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Abstract: In this paper, we introduce leptogenesis via a varying Weinberg operator from a semi-classical perspective.

This mechanism is motivated by the breaking of an underlying symmetry which triggers a phase transition that causes

the coupling of the Weinberg operator to become dynamical. Consequently, a lepton anti-lepton asymmetry arises

from the interference of the Weinberg operator at two different spacetime points. Using the semi-classical approach,

we treat the Higgs as a background field and show that a reflection asymmetry between leptons and anti-leptons is

generated in the vicinity of the bubble wall. We solve the equations of motion of the lepton and anti-lepton quasi-

particles to obtain the final lepton asymmetry.
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1 Introduction

The origin of tiny neutrino masses and the asym-
metry between baryons and anti-baryons in'the Universe
are two fundamental and open questions in particle phys-
ics. An important theoretical development linking both is
baryogenesis via leptogenesis [1], which applies the new
physics, motivated by tiny neutrino masses, to generate
an asymmetry between leptons and anti-leptons. This
lepton asymmetry is later converted into baryon asym-
metry via weak sphaleron processes.

Recently, we proposed a new mechanism to generate
the lepton asymmetry via the Weinberg operator [2] (see
also [3, 4]). This operator is given by

Aag
Ly = —%KQLEUHJC{;;LSHHI +h.c, (1)

where ¢, = (vz,1;)" in the SU(2). gauge space, Aop = Aga
are the effective Yukawa couplings with flavour indices
a,B=e,u,7,and C is the charge conjugation matrix. We
demonstrated that the dimension-five Weinberg operator
can play a crucial role in leptogenesis without the need to
specify the completion of this operator. It provides two
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ingredients for the leptogenesis recipe:

e The Weinberg operator violates the lepton number
by two units and triggers lepton-number-violating (LNV)
processes, including

H'H & ¢, (H o (H, (H'H /¢,
(o (HH, H" e (CH, 0« ¢CHH, )

and their CP conjugate processes, where £ and H are the
left-handed leptonic and Higgs doublets of the Standard
Model, respectively. The CP violating phase transition
occurs at much higher temperatures than the electroweak
(EW) scale, and, therefore, the Higgs has not acquired a
non-zero vacuum expectation value (VEV) and it is al-
most in thermal equilibrium.

o After electroweak symmetry breaking (EWSB), the
Higgs acquires a VEV (H) = (0,vy/ v2)T and the neut-
rino mass matrix is given by

/1{1
(mv)(tﬁ = T/jV%{ (3)
This operator violates the lepton number and generates
Majorana masses for neutrinos. As the primary motiva-
tion for the Weinberg operator is the generation of tiny
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neutrino masses, all processes triggered by this operator
are very weak [5]. The rate of these LNV processes is ap-
proximately
3 m2
Ty ~ —x 3, )

34
4 124

where vy = 246 GeV is the Higgs VEV and m, 0.1 eV is

the neutrino mass. For temperatures T < 10" GeV, as T'y
2

is smaller than the Hubble expansion rate, H ~ O(10)—,
m

the LNV processes generated by the Weinberg operatrgr
are out of thermal equilibrium. Moreover, because of the
smallness of the LNV rates, the washout mediated by the
dimension-five operator is highly suppressed and can be
safely ignored.

In our mechanism, CP violation is provided by a CP-
violating phase transition (CPPT) in the very early Uni-
verse. This phase transition causes the coefficient of the
Weinberg operator to be dynamically realised and to con-
tain irremovable complex phases. Such a phase transition
is strongly motivated by a variety of new symmetries
such as B—L and flavour symmetries. In order to generate
sufficient baryon asymmetry, we found the temperature
of the phase transition to be approximately 10!' GeV. We
discussed this mechanism in [2] and calculated the lepton
asymmetry using non-equilibrium field theory methods.
Moreover, in our twin paper [6] , we provide some addi-
tional discussion of the influence of the phase transition
dynamics, and how the particle thermal properties con-
tribute to the mechanism.

In this paper, we present a simplified and intuitive de-
scription of this mechanism based on-the semi-classical
approximation. In order to do so, we follow the method
introduced in [7] , where the transition between left-and
right-handed fermions is calculated via a varying mass du-
ring the electroweak phase transition (EWPT)]). The tech-
niques applied in [7] are particularly amenable as the ba-
ryon asymmetry is calculated by solving the equations of
motion of the Green's functions of the left- and right-
handed quasiparticles, where the asymmetry itself mani-
fests by the CP violating reflections of particles off the
bubble wall. The calculation is rather transparent and
some of the simplifying assumptions that are made, such
as a thin and fast moving bubble wall, parallel our own.

