networks (fur-
ther details on the definition are provided in Ref. [8]).

We further consider the 1/N quantum corrections to
the quantum bit threads. The quantum corrections of
holographic entanglement entropy have been studied in
Ref. [35]. The QMF is asymptotically equal to QMC in
the large c(or small 1/N?) limit, as shown in Eq. (64).
QMEF is calculated by the input-to-output map 83, or equi-
valently the matrix C. The entanglement entropy can be
also obtained by matrix C, as shown in Eq. (18). Hence,
the quantum corrections of quantum bit threads can be
also studied in a similar way to the quantum corrections
of HEE. We hope that further details of this quantum ef-
fect of bit threads can be studied in the future.

We would like to thank Tadashi Takayanagi for read-
ing and commenting on the paper. We are also grateful to
Wen-Cong Gan and Bo Xiong for useful discussions.

Appendix A: MERA of the ground state of real CFT

If the tensor network is MERA, we know the entanglement en-
tropy of the state with / sites has upper bound

SMErRA()) <4 f(k)log!-logy, (A1)

where the interval is larger than the lattice spacing, i.e., /> 1. y is
the the Hilbert dimension of each edge, £ is the number of sites in a
block to be coarse-grained, and f(k) is a function of k£ with
f(k)<k-1. logy is the maximum entanglement entropy of a single
edge when we trace out the rest of the MERA. It is instructive to
introduce a parameter n € [0,1] to describe the degree of entangle-
ment [25]. Thus, the average entanglement entropy per edge in
MERA is nlogy . Then, we can write the entanglement entropy as

Smera(D) = 4f(k)log,l-nlogx. (A2)
Recalling that the entanglement entropy of CFT S(/) = (c/3)logl,
then the MERA entropy (A2) yields a central charge

3L logy
= — =12nf(k .
=Gy - PRk

(A3)

Because each edge has the same average entanglement entropy
nlogy we still can count the number cut by causal cut to obtain the
entanglement of region [y. The auxiliary space-time given by
MERA is still a de Sitter, but with the relation between y and cent-
ral charge c Eq. (A3) different from Eq. (63).
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Appendix B: Comparing with entanglement density

We should point out is that in Ref. [36], the authors define the
entanglement density in (I+1)-dimensional CFT. The entangle-
ment density n(l,¢,1) is defined by counting the number of entangle-
ment pairs between the two points x=¢-1/2 and x=£+1/2. After
comparison with the result of entanglement entropy in CFT, they
find

ncrr(LE,0) = 667
where c is the central charge, and / is the range of subsystem we

(BD)

consider. The horizontal ladders are the disentanglers, which are
unitary transformations between two spins. Each disentangler car-
ries the entanglement entropy log2 between these two spins. The
number of disentanglers in each bond N(/,&,7) is roughly given by
[36]

(L&) = ner(Lén- P = 2. (B2)

which can be understood as the density of disnentanglers.
Although this expression of density of disentanglers looks
highly similar to our density of compression, p « N(1,£,1) = c/6. We

claim that they have a different meaning. First, in Ref. [36], the
MERA is defined in a time slice of AdS space. However, in favor
of Ref. [9], which is the premise of our paper, the MERA lives on
the kinematic space rather than the time slice of the AdS. The kin-
ematic space is a dS, which has a natural causal relation between
tensors. Second, N(L&,1) is the density of disentanglers in each
bond, whereas p is the density of compression in each isometry.
Third, N(,¢,1) is the number of disentanglers in each bond, which
describes how many entanglement pairs are in such a bond. Thus,
to obtain the entanglement entropy of a subsystem, one can roughly
count the number of intersecting bonds and multiply the density
N(L¢,1). In contrast, in our study we define the density p from an in-
formation point of view. The volume of kinematic space is the con-
ditional mutual information, which shares the information between
two regions. The p describes the quantity of information that will
be shared, or be compressed along the quantum circuit, which have
a different meaning regarding the density of disentanglers. To ob-
tain the conditional mutual information, we can count the isometry
number and multiply the density p.
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