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Abstract: Fragment production in spallation reactions yields key infrastructure data for various applications. Based
on the empirical SPACS parameterizations, a Bayesian-neural-network (BNN) approach is established to predict the
fragment cross sections in proton-induced spallation reactions. A systematic investigation has been performed for the
measured proton-induced spallation reactions of systems ranging from intermediate to heavy nuclei systems and in-
cident energies ranging from 168 MeV/u to 1500 MeV/u. By learning the residuals between the experimental meas-
urements and SPACS predictions,  it  is  found that  the BNN-predicted results  are in good agreement with the meas-
ured results. The established method is suggested to benefit the related research on nuclear astrophysics, nuclear ra-
dioactive beam sources, accelerator driven systems, proton therapy, etc.
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1    Introduction

A spallation reaction is one of the violent nuclear re-
actions,  and  it  occurs  when  a  high-energy  light  particle
strikes a target nucleus. Spallation reactions can naturally
occur in the cosmos where high-energy cosmic rays col-
lide with nuclei [1], resulting in the variation of elements
in the universe. They can also be artificially induced at a
nuclear facility, such as accelerator driven systems (ADS)
for nuclear  waste  disposal,  radioactive  nucleus  produc-
tion, or  during the  proton therapy process  using acceler-
ated protons. The incident energy in a spallation reaction
is above tens of A MeV, which covers the ranges of inter-
mediate energy, relativistic energy, and even higher ener-
gies. As a result of the spallation reaction, various radio-
active  nuclei  can  be  produced,  the  research  regarding
which  has  important  applications  in  several  disciplines,
including nuclear physics, nuclear astrophysics, isotopic-
separation-online (ISOL)-type  radioactive-ion-beam  fa-
cilities,  upcoming  third-generation  radioactive  nuclear
beams facilities, ADS for nuclear energy [2] and nuclear
waste  transmutation  [3, 4],  radioactive  nuclei  synthesis
(especially  for  extreme  nuclei  and  nuclear  isomers  [5]),
accelerator  material  radiation [6],  and proton therapy [7,
8].

Its extensive  applications  have  attracted  both  experi-
mental and theoretical interests. In early times, the exper-
iments were usually carried out using accelerated protons
on  the  synchrocyclotron  or  using  cosmic  rays.  After  the
reverse kinetic  technique  was  proposed,  massive  experi-
ments  have  been  performed  to  measure  the  spallation
fragments above 56Fe, covering the incident energy range
of a few hundreds of A MeV to higher than A GeV. Prodi-
gious data for fragments in spallation reactions have been
assembled.

On the theoretical  front,  many models have been de-
veloped.  The  quantum  molecular  dynamics  model  has
been improved for spallation reactions [9-11]. The statist-
ical multi-fragmentation model [12-14] and the Liège in-
tranuclear  cascade  (INCL++)  model  [15-17]  (which  has
been implanted in  the  OpenMC, GEANT4,  and FLUKA
toolkits [18, 19]) can be used to simulate spallation reac-
tions, which are usually followed by a  secondary decay-
ing simulation to reproduce the experimental results (a re-
view  is  also  recommended  [20]).  Some  semi-empirical
parameterizations,  including  the  EPAX  [21]  and  the
SPACS  [22],  can  globally  predict  the  residue  fragments
in  the  spallation  reaction.  The  nuclear  energy  agency
(NEA)  systematically  compared  the  international  codes
and models  for  the  intermediate  energy activation yields
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to meet the needs of ADS designation, energy amplifica-
tion,  and  medical  therapy  [23].  Difficulties  still  exist,  as
the  spallation  reaction  involves  a  wide  incident  energy
range,  as  well  as  a  wide  range  of  nuclei,  from  light  to
heavy ones.  Since  the  important  applications  of  spalla-
tion reactions and the resultant residues productions, it is
important  to  improve  the  theoretical  predictions  for  the
proton induced spallation reactions.  The existing models
are limited with regard to predicting the light fragments,
particularly for proton-induced reactions at low energy. It
is  necessary  to  propose  a  new  method  for  the  accurate
prediction of the fragments in spallation reactions.

