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Abstract: We propose a novel self-consistent mean field approximation method by means of a Fierz transformation,
taking the Nambu-Jona-Lasinio model as an example. This new self-consistent mean field approximation introduces a
new free parameter o to be determined experimentally. When o assumes the value of 0.5, the approximation reduces
to the mean field calculation commonly used in the past. Subsequently, we study the influence of the undetermined
parameter o on the phase diagram of the two-flavor strong interaction matter. The value of « plays a crucial role in
the strong interaction phase diagram, as it not only changes the position of the phase transition point of strong interac-
tion matter, but also affects the order of the phase transition. For example, when « is greater than the critical value
a. = 0.71, then the strong interaction matter phase diagram no longer has a critical end point. In addition, in the case
of zero temperature and finite density, we found that when a > 1.044, the pseudo-critical chemical potential corres-
ponds to ~4-5 times the saturation density of the nuclear matter, which agrees with the expected results from the pic-
ture of the hadrons degree of freedom. The resulting equations of state of strong interaction matter at low temperat-
ures and high densities will have an important impact on studies concerning the mass radius relationship of neutron
stars and the merging process of binary neutron stars.
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placeable at present.

Currently, people usually describe the phase trans-
ition of strong interaction matter under the condition of
large chemical potential from two different physical pic-
tures. One is based on the quark-gluon degree of freedom,
while the other is from the hadron degree of freedom.
First, we look at the phase transition of strong interaction
matter in the case of large chemical potentials derived
from quark-gluon degree of freedom. In Ref. [1], based
on a universal argument, when the chemical potential x is
smaller than a critical value uo, the quark-number density
vanishes identically. Namely, uo is a singularity that sep-
arates two the regions with different quark-number dens-
ities. The numerical value of the critical chemical poten-

1 Introduction

With increasing temperature or baryon chemical po-
tential, it is generally assumed that strong interaction mat-
ter undergoes a phase transition from the hadronic matter
to quark-gluon plasma (QGP), which is expected to ap-
pear in ultrarelativistic heavy ion collisions. The basic
theory describing these strong interactions is quantum
chromodynamics (QCD). Drawing a phase diagram of
strong interaction matter at finite temperature and finite
density is an important goal of current high nuclear phys-
ics studies. Although Lattice Monte Carlo simulations
have made significant progress in the studies of finite

temperature and low chemical potential, they encounter
the so-called sign problem when dealing with large chem-
ical potentials. Therefore, calculations of large chemical
potentials based on effective theories of QCD are irre-
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tial yo in pure QCD (i.e., with electromagnetic interac-
tions being switched off) is estimated to be
to = (My—16 MeV)/N,. =307 MeV (where My is the nuc-
leon mass and N, =3 is the number of colors). This
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means that at temperature 7 =0, and when u is greater
than o, the baryons will be excited from the QCD vacu-
um, which is a robust and model-independent prediction
[1]. Along with the continuous increase in the quark
chemical potential, it is believed that when the chemical
potential is as large as a critical value ., the strong inter-
action matter will undergo the so-called chiral restoration
and deconfinement phase transition [2,3]. Naturally, since
the Lattice QCD cannot be employed to deal with the
large chemical potential problem, the value of u. de-
pends on the phenomenological QCD model that is
chosen. For example, the y,. predicted by NJL model,
which is commonly used, has a value of ~330-380 MeV
[4-6]. This means that the chemical potential required to
excite a baryon from the QCD vacuum to a phase trans-
ition of strong interaction matter does not exceed dozens
of MeV, which is unlikely. However, from the picture of
hadron degrees of freedom, it is generally believed that
strong interaction phase transitions are only possible
when the density of nuclear matter is at least greater than
four times the saturation density of the nuclear matter.
Hence, the quark chemical potential corresponding to
four times the saturation density of nuclear matter re-
mains to be found. To address this, we use the relativistic
mean field (RMF) method [7] to estimate the quark
chemical potential corresponding to one to five times the
saturation density of the nuclear matter, as shown in
Table 1.

Table 1.

density. p, is the nuclear matter saturation density. Results are giv-

Quark chemical potential and corresponding nuclear matter

en by the method of RMF with model parameters NL3wp from the
hadron degrees of freedom [8-10].