We emphasise that the CPPT mechanism works only
if the UV-completion scale, A, is higher than the temper-
ature of the phase transition 7. If A < T, new lepton-num-
ber-violating particles, for example, right-handed neutri-
nos needed for the type-I seesaw mechanism, may be pro-
duced in the thermal bath during the phase transition.
Subsequently, the phase transition may influence the lep-

togenesis via the decays of these particles, as is studied in
[10].

We organise the remainder of this paper as follows:
we first review the mechanism in Section 2; we then state
the main assumptions of the semi-classical description in
Section 3. Finally, we present the calculation of lepton
asymmetry in Section 4 and make concluding remarks in
Section 5.

2 The CPPT mechanism

The Weinberg operator of Eq. (1) is the simplest
higher-dimensional operator needed to explain tiny neut-
rino masses. As discussed in Refs. [2, 6], in many mod-
els, the coupling of the Weinberg operator can be func-
tionally dependent on a SM-singlet scalar, ¢, such that
Aop = /lgﬁ "‘/1(14;(@ /ve. Associated to ¢ is a finite temperat-
ure scalar potential, which is symmetric under a U(1)p_
or flavour symmetry at sufficiently high temperatures. As
the temperature of the Universe lowers, the minimum at
the origin of this potential becomes metastable and a
phase transition occurs. As a result, the minimum
changes from the vacuum at the origin to a deeper, true
vacuum which is stable and non-zero, (¢), and activates
the CP violating coupling coefficient, 1,5. The ensemble
expectation value (EEV) of ¢ spontaneously breaks the
high-scale symmetry and, if it is a flavour symmetry, res-
ults in the observed pattern of leptonic masses and mix-
ing.

Assuming a first order phase transition, bubbles of the
leptonically CP-violating broken phase nucleate. We de-
note the bubble wall width and bubble wall velocity as L,
and v, respectively. In the following calculation, we
work within the bubble wall rest frame, where the bubble
wall is stationary and the thermal plasma moves against
the wall with a velocity —v,,. Inside the bubble wall, the
EEV is spacetime-dependent, and, therefore, the coup-
ling of the Weinberg operator, 1,3, must also vary with
spacetime. This has as an effect that the interference of
the Weinberg operator at different times produces a
lepton asymmetry.

Before CPPT is triggered, there are equal amounts of
leptons and anti-leptons in the thermal plasma and they
are thermally distributed. Once CPPT begins, a bubble
nucleates with the bubble wall separating the symmetric
and broken phases, which are denoted in Fig. 1 as Phase |
and II, respectively. The majority of leptons, anti-leptons
and the Higgs pass through the bubble wall; however,
there will be some of these particle species which reflect
off the wall. As the bubble wall causes the coupling of

1) This work, along with several others [8, 9], demonstrated that the amount of CP violation within the Standard Model (SM) is not sufficient to produce the ob-

served baryon asymmetry of the Universe (BAU).
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Fig. 1.
during a phase transition from Phase I ((¢) =0) to Phase II
({#) =vyp) , in the bubble wall rest frame. We set the bubble
wall perpendicular to the z direction. R;(z0) and Ry(z0) rep-

Lepton and antilepton reflection off the bubble wall

resent the z-dependent transition amplitudes for lepton to
anti-lepton and anti-lepton to lepton, respectively, at z = z.

the Weinberg operator to be CP violating, the transition
from leptons to anti-leptons and from anti-leptons to
leptons will be different in the presence of the bubble
wall. Therefore, different amounts of anti-leptons and
leptons will be produced after these scatterings. As. dis-
cussed, the interactions mediated by the Weinberg operat-
or are out of thermal equilibrium, and, therefore, LNV
processes do occur but are rather rare.

We note that the coefficient of the Weinberg operator
varies only along the z direction in the'wall, as shown in
Fig. 1. Since the PT scale is much higher than the elec-
troweak scale, all particles are massless, and the lepton ¢
and anti-lepton ¢ have helicity —1 and +1, respectively.
To further elaborate, we consider a group of leptons, ¢,
propagating to the wall from the left hand side (Phase I).
While most of the particles move freely through the wall
to the right hand side (Phase II) without reflecting off the
wall, a small proportion of the leptons will hit the wall
and subsequently convert to anti-leptons via the Wein-
berg operator. Since leptons and anti-leptons have oppos-
ite helicities, £ should move backwards to the Phase I
zone. This process leads to the non-conservation of the
momentum in the z direction.