β−

The  neural  network  method,  one  of  the  machine
learning  technologies,  is  being  increasingly  employed  in
nuclear physics. In the standard neural network, it is diffi-
cult  or  even  impossible  to  control  the  complexity  of  the
model,  which  is  likely  to  lead  to  overfitting  and  reduce
the  generalization  ability  of  the  network  [24].  The
Bayesian  neural  network  (BNN)  provides  a  good  means
for  avoiding  overfitting  automatically  by  defining  vague
priors  for  the  hyperparameters  that  determine  the  model
complexity  [25]. A  prior  distribution  of  the  model  para-
meters  can  be  incorporated  in  Bayesian  inference  and
combined with training data to control the complexity of
different parts of the model [26]. Successful examples of
BNN applications in nuclear physics can be found in the
predictions of nuclear mass [27-29], nuclear charge radii
[30],  nuclear decay  half-life  [31],  fissile  fragments
[32],  and  spallation  reactions  [33].  Based  on  the  vast
numbers  of  measured  fragments  in  laboratories  around
the world, it is quite promising to predict spallation cross
sections accurately and give reasonable uncertainty eval-
uations with the BNN approach.

In this article, a new method is proposed to predict the
fragment cross sections in proton-induced spallation reac-
tions. The  BNN method  is  described  in  Sec.  2.  The  res-
ults and discussions are presented in Sec. 3, and a conclu-
sion is given in Sec. 4.

2    BNN method

D = (x(i),y(i))

The  key  principle  of  Bayesian  learning  is  to  deduce
the  posterior  probability  distributions  through  the  prior
distribution.  The  process  of  Bayesian  learning  is  started
by introducing the prior knowledge for model parameters.
Based on the given training data  and model
assumptions,  the  prior  distributions  for  all  the  model
parameters are updated to the posterior distribution using
Bayes' rule,

p(θ|D) = p(D|θ)p(θ)/p(D) ∝ L(θ)p(θ), (1)

θ
p(θ|D) p(D|θ)

p(θ)

where  denotes the model parameters. The posterior dis-
tribution  combines  the  likelihood function 
with  the  prior  distribution , which  contains  the  in-

θformation  about  derived  from  the  observation  and  the
background knowledge, respectively.

p(D)

p(θ)

The introduction  of  the  prior  distribution  is  a  crucial
step  that  allows  the  prediction  to  go  from  a  likelihood
function  to  a  probability  distribution.  The  normalized
quantity  can be directly understood as the edge dis-
tribution of the data, which can be obtained from the in-
tegration of  the selected model  hypothesis  and prior  dis-
tribution ,

p(D) =
∫
θ

p(D|θ)p(θ)dθ. (2)

p(θ)

p(D|θ) χ2(θ)

In  this  work,  the  prior  distributions  are  set  as  the
Gaussian distributions.  The  precisions  (inverse  of  vari-
ances)  of  these  Gaussian  distributions  are  set  as  gamma
distributions  [28], which  automatically  control  the  com-
plexity  of  different  parts  of  the  model.  The  likelihood
function  and the objective function  are giv-
en by

p(D|θ) = exp(−χ2/2), χ2 =

N∑
i

[yi− f (xi;θ)]2/∆y2
i ,

∆y2
i

f (x, θ)

xi
fk(x;θ)

where  is  the  associated  noise  scale.  The  function
 is  a  multilayer  perceptron  (MLP)  network,  which

is  also  known  as  the  "back-propagation"  or  "feed-for-
ward." A typical MLP network consists of a set of input
variables ( ), certain hidden layers, and one or more out-
puts ( ). For an MLP network with one hidden lay-
er and one output, the function is defined as

f (x;θ) = a+
H∑

j=1

b j tanh

c j+

I∑
i=1

d jixi

 , (3)

θ = (d ji,c j) θ = (b j,a)
where H denotes the number of hidden units, and I is the
number  of  input  variables.  and  are
the weights and bias of the hidden layers and output lay-
er, respectively.

ynew xnew

Based on  the  theoretical  principles  and  prior  know-
ledge, the posterior distribution can be obtained from the
data  using  Eq.  (1).  The  predictive  distribution  of  output

 for  a  new  input  is  obtained  by  integrating  the
predictions of the model with respect to the posterior dis-
tribution of the model parameters,

p(ynew|xnew,D) =
∫

p(ynew|xnew, θ)p(θ)dθ. (4)

xnew

xnew ynew

In  the  MLP  network,  we  are  interested  in  obtaining  a
reasonable prediction with the new input  rather than
the posterior distribution for parameters. For a new input

, the model prediction  can be obtained from the
mathematical expectation of the posterior distribution,

ynew = E[ynew|xnew,D] =
∫

f (xnew, θ)p(θ|D)dθ. (5)