Nuclear density Po 2p0  3py  4py Spo
Quark chemical potential/MeV 323 371 469 580 692

Table 1 shows that the quark chemical potential cor-
responding to four times saturation density of the nuclear
matter is about 580 MeV. Hence, from the picture of had-
ron degrees of freedom, in the case of zero temperature
and finite chemical potential, the phase transition of
strong interaction matter is likely to occur only when the
quark chemical potential is at least greater than 580 MeV.
The position of the phase change of the strong interac-
tion matter obtained from the perspective of the picture of
the hadron degree of freedom is significantly different
from that derived from the quark-gluon degree of free-
dom. Therefore, there are huge contradictions between
the results drawn from the quark-gluon degrees of free-
dom and the expected results derived from the hadron de-
grees of freedom. The main motivation of this study is to
propose a new self-consistent mean field approximation
to solve the above contradictions.

2 Model and numerical results

Before proposing a new approach for a self-consist-
ent mean field approximation, we first review the mean
field approximation usually adopted in the past. A mean
field approximation replaces all interactions to any one
body with an average or effective interaction, which re-
duces any many body problem into an effective one-body
problem. Taking the Nambu—Jona—Lasinio (NJL) model
[11,12] as an example, the Lagrangian is given by

L= §—my+GLEw)* + @iy’ 1)), (D
where m denotes current quark mass and G denotes the
coupling constant. Performing Fierz transformation on

the interaction part of the Lagrangian (1) in flavor, Dirac
spinor, and color spaces, one obtains

_ _ 1 _ _
FIGW)* + @iy’ 1)*] S [R2)* + 2y 1) = 2(yryp)*

= 2y ) =AWy ) -4y Y w)?
+ W@ty — oY), -

and the Lagrangian becomes
Lr =9 J—my+GFI)?* + @iy’ w)’l. ()

Because the Fierz transformation is a mathematically
equivalent transformation, the original Lagrangian £ and
the Fierz-transformed Lagrangian L are equivalent.
However, when the mean field approximation is applied,
especially in the case of an external field, (L), is no
longer equal to (Lr),, (the notation (---),, denotes mean
field approximation). For example, when we study the
strong interaction phase transition at finite chemical po-
tential, which can be regarded as the vector background
field, the position of the phase transition calculated by
(Lym and (Lp)y 1s very different [13]. Thus, a suitable
Lagrangian in the mean field approximation remains to
be found. Ref. [13] suggests the form 1/2({L),, +{LF)m),
as this form is Fierz invariant. Formally, (£),, and {(Lr),
contributions are equal, and as there is no physical re-
quirements for this, the two term contributions are
identical.

Considering that the original Lagrangian and Fierz-
transformed Lagrangian are identical, the most general
effective Lagrangian can be redefined as Lz = (1 —a)L+
aLr, where a is an arbitrary ¢ number. As Lz = £, rede-
fining the effective Lagrangian of the system does not
change the original Lagrangian of the system. However,
in the presence of chemical potential, once the mean field
approximation is made, the situation changes greatly (see
below). In the standard NJL model (1), the interaction
term in the scalar and pseudoscalar-isovector channels is
used. As shown in the Walecka model [7,14], the vector-
isoscalar channel is very important at non-zero densities.
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To reflect this fact, in some model studies, the vector-iso-
scalar term is added to the standard NJL model manually
[13]. However, the current model is different from the
standard NJL model. In fact, all the possible interaction
channels are included in the standard NJL model, which
can be reflected by Fierz transformation. In particular,
there has been a great arbitrariness in the past when the
self-consistent mean field approximation was applied in a
standard NJL model. For example, when discussing the
finite chemical potential, the vector-isoscalar channel is
artificially added to the standard NJL model Lagrangian.
Similarly, if the axial chemical potential is discussed (in
this case, the isovector-isoscalar channel is very import-
ant), the isovector-isoscalar channel is also artificially ad-
ded to the standard NJL model, which makes the stand-
ard NJL model lack predictive power. In contrast, our
self-consistent mean field approximation avoids this ar-
bitrariness and can be handled in a self-consistent man-
ner for any background field (for example, in the case of
a strong magnetic field).

Applying the mean field approximation on the re-
defined Lagrangian, one has

(Lrdm =1 = )Ly + (L.
=i §—my + (1 - )GI)* + Wiy’ - )]

G _ _
o R2)* + 2(iy T)* = 2(yry)*

=20y’ ) —4Wy)’ ~ Wiy Y )
+ @YY = e ). “)
The gap equation is then given by

M APZ
M=m+(12—lla)G7? Ep

X [1=n,(T,ur) =1, (T,ur)1dp, )

+a

where
aG 6

A
A f PPy (Top) =7, (Top)ldp. (6)

Here, E, = +/p*+ M? and

np(T,uy) =

Hr=H—

E,—u-\’
1+exp( pT'u)
1

ﬁp(T’/Jr) = E + ,U ’ (7)
p r
)

