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Abstract: We discuss the sign and energy dependence of second to tenth order susceptibilities of the baryon number,

charge number, and strangeness for the analysis of critical conditions in heavy ion collisions in the LHC and RHIC by

applying a modified Nambu-Jona-Lasinio model. This model is fitted to the quark condensate of the lattice QCD res-

ult at finite temperature and zero baryon chemical potential. The presence of a critical point made these susceptibilit-

ies deviate considerably from a Hadron-Resonance-Gas model that shows no criticality. The sign, magnitude, and en-

ergy dependence of these higher order fluctuations hint towards the existence and location of a critical point that

could be discovered in future heavy ion collision experiments.
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1 Introduction

Exploring the phase structure of strongly interacting
nuclear matter is one of the main objectives of heavy-ion
collision experiments. Owing to the asymptotic freedom
of QCD, nuclear matter is expected to undergo a phase
transition from a phase with hadrons as dominant de-
grees of freedom to quark-gluon plasma (QGP) [1]. In the
chiral limit, the transition is of first-order at vanishing
chemical potential. Lattice QCD calculations show that at
small baryon chemical potential and high temperature,
the transition becomes a smooth crossover [2], whereas a
first-order phase transition is expected at high baryon
chemical region [3-6]. The end point of the first-order
phase boundary towards the crossover region is called the
QCD critical end point (CEP) [7]. The fluctuations in the
baryon number and electric charge have long been pre-
dicted to be sensitive to the phase transition, and they can
be used to study the phase structure of strongly interact-
ing nuclear matter. Experimental measurements of the
fluctuations of conserved quantities were performed by
the beam energy scan (BES) program in the STAR and
PHENIX experiments at the Relativistic Heavy-lon Col-
lider (RHIC). Interestingly, the STAR experiment ob-
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served a non-monotonic energy dependence of the fourth
order (ko?) net-proton fluctuations in the most central Au
+ Au collisions [8-15]. Furthermore, this non-monotonic
behavior cannot be described by various transport mod-
els [16, 17, 12]. To theoretically investigate the contribu-
tion of critical point physics to the conserved charge fluc-
tuations and their energy dependence behavior, we have
calculated the various fluctuations along the freeze-out
line in the QCD phase diagram with a modified Nambu-
Jona-Lasinio (NJL) model [18, 19] up to the tenth order.
Previous studies have investigated the quantities up to the
fourth order [20-26], or made use of the Polyakov-loop
improved NJL model [27-29]. Other effective models,
like Polyakov-Quark-Meson (PQM) model [30], which
calculated baryon fluctuations up to the eighth order ex-
hibit similar qualitative behavior as the NJL model.

In our work, we use a modified three-flavor NJL
model, with the four-point coupling being dependent on
the quark condensate, as inspired by the operator oroduct
expansion (OPE) method [31]. This effectively decreases
the coupling strength at higher temperature and the chem-
ical potential, which is more intuitive. Owing to the sign
problem of lattice QCD simulation at finite chemical po-
tential, the lattice method is at present limited to a low
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baryon chemical potential. The conventional NJL model
can not match the lattice result at zero chemical potential.
However, with the coupling strength depending on the
quark condensate, we are able to reproduce the lattice res-
ult at finite temperature and up = 0. This provides an ex-
tension to the finite chemical potential more reliable. The
experimentally obtained chemical potential of u, d quarks
is almost the same [32]; therefore, we set them to be
equal throughout the calculation. The chemical potential
of the strange quark is smaller; however, owing to the
large mass of the s quark, this does not alter the phase
diagram significantly resulting in a small influence on the
susceptibilities. Throughout our calculation, we assume
that the fire-ball is near thermal equilibrium at freeze-out,
although a critical slowing of dynamics would occur if
the fire-ball passes the CEP [33, 34]. Additionally,
changes in expansion dynamics and interactions can gen-
erate variations in particle spectra and acceptance inde-
pendent of critical phenomena, whose fluctuations must
also be monitored [35].