The integral  of  Eq.  (5)  is  complex,  and  a  numerical  ap-
proximation  algorithm  will  reduce  the  complexity.  The
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Markov chain  Monte  Carlo  (MCMC)  methods  are  ap-
plied to  optimize  the  model  control  parameters  and  ob-
tain  the  predictive  distribution.  As  one  of  the  MCMC
methods,  the  hybrid  Monte  Carlo  (HMC)  algorithm was
first introduced by Neal [34] to deal with the model para-
meters  and  Gibbs  sampling  for  hyperparameters.  The
HMC  is  a  form  of  the  metropolis  algorithm,  where  the
candidate  states  are  found  via  dynamical  simulation.  It
makes effective use of gradient information to reduce the
random  walk  behavior.  In  theory,  the  Gibbs  sampler  is
the  simplest  Markov  chain  sampling  method,  which  is
also known as the heatbath algorithm. The hyperparamet-
ers  are  updated  separately  using  Gibbs  sampling,  which
allows their values to be used in obtaining good step-sizes
for  the  discretized  dynamics,  and  they  help  to  minimize
the  amount  of  tuning  needed  for  a  good  performance  in
HMC. The integral of Eq. (5) is approximately calculated
as

ynew = 1/K
K∑

k=1

f (xnew, θt), (6)

σexp

σth

where K is the number of iteration samples. In a previous
work,  the  BNN approach  has  been  adopted  to  learn  and
predict  the cross sections directly [33].  To provide some
physical  guidelines,  a  recent  empirical  parameterization
for  fragment  prediction,  which  is  named  as  the  SPACS
[22],  has  been  adopted  for  spallation  reactions  to  obtain
the fragment  cross  sections.  In  this  work,  the  BNN  ap-
proach  is  employed  to  reconstruct  the  residues  between
the  experimental  data  ( ) and  the  theoretical  predic-
tions ( ), i.e.,

yi = lg(σexp)− lg(σth). (7)

The  cross  section  predictions  via  the  BNN approach  are
then given as

σBNN+th = σth×10ynew

, (8)

σth ynew

σth
where  and  denote  the  SPACS  results  and  the
BNN predictions, respectively. In this work,  refers to
the predictions  obtained  using  the  SPACS parameteriza-
tions; As mentioned earlier, the SPACS was proposed re-
cently and has gained success with regard to spallation re-
actions.

Api Ai Zpi Zi

Ei xi = (Api,Zpi,Ei,Zi,Ai)

The inputs  of  the  neural  network  are  the  mass  num-
bers  ( ),  the  charge  numbers  ( ) of  the  pro-
jectile (fragment) nucleus, and the bombarding energy (in
MeV/u) , i.e., . Systematic exper-
iments  have  been  performed  at  the  Lawernce  Berkeley
Laboratory (LBL), RI Beam Facility (RIBF) RIKEN, and
FRagment  Separator  (FRS)  GSI,  which  cover  a  broad
range of spallation nuclei, from 36Ar to 238U. The range of
the  incident  energy  varied  from  168  MeV/u  to  1500
MeV/u, which  is  relevant  for  the  ADS  and  proton  ther-
apy applications. As listed in Table 1, 3511 datasets from

20 different reactions will be used in this work. The com-
plete data are divided into two different sets, which serve
as  the  learning  set  and  the  validation  set,  respectively.
The learning set is built by randomly selecting 3211 data-
sets,  and  the  remaining  300  datasets  are  selected  as  the
validation set.

3    Results and discussions

The network  is  trained  with  different  model  struc-
tures, and 2000 iteration samples are taken in each train-
ing.  Because  the  fragment  cross  sections  may  differ  by
several  orders  of  magnitude,  an  A-factors  method  [46,
47] is introduced to indicate the validation results of dif-
ferent models, as shown in Fig. 1. The A-factor is defined
as

A f = 1/N
N∑

i=1

|σexp−σpre|
σexp+σpre , (9)

σexp σprewhere  and  denote  the  measured  data  and  the
predicted data, respectively. In the following section, we
discuss the predictions obtained using the BNN + SPACS

Table 1.    A list of the adopted data for the measured fragments in the
X + p spallation reactions.

AX + p E/(MeV/u) numbers Zi Ref.

36Ar + p

361 42 9-17

[35]546 42 9-17

765 38 9-17

40Ar + p 352 45 9-17 [35]

40Ca + p

356 48 10-20

[36]565 54 10-20

763 54 10-20

56Fe + p

300 128 10-27

[37]

500 136 10-27

750 148 8-27

1000 152 8-26

1500 157 8-27

136Xe + p

168 73 48-55 [38]
200 96 48-55 [39]

500 271 41-56 [40]

1000 604 3-56 [41]

197Au + p 800 352 60-80 [42]

208Pb + p
500 249 69-83 [43]
1000 458 61-82 [44]

238U + p 1000 364 74-92 [45]
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method,  and  compare  them  with  the  measured  data  and
the SPACS predictions.