1+exp(

where the parameter a can not be determined in advance
by theory, but only by fitting of the experimental results.
As mentioned above, in the case of a finite chemical
potential, the new self-consistent mean field approxima-
tion is quite different from the previously applied mean
field approximation. When the chemical potential ap-
proaches zero, the gap equation obtained from the self-
consistent mean field approximation is reduced to the gap

equation obtained from the conventional mean field ap-
proximation. Therefore, with the exception of the free
parameter o (which must be fitted by finite density exper-
imental data), other model parameters, such as cutoff A
and current quark mass m, are identical to the convention-
al NJL model parameters. The details are provided for
clarity as follows: the quantum number of QCD vacuum
is 0**. In the presence of an external field, the vacuum re-
sponds by forming a vacuum condensate to ensure that
the ground state of the composite system remains in the
0** quantum state. Hence, when an external field is
present, the contribution of the external field must be
taken into account. In the case of vanishing chemical po-
tential, at finite temperature or zero temperature, no vec-
tor condensate exists. Therefore, the gap equation of the
effective Lagrangian at zero chemical potential has the
same form, except for the coupling constant. From Eq.
(5), the parameter a can be absorbed into the value of the
coupling constant G at vanishing chemical potential,
which reduces to the G in the original NJL model. In this
case, there is no new model parameter introduced into the
NJL model at finite temperature/or zero temperature.

At the same time, since the NJL model parameters are
obtained by fitting the pion mass, decay constant, and
chiral condensation at zero temperature and zero chemic-
al potential, the model parameters of this study are the
same as in the previous NJL model. In addition, we also
stress that the form 1/2((L),, +(LF)m) proposed by Ref.
[13] is only a special case with @ = 1/2. Here, the effect-
ive Lagrangian defined by Eq. (4) is universal and can be
applied to any strongly interacting system. For example,
an important challenge of modern condensed matter
physics is to develop a self-consistent method to determ-
ine the leading and sub-leading phase transition instabilit-
ies caused by various kinds of interaction. Recently, this
issue has been widely studied in iron-based superconduct-
ors [15] and Dirac semimetal materials [16-18], however
many problems were not satisfactorily resolved. In these
strongly correlated systems, the fermionic excitations are
subjected to several sorts of interactions, which lead to a
number of competing long-range orders. The approach
developed in this letter can be applied to study the phase-
transition instabilities and ordering competition in con-
densed matter physics. The effective Lagrangian of
strong correlated systems is naturally different from the
NJL mode, and the corresponding parameter o can only
be determined by experimental results in condensed phys-
ics. Indeed, different models should have different para-
meters a.

Due to the lack of experimental data at large chemic-
al potentials, the parameter o can not be determined by
experiment and can be regarded as a free parameter. In
this study, we first explore the dependence of the chiral
phase transition on the parameter a at finite chemical po-
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tential and zero temperature, and investigate the effects of
a on the chiral phase transition. To determine the order of
the phase transition its location, the chiral susceptibility
[19]

m = _ag’i:llo s (8)
with different a is adopted.

Based on the numerical iterative algorithm, the quark
gap equation is numerically solved at finite chemical po-
tential and the corresponding quark number density and
chiral susceptibility are obtained. The results are as fol-
lows: first, the critical value py does not depend on the
parameter a, that is, no matter how large « is, the value of
Uo is always the same. Based on the model parameters ad-
opted in this letter, for example, yo is always equal to 311
MeV, which is quantitatively consistent with the predic-
tion of Ref. [1]. Second, the chiral susceptibility exhibits
different behaviors with different a. If a is less than the
critical value a. = 0.71, the chiral susceptibility is discon-
tinuous at the critical chemical potential, therefore, the
phase transition is a first order phase transition, see Fig.
1. In the previous mean field approximation, « is often as-
sumed as 0.5, which is less than a. =0.71, therefore the
strong interaction phase transition at low temperature and
large chemical potential predicted by NJL model [13]
represents the first order phase transition. Third, with the
increase of a, the chiral susceptibility shows a smooth
peak at the pseudo-critical chemical potential, and the
phase transition is a crossover, see Fig. 2. Moreover, the
pseudo-critical chemical potential increases with the
parameter a at zero temperature. Therefore, the paramet-
er o not only affects the value of the (pseudo) critical
chemical potential, but also the order of the phase trans-
ition.