This paper is organized as follows: In Section 2, we
introduce the modified NJL model and present its phase
diagram. In Section 3 we provide the definition of vari-
ous quark number susceptibilities. Subsequently, we cal-
culate the various moments and quantities that can be
compared with experimental measurements in the next
two sections. The sign pattern of these moments reveals a
lot of information about the presence and location of the
CEP. We show their temperature dependence at up =0
and discuss their similarities and differences with other
model results in Section 5. The energy dependence of the
baryon moments is given in Section 6. We find that a
second peak (further sign changes) occurs along the colli-
sion energy axis. Finally, we summarize our work and
provide an outlook for future experiments.

2 Modification of the NJL model

We use a Lagrangian density of the NJL model with 2
+ 1 flavor:

L=9G §—moW +GlIAY) + iysaip)’]

- K(detly(1 +ys)y] +detlg(L—ys)yD), (1)
where mg = diag(m,o,ma9,my) is the current quark mass
matrix. A; are the Gell-Mann matrixes, and the determin-
ant is taken in flavor space [19]. At finite temperature and
chemical potential, we have one additional term uy 'y,
where  is the chemical potential matrix.

After performing a mean—field approximation of the
Lagrangian in Eq. (1), we obtain the following gap equa-
tion and expressions for quark condensate and number
density:

m; = mjo— 4G<Qiqi> + 2K<QMQm><5nCIn>(i #m#n)
(Giqi) = —miF (my, j1;) 2)
(q!qi) = H(m, )

where ¢;(i =u,d,s) are the wave functions of the three
Tr(@e PH-1N))
Tr(e_ﬁ(w_ﬂiM))
ensemble average. We define:
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where f*(m,u) = 1/(1 + EFE*9), and N, = 3.

The four-point coupling G, in terms of physical mean-
ing, indicates an effective gluon propagator. If we take in-
to account the quark propagator's feedback on the gluon
self-energy [36, 37], the coupling strength is replaced by:

G = G +Gy((i)y + (dd)) + G3(3s). 4)

In this study, we restrict our discussion to the G, = G3
case for simplicity. Also, the six-point coupling constant
K is kept unaltered, since it has a much smaller effect on
the quark condensate than G. We fix these parameters at
zero temperature and chemical potential following stand-
ard procedure, and we adopt the parameter set used in
Ref. [38]. In Fig. 1, the ratio of G| to G»(G3) is further de-
termined by fitting the critical temperature T, to lattice
results at finite temperature [39]. With only one addition-
al parameter, we are able to efficiently fit (uu) and (ss) at
finite temperature to the lattice results. The critical tem-
perature T, at zero chemical potential is about 158 MeV.
We referred the NJL model and the lattice simulation to
both use physical quark masses and other parameters fit-
ted to physical meson properties, which is important since
the behaviors of both theories strongly depend on the
parameter sets they adopt. A previous NJL model calcula-
tion resulted in a T, of about 190 MeV, while the PNJL
resulted in a 7, of about 200 MeV [40] using the same
parameter set in Table 1. The effective coupling G is
lowered by about 20% when chiral symmetry is restored,
and its direct effect is to bring forward the chiral phase
transition both in 7" and pp. A similar effect is also con-
sidered in the gluon-induced NJL (GI-NJL) model [41]
and EPNJL models [42], where G is also lowered at high
temperature, resulting in a reasonable 7.

. 1 .
In real experiments, although p, ~ py = JHBs Hs varies

. .. . 1 1
at different collision energies from about —up to —up [32,

43]. Since the location of the CEP is weakly dependent
on the choice of u; [26], we first assume an equal chemic-
al potential for the three quarks. The resulting phase dia-
gram of the quark masses is plotted in Fig. 2. The quark
masses remain almost constant at low chemical potential
and temperature, but vary drastically along a certain
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(color online) Phase diagram of quark masses. The solid line depicts the crossover line, and crosses make up the first order
phase transition line (a) Up-quark mass m, and down-quark mass m, (b) Strange quark mass m;.