In Fig.  1,  the  A-factors  for  the  SPACS  predictions
and BNN method with different numbers of hidden neur-
ons are compared. It is observed that even the BNN with
five hidden neurons can significantly improve the predic-

xi =

(Api,Zpi,Ei,Zi,Ai) yi = lg(σexp)− lg(σth)

tions.  The  A-factor  decreased  with  an  increase  in H.
When H increased to 23, the A-factor could not be min-
imized further. A 5-23-1 structure is taken as the optimal
network  structure,  which  means  that  5  inputs 

,  1  output ,  and  a
single hidden layer with 23 hidden neurons are included.

The  BNN  +  SPACS  predictions  for  fragment  cross
sections in the 1 A GeV 136Xe + p, 168 A MeV 136Xe + p,
356 A MeV 40Ca + p, and 1 A GeV 238U + p reactions are
shown in Fig. 2 to Fig. 5, and compared with the experi-
mental data as well as the SPACS predictions.

Z =
Z ⩽

In Fig. 2,  the predicted and measured fragment cross
sections in the 1 A GeV 136Xe + p reaction are compared.
It  is  observed  that  the  BNN +  SPACS predictions  agree
quite well with the measured data for fragments from 
3 to 54. For the fragments with  25, the underestima-
tion  of  experimental  data  by  SPACS has  been  improved
significantly.

Z ⩾

Figure  3 shows  the  BNN  +  SPACS  predictions  for
fragment cross sections in the 168 A MeV 136Xe + p reac-
tion, which  have  been  measured  at  RIBF,  RIKEN  re-
cently  [38].  In  [38],  only  the  cross  sections  for  48
fragments were reported. Compared to the measured frag-
ments,  the  BNN  +  SPACS  predictions  are  very  close  to

 

Fig.  1.     A-factor  for  the  predictions  by  the  SPACS and  the
BNN  +  SPACS  model  with  different  numbers  of  hidden
neurons, denoted by H, for the validation set.

Fig. 2.    (color online) BNN + SPACS predictions of fragment cross sections of 1000 A MeV 136Xe + p compared with SPACS and ex-
perimental data (taken from [41]). In the x axis, I = N - Z denotes the fragment neutron excess. The measured data, BNN + SPACS
predictions, and SPACS predictions are plotted as squares, circles, and triangles, respectively. The experimental and BNN + SPACS
error bars are too small to be shown.
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Fig. 3.    (color online) Same as Fig. 2 but for the 168 A MeV 136Xe + p reaction (experimental data taken from Ref. [38]).
 

Fig. 4.    (color online) Same as Fig. 2 but for the 356 A MeV 40Ca + p reaction (experimental data taken from Ref. [36]).
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Z ⩽

Z ⩽

the  SPACS  ones.  For  the  light  and  medium  fragments
(  25), the  BNN  +  SPACS  predictions  are  substan-
tially  higher  than  the  SPACS ones,  which  are  similar  to
the results shown in Fig. 2. In addition, the uncertainties
are relatively large for the  11 isotopes.  This may be
caused by the insufficient data in the training set for this
incident energy.

Z =

The spallation of  intermediate  nuclei  is  of  interest  in
proton therapy  and  nuclear  astrophysics.  The  composi-
tion  of  interstellar  matter  is  influenced  by  cosmic  ray
(mainly high-energy proton)-induced spallation reactions.
The 40Ca + p reaction at  356 A MeV, for which the pre-
dicted and measured results are shown in Fig. 4, has been
studied. Compared to the measured results, both the BNN +
SPACS and  SPACS predictions  could  reproduce  the  ex-
perimental  data  quite  well.  The  fragment  cross  sections
predicted by the BNN + SPACS method are in line with
those predicted by SPACS except for the  3 isotopes.

Z =

Z =

Z =

The predictions for the fragment cross sections in the
1 A GeV 238U + p reaction  are  compared  in Fig.  5.  The
measured  data  cover  the  fragments  from  74  to  92
[45]. It  can be observed that the BNN + SPACS method
can  predict  the  results  well,  while  the  SPACS  highly
overestimated the measured results for  91. The BNN
+  SPACS  method  shows  the  sign  of  larger  than  the
SPACS  method  for  the  fragments  of  smaller I.  It  seems
that for the  20 isotopes, for fragments from the spal-

lation of a heavy system such as 238U, the predictions by
BNN + SPACS become more inaccurate, which indicates
that the  BNN should be further  improved by incorporat-
ing  more  data  for  small Z fragments  produced  in  the
heavy systems.