Indeed, the parameter a reflects the competition
between different interaction channels and characterizes
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Fig. 1. (color online) Chiral susceptibility as a function of

chemical potential at zero temperature (o is less than
@, =0.71). Parameters of the NJL model are given by
G =4.93x10"°MeV~2, A = 653MeV and m = 5.0MeV [20].
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Fig. 2. (color online) Chiral susceptibility as a function of

chemical potential at zero temperature (a is larger than
a. =0.71). Parameters of the NJL model are the same as in
Fig. 1.

their relative weights, which is shown clearly in Eq. (4).
All current —current interaction channels are taken into
consideration using Fierz transformation. @=0 and
a = 1/2 are usually adopted to perform calculations [13].
For the case of @ =0, the contributions of interaction
channels in the second square bracket on the right hand
side of Eq. (4) are discarded, which means that the vector
interaction channel is ignored at finite chemical potential.
This will obviously lead to an inconsistency in the mean
field approximation. For the case of @ = 1/2, the contribu-
tions of interaction channels in the first and second square
bracket are equal, and there is no physical requirement
for this choice. Phase transition occurs as a result of com-
petition between different interaction channels. Thus, ad-
justing the parameter o can lead to different weights of
different interaction channels, which can change the crit-
ical chemical potential of the chiral phase transition and
its order.

As mentioned above, the parameter o can not be cur-
rently determined by experiment. However, it is gener-
ally believed that the phase transition of strong interac-
tion matter is at least four times the saturation density of
nuclear matter. If this is considered as a physical require-
ment to constrain a, we find that when « = 1.044, that is,
the corresponding pseudo-critical chemical potential
1 =600 MeV, a strong interaction matter phase transition
will occur. The self-consistent mean field method de-
scribed above can be easily extended from two flavors to
2 + 1 flavor strong interaction matter, and thus the equa-
tion of state at zero temperature and finite chemical po-
tential is obtained. This provides a good basis to study the
neutron star mass radius relationship [9,10].

Subsequently, the above approach is extended from
zero temperature to finite temperature. At finite temperat-
ure with vanishing chemical potential, the chiral phase
transition is a crossover, which is confirmed by lattice
simulations [21]. Because of the fermion sign problem,
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lattice simulations can not perform calculations at large
chemical potential. Many models show that the chiral
phase transition at finite chemical potential is a first or-
der phase transition [2,19]. Thus, the first order phase
transition must be terminated at the critical temperature
and chemical potential, which is the critical end point
(CEP). Locating the possible CEP is an important target
in the second phase energy scanning plan of the relativist-
ic heavy ion collider (RHIC) [22—-27]. However, in the
new consistent mean field approach, the existence of CEP
depends on the parameter a, as shown in Fig. 3. With the
increase of a, the CEP ceases to exist, i.e., if a is larger
than the critical value @, =0.71, the chiral phase trans-
ition is a crossover at finite temperature and chemical po-
tential, with no CEP. As a phase transition results from
the competition between different interaction channels, at
different temperatures, the competitive relationships
between these channels are different, indicating that the
pseudo critical chemical potential with a > 1 is smaller at
very small temperatures (Fig. 3). When a is larger than 1,
the attractive interaction may become repulsive interac-
tion, which likewise induces a change in the competitive
relationships. The above results are evidently model de-
pendent, and valid only if the mean field approximation
can capture the nature of the strong interaction matter
phase transition.

3 Summary and conclusions

We propose a new approach involving a universal
self-consistent mean field approximation. We apply it in
the study of a two flavor strong interaction matter phase
transition. A free parameter o is introduced in the ap-
proach, which needs to be determined experimentally.
We study the effects of a on the chiral phase transition

200

>
[}
=
" 100
First-order transition
1 1 1 i 1 1 I
0 100 200 300 400 500 600
nMeVv)
Fig. 3. (color online) QCD phase diagram with different val-

ues of parameter a.

and find that the parameter not only affects the value of
the (pseudo)critical chemical potential, but also the order
of the phase transition. The (pseudo) critical chemical po-
tential increases with the parameter a. When o = 1.044,
the pseudo-critical chemical potential achieves values as
high as ~600 MeV, which is in agreement with the expec-
ted results from the picture of hadron degrees of freedom.
Moreover, with increasing a, the chiral phase transition
becomes a crossover and therefore there is no CEP in
QCD phase diagram at finite temperature and finite
chemical potential. Finally, the determination of a is a
highly intriguing task. oo may be determined by observa-
tion of the binary neutron star merger, such as
GW170817 [28], and the mass constraint of PSR
J0348 + 0432 [29], which we aim to investigate in a fu-
ture study.

The authors thank Professor Liu Guozhu and Luo
Xiaofeng for their helpful discussions.
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