Fig. 2.

Table 1. Parameter set for the NJL model in our study
my, /MeV ms/MeV A/MeV
5 136 631
G1(MeV~?) G2(G3)(MeV~2) K(MeV~>)
3.74%107° —1.74x 10714 9.29%x 10714

“band” when T and pp increase, indicating a phase trans-
ition. At high baryon chemical potential or temperature,
up- and down-quarks become small, while the strange
quark remains quite massive. The CEP is located at
(up,T) = (711 MeV,90 MeV). Because of the discontinu-
ity in the quark mass, the susceptibilities are expected to
exhibit divergent behavior near the CEP.

3 Quark number susceptibility derivation

As the linear response of the physical system to some
external field, susceptibility is often measured to study
the properties of a related system. Therefore, the studies

<
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(color online) (a) Light quark (u, d) condensate as a function of 7, compared to the lattice result from Ref. [39] (b) A, (a lin-
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of various susceptibilities are very important from the
theoretical point of view, and they are widely used to
study the phase transitions of strongly interacting matter
[44]. These quantities are defined as:
9"Q

OptiOu OOy - -
where Q is the thermodynamic potential density.
Moreover, )(E") =9"Q/ou’.

We calculate these susceptibilities following the pro-
cedure introduced in Ref. [26]. Furthermore, we can
change the base from {u,d, s} at the quark level to the con-
served charges {B, Q,S} by using:

(&)

= Xijkp- »

1

Hy = 3(#3 +2u0)
1

Ha = 5(#3 o) (6)

1
Hs = g(ﬂB — o —3ps)

Hence, the various susceptibilities can be expressed
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on the basis of {B, 0,5}, for example:

1
(n) _
X;—3—,, Z Xijk...

{ijk..}=ud,s
1

X$)=3—n Z 22(=D(=1 xijk...
{ijk...)=u.d,s

(p,q,r equals the number of u,d, sin {i jk...} ,respectively)

Xén) = (_1)nXsss.4.~
(7
We solve these susceptibilities order by order using
the symbolic differentiation mentioned in Ref. [26]. The
number of independent susceptibilities grows quadratic-
ally in order. If we calculate to the tenth order, there are
219 independent susceptibilities to solve. This symbolic
differentiation method prevents truncation and rounding
errors generated by the finite difference approximation
and is much faster.

4 Moments of baryon, charge, and strange
number

In order to compare our calculation with experiments
and other model calculations, we consider the following
moments defined as:

7, 1+2)

_ X _

my(X) = —%— n=123.. (8)
Xx

where X = B,Q,S. These ratios are then independent of
the volume of the system. The signs of these moments are
shown in Figs. 3, 4, 5. Red regions depict the positive

values, while blue regions depict negative values. The
yellow regions represent values close to 0. Moments with
an absolute value greater than 1 are normalized to +1.
Hence, although the magnitude of baryon moments is
much greater than the other two, this cannot be deduced
from this plot. The signs of these moments change in-
creasingly as the order becomes higher. This implies that
the experimental measurement is more sensitive to the
location on the phase diagram for higher moments. Many
qualitative features can be deduced from these plots. For
example, at high baryon density and low temperature near
the CEP, the moments are positive for all orders of B and
0O, whereas the sign of m,(S) changes every time as the
order is raised in this region (this is not very surprising,
since the definition of x§ = (=1)"x%). Other qualitative be-
haviors can be tested by experiment as well. If a CEP is
present and the entire phase diagram can be searched,
then the sign change and large magnitude of higher order
susceptibilities should be found. In this study, we focus
on the behavior of m,(B) along the freeze-out line, as it is
the only line along which experimental measurement of
these susceptibilities can be performed to date.

5 Moments at vanishing chemical potential

It is important to study the susceptibilities (or equival-
ently, the moments defined in the previous section) at
ug =0. Various models including the lattice QCD, HRG
model, PNJL, and PQM performed studies on these
quantities along this line. At low temperature, these mod-
els predict m,(B) ~ 1 for even n (the HRG model predicts
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(color online) Sign of m, of baryon number moments. Red region represents positive values, while blue zone represents negat-

ive values. The dashed line depicts the crossover line, while the crosses represent the first—order phase transition curve.
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Fig. 4. (color online) Sign of m, of charge number moments. Red region represents positive values, while blue zone represents negat-
ive values. The dashed line depicts the crossover line, where the crosses represent the first-order phase transition curve.
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Fig. 5. (color online) Sign of m, of strangeness number moments. Red region represents positive values, while blue zone represents
negative values. The dashed line depicts the crossover line, while the crosses represent the first-order phase transition curve.

m,(B) = 1 at all temperatures). The NJL model, however, diagonal ones (xi k.. = Xi..0i, j0ik-..), such that

predicts m,(B) ~ % for even n. This is because the NJL my(B) =T")(g”2)/)(g)

model is not confined. In the NJL model, the Boltzmann n# (n+2) | (n42) (n+2))

distribution is given as EAE*1, At low temperature, the __ 3my a A _ 1 )
quark masses remain almost constant, such that the dom- i @, Q. @ 3

)

S o i eqene + +
inating contribution to the susceptibilities comes from the gz T T

u derivative of the thermodynamic potential. We have
ma(x) = T ? =1 (x=u,d, s,n=2,4,6...) and off-
diagonal susceptibilities that are much smaller than the

In chiral models with the Polyakov loop, since @ (the or-
der parameter for confinement —de-confinement phase
transition) is almost 0 at low temperature and vanishing
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chemical potential, the Boltzmann distribution becomes
E-3BE=+0, Thus, we have m,(x) = 3" (x=u,d, s,n = 2,4,6...)
and m,(B) = 1. However, at the temperatures near and
above the crossover, the behavior of m,(B) is the same as
in other model calculations (see Fig. 6) [45, 30]. This is
because near the transition temperature, the rapid change
in quark masses (or equivalently, the quark condensates)
govern the susceptibilities. As long as the chemical po-
tential dependence of the quark masses (or the phase dia-
gram) is similar, two models will yield similar moments.
However, the Polyakov loop one should be included to
find more quantitative correspondence with the lattice
QCD or the HRG model at low temperatures.

200
—_— 100m2(B)

100m,(B) |

100 20mg(B)

- 100

~2085 0.6 0.8 1.0 1.2 14
T,

Fig. 6.
al potential. my(B) remains positive for all temperatures, and

(color online) m,(B) (n = 2,4,6,8) at vanishing chemic-

me(B) becomes positive above about 1.057., while m4(B) and
mg(B) are negative at high temperatures.

6 Moments versus collision energy along
three hypothetical freeze—out lines

To obtain the energy dependence of the conserved
quantities' fluctuations, we need to know the position of
the freeze-out line in the QCD phase diagram with colli-
sion energy /s [46]. Since in heavy ion collision experi-
ments, chemical potential and temperature of the fireball
have a distribution along the freeze-out line [43, 47], we
search the region near the phase transition to find wheth-
er the theoretical results are consistent with experiments.
The experimental freeze-out curve [47] is close to the
crossover line at 7 =0. However, for different collision
centrality (or some other parameters), the freeze-out
curve in the phase diagram may shift slightly. In Fig. 7,
the dashed line depicts the crossover along with the
first—order phase transition line. The three colored lines
are three hypothetical freeze—out lines fitted to recent ex-
perimental data taken from Ref. [47]. The formula for
these three curves are parameterized as:

T(up) = a—buy —cuiy, (10)

where a=0.158GeV, b=0.14GeV~!, ¢=0.04 (solid),
0.08 (dot-dashed), and 0.12 (dashed) GeV . Another for-
mula relating collision energy and baryon chemical po-
tential is [47]:

1.477 GeV
us(Vs) =

1+0.343 GeV-14/s

Employing the freeze—out curve and Eq. (11), we plot
the m,(B) as a function of collision energy +/s in Fig. 8.
The solid lines are identified by color according to those
in Fig. 7. The dashed lines depict the results from the free
quark gas model. The magnitude of these baryon mo-
ments grows approximately one order of magnitude per
order, while for a free quark gas model (or HRG model),
higher order moments remains close to 0 at all /s. There
is only one peak at the first order of m(B). From the first
to the fourth order, a valley gradually develops at /s be-
low 10 GeV. From the fifth order to the eighth order, a
second peak appears at /s ~ 10 GeV. Although these fea-
tures of the baryon moments seem to be present in all
three freeze-out curves, we note that the energy depend-
ence of these moments at high /s may vary if we choose
a freeze-out curve that intersects the 7" axis at a different
place. If the freeze-out curve is lowered, then the valley
and the second peak may not be present. The energy de-
pendence of the charge number and strangeness mo-
ments can also be found, but since their magnitude is
much smaller than the baryon moments, and since they
have similar (for the charge number) or simpler (for the
strangeness) energy dependence, we omit these plots
from this paper.

Two important questions remain. First, how can the
energy dependence of these susceptibilities show wheth-
er the CEP is present? The shape of these curves in Fig. 8
may also be observed with a model that has no CEP (like

(11)

200

150

=
2
< 100
'_

50

0 .

0 200 400 600 800 1000 1200
pg(MeV)

Fig. 7. (color online) Three possible freeze-out curves. The

dashed line depicts the crossover line. Crosses indicate the
curve of the first-order phase transition. The triangles de-
pict experimental data taken from Ref. [47]. The red solid
freeze-out curve is fitted to experimental data, while the
other two freeze-out curves differ from it by a small amount
(see Eq. (10)).
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(color online) Baryon moments versus collision energy along the three hypothetical freeze-out lines. The colored lines are
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the NJL model with a large vector interaction [48]).
Moreover, since the freeze-out curve is not close to the
CEP, the model with no CEP that includes a rapid cros-
sover may yield rather large susceptibilities along the
freeze-out line [49]. Second, how does the shape of the
m,(B)— /s reflect the location of the CEP? We can ob-
tain some hints from Fig. 3. Within the phase boundary,

the sign changes all start at the CEP. The freeze-out line
intersects with these regions, resulting in a positive and
negative signal. If the CEP moves to higher 7 and smal-
ler up, then these peaks and valleys occur at higher +/s.
Nevertheless, both questions require more careful study
to gain more information about the CEP.
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7 Summary

We studied the fluctuations (susceptibilities) of con-
served charges, i.e., the baryon number, the electric
charge number, and the strangeness, using a modified
three-flavor Nambu-Jona-Lasinio model at finite temper-
ature 7 and baryon chemical potential up. With a simple
variation of the four-point coupling inspired by the OPE
method, the quark condensate at finite temperature and
zero chemical potential of the lattice result and our calcu-
lation model are in good agreement. We calculated these
susceptibilities up to the tenth order. Qualitative behavior

like the sign change is observed on the phase diagram,
providing more information compared to lower order sus-
ceptibilities (there was no sign change at third order and
one sign change at fourth order within the phase bound-
ary). By fitting freeze-out curves to the data, we studied
the energy dependence of the baryon number fluctu-
ations (the baryon moments). The magnitude grows expo-
nentially as the order increases, and two peaks and one
valley are observed at higher order moments. By compar-
ison to present and future generated experimental data,
this analysis can help identify the presence or the loca-
tion of the CEP.
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