σ =Ce(B′−8)/τ τ

B′ = (B− ϵp)/A ϵp = 0.5[(−1)N + (−1)Z]ϵ0A−3/4

ϵ0 =

Z =

The  BNN  +  SPACS  predictions  are  further  verified
by using the correlation between the cross section and the
average  binding  energy,  which  has  been  elucidated  in
Ref.  [33].  It  is  generally  believed  that  the  isotopic  cross
section  depends  on  the  average  binding  energy  in  the
form of , where C and  are free parameters,
and  (in which 
is the pairing energy for the fragment, and  30 MeV).
It  is  evident  that  the isotopic  cross  sections predicted by
the  BNN  +  SPACS  model  for  17  and  41  obey  the
correlation  very  well,  which  improves  both  the  previous
BNN method and also the SPACS method Fig. 6.

From  the  above  results,  which  cover  the  fragment
cross  section  predictions  for  proton-induced  reactions
ranging from intermediate to heavy nuclei and for the in-
cident energy range of 168 A MeV to 1 A GeV, it is ob-
served that the BNN approach improves the quality of the
empirical SPACS  parameterizations  through  the  recon-
struction  of  the  residual  cross  sections  between  the
SPACS predictions and measured data. Thus, the BNN +
SPACS method can be a new tool to predict the fragment
cross section in spallation reactions since it can work in-

Fig. 5.    (color online) Same as Fig. 2 but for the 1 A GeV 238U + p reaction (experimental data taken from Ref. [45]).
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dependently after the network is formed.
If we revisit the foundation of the BNN approach, it is

natural  that  the  BNN +  SPACS model  should  provide  a
better prediction than the SPACS parameterizations since
the difference between the SPACS and measured data has
been  minimized.  Therefore,  the  BNN  +  SPACS  model
makes improved predictions and also avoids the nonphys-
ical phenomenon by forming a direct  BNN learning net-
work from the measured data, as shown in Ref. [33]. The
physical implantations of SPACS play important roles to
make the  BNN + SPACS method reasonable  in  physics,
and the learning and predicting abilities of the BNN also
improve the predictions where the SPACS parameteriza-
tions do not perform well.

The results indicate that the SPACS tends to underes-
timate  the  cross  sections  for  fragments  with  relatively
small Z,  whereas  it  overestimates  the  cross  sections  for
fragments with Z close to those for heavy spallation nuc-
lei. These shortcomings have been overcome by the BNN
+  SPACS  model.  Limitations  still  exist  for  the  BNN  +
SPACS model  constructed  in  this  work  due  to  the  ab-
sence of  experimental  data  for  reactions  of  incident  en-
ergy below 100 A MeV and for small spallation systems.
For  applications  in  proton  therapy,  the  incident  energy
can be lower than 100 A MeV, and the masses of the spal-
lation nuclei are smaller than 30. The smallest spallation
reaction  adopted  in  this  work  is  for 36Ar.  If  we  consider
interstellar matter, most of the nuclei have mass numbers

A <

smaller than  56.  Regarding  the  spallation  reactions  in-
duced by high-energy cosmic rays and the proton therapy
process, we  should  improve  the  prediction  model  to  ac-
count for small spallation systems, for which the SPACS
parameterizations do not work well. It is important to im-
prove the BNN + SPACS predictions by introducing new
data  for  spallation  reactions  of  intermediate  energy  (for
example, below 100 A MeV) and intermediate/small sys-
tems (  20), which requires new experiments.

4    Conclusion

In this  article,  the BNN approach combined with the
SPACS parameterizations is proposed to predict the frag-
ment cross  sections  in  proton-induced  spallation  reac-
tions.  Based  on  3511  measured  fragment  cross  sections
corresponding to  20  spallation  reaction  systems,  the  op-
timal network structure has been established to be 5-23-1,
which  includes  5  inputs,  1  output,  and  a  single  hidden
layer with  23  hidden  neurons.  By  reconstructing  the  re-
siduals between  the  measured  data  and  the  SPACS  pre-
dictions,  the  BNN  +  SPACS  method  is  verified  to  well
reproduce the experimental data. It is also shown that the
BNN + SPACS method can yield a better  global  predic-
tion compared  to  the  SPACS parameterizations.  The  es-
tablished BNN  +  SPACS  method  can  be  potentially  ap-
plied for  research on nuclear  physics,  nuclear  astrophys-
ics, ADS, proton therapy, etc.
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