We denote the amplitude for a transition from lepton
to anti-lepton at z = zo as Ryz(zo). Likewise, for anti-lepton
to lepton at z =zp , the amplitude is Rz,(zp). These trans-
itions originate from the varying Weinberg operator, and
the CP asymmetry between these two processes is given
by

Ace(20) = IRze(20)* = IRgz(z0)l. )
The interference of the Weinberg operators at different z
can lead to non-zero CP violating effects in the thermal
plasma. In this case, given an equivalent amount of ini-
tial leptons and anti-leptons propagating from the right
hand side, a different amount of anti-leptons and leptons
can be generated via the reflection. This asymmetry fi-

nally diffuses to Phase II and will be preserved. The num-
ber density asymmetry of leptons and antileptons is giv-
en by
3 3
ane= | (gn’; ito -1 = [ S faDdenzn). (©
-1
is the Fermi-Dirac

where fi(k) = [exp [ﬁwkl_—\/l];) +1
-2
thermal distribution boosted to the wall frame.

In the following, we carry out the semi-classical ap-
proximation to relate Acp(zo) with the varying Weinberg
operator.

The CPPT mechanism shares a common feature with
EWBG, namely that a phase transition is necessary to
drive the generation of a baryon asymmetry. However,
the two mechanisms differ markedly and it is worthwhile
to remark on the features which distinguish them. First, in
EWBG; the baryon number violation is provided by
sphaleron transitions in the symmetric phase. Both the
out-of-equilibrium condition and the C/CP violations are
induced by the EW phase transition. Therefore, in
EWBG, the phase transition is key to the generation of
the non-equilibrium evolution. In order to achieve this,
rapidly expanding bubble walls are required, such that the
back-reactions are not efficient in washing out the gener-
ated baryon asymmetry. In the CPPT mechanism, the
B—L number violation and departure from thermodynam-
ic equilibrium are directly provided by the very weakly
coupled Weinberg operator. The PT is only necessary to
provide a source of C/CP violation and is not needed for
the efficiency of reactions in the system. Consequently,
successful leptogenesis in this setup does not necessarily
require a first-order PT, and it is possible that a CP-viol-
ating second-order PT would also generate lepton asym-
metry. The purpose of assuming the first-order phase
transition in this work is to simplify the discussion.

3 The semi-classical approximations

In this section, we introduce the semi-classical ap-
proximations we use for the lepton asymmetry calcula-
tion. Firstly, we introduce the equations of motion (EOM)
for the leptonic doublets and the effective mass-like mat-
rix which parametrises the lepton anti-lepton transitions.
Secondly, we review our treatment of the Higgs as a
background field.

3.1 Equation of motion for leptonic quasiparticles

We begin from the well-known equation of motion
for Majorana neutrinos at low energy. It is expressed as

io#d, my \ v\
( m! i&ﬂaﬂ)(w)‘o’ )
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where v{ = cvil = ()r. The Majorana mass matrix, m,,
results in the neutrino anti-neutrino transitions and oscil-
lations (see, e.g., [11]).

In the early Universe, when the Higgs is in its sym-
metric phase, the Higgs field may fluctuate. Such fluctu-
ations can be enhanced by temperature, and influence the
behaviour of neutrinos as well as of the charged leptons.
For this reason, we treat the Higgs as a background field.
Taking into account the S U(2);, symmetry, the effective
EOM for the leptonic doublet quasiparticles is directly
obtained from Eq. (1) as

ioc#0, M(x) (x)
(MT(x) iTogats) )@i(i)) ®)

In the SU(2),, gauge space the wave functions and mass-
like matrix are given by

xe0=(0). e =(45). ©)
2 +

Mi) = /lf\x)[ 2[510(@] —2HO(x)H (x)) (10)
2HOOH (x)  2[H* (0]

where we have made the x*-dependence explicit to em=
phasise the spacetime-dependence of M,. Note that the ef-
fective Majorana mass-like matrix, M,(x), originates from
the Weinberg operator and leads to the transition between
a lepton and anti-lepton, which will be of importance for
the lepton asymmetry generation.

3.2 The Higgs as a background field

As the Majorana mass-like matrix; M,(x), derives
from the Higgs field, the thermal properties of this scalar
field are of fundamental importance to the semi-classical
treatment we detail in this paper. Above the EWSB scale,
the mean value of the Higgs field may be zero at finite
temperatures, (H) = 0. However, the mean value of (H' H)
is non-zero and such fluctuations correspond to particle
excitations and annihilations in the thermal plasma.

As a complex field, the mean Value is given by

<H0*H0> <H+*H+>

&Pk 1 1 T’
-Zf(zT)%—eﬁw_l o D
where we have ignored the effective thermal masses and
chemical potential of the Higgs. It is worth noting that the
mean values of (H°)?), (H*)?) and (H°H™*) should be
zero. As we shall see later, this property will be import-
ant for the enhancement of the lepton asymmetry produc-
tion at high temperatures.

Another interesting property is that the mean value

(H H)

((HT(x)H(x))?) is correlated with (H'(x)H(x))" by
(H*()H(x))*) = (H™ () H* ())%)

4

_ L o _ T
= 3((H (X)H(x))") = 7" (12)

The expectation values for # and H' at different
spacetimes give the Wightman propagators, e.g.,

(H™ () H(x1)) = S (X1, %2),
(H(x))H™ (x2)) = S 70(x1, X2). (13)

For the detailed discussion of correlations between lepton
asymmetry and Wightman propagators, please see Ref.
[6]. In this paper, we ignore the spacetime difference
between H and Ht. This treatment simplifies the discus-
sion and is sufficiently good to derive the CP asymmetry
qualitatively.

4 . Lepton asymmetry in the semi-classical ap-
proximation

The concept of quasiparticles has been known for
many decades [13, 14] and manifests as particle proper-
ties become modified in a medium; for example, particles
may acquire a different mass from that in vacuum as a
result of their interactions in plasma. In general, such
properties can be described by collective excitations, or
using a quasiparticle description. These quasiparticles are
characterised by their dispersion relation, which gives
their energy (w) as a function of their momentum (k).
Moreover, a stable particle in vacuum may have a finite
lifetime in a medium and this corresponds to the quasi-
particle damping rate, y. The damping characterises the
degree of decoherence of particles, and, therefore, gives a
measure of the spread in the particle energy due to their
interactions in the medium. We define the decoherence
length, 1, similarly to [7]

_Ye 1
T2y 6y
where v, is the group velocity of the quasiparticle. As the
quasiparticles of interest in our mechanism are leptons,
the decoherence results mainly from the electroweak
gauge interaction. In this case, as the quasiparticles have
homogeneous distributions parallel to the wall, it is reas-
onable to restrict our attention to quasiparticles with mo-
menta perpendicular to the bubble wall [7]. We move to
the wall rest frame and expand ¢, and ¢, into positive and
negative frequencies in the spinor space, respectively. As
left-handed particles, they can be parametrised as

(14)

1) It is proved in the following. For a real scalar ¢, <Lpi2>:T2/12, (Lp?”):(Zﬂ—l)!!((p?)” [12]. For a complex scalar @ = (@1 +ips)/ V2,

(D D)

1 1 1 1
= (Pl +43) = T2 /12, (@ ®)%) = (g +43)") = 21 + 65 +20163) = 231" +3(92)” + A NeD)) = A" D),
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exp[—i(wr — kin2) x16(2)
t = exp[_i(")t + kout2) Iy2¢(2)
L 0 b

0
0
—T 0
(L = . . 15
BT expl+i(wr - kin2)lx 1 7(2) (1)
exp[+i(wr + kouz) Iy 27(2)
Here, we have required y;, and y,; to be incoming quasi-
particles moving in the +z direction, and x», and y,; to be
outgoing quasiparticles moving in the —z direction (i.e.
the quasiparticles in the upper component of the spinor
are moving into the bubble, and the lower component are
reflected back to Phase I by the wall). yi.(z) and y,7(2)

. 1 . .
have spin jz:_f’ while y,7(z) and y2(z) have spin

1 .
J. = +=. The coherence of these states may be included
using the following replacement

1
kin - Kin = kin + i’
i
. (16)
with y,, =y+/1 -V} being the boosted damping rate. As
M,(z) does not change the energy in the wall rest frame,
we do not distinguish between the energy, w, of the
leptons and anti-leptons. The EOM is decomposed into

kout = Kout = kout —

. 1
two uncoupled equations, one for j, = N and the other

1 . .
for j, = +§ quasiparticles. They are expressed respect-

M}'(z))] ();w(zi) _o. a7

—Kout 27 (z

ively as

: _Kin
[(—131 +w)l, - (—Mg(z)

. K; —M(2) Xl?(z) _
[(—1(91—w)112—(M; L ke )](m(z))_o, (18)

The energy-dependent term does not contribute to the CP
violation in the wall rest frame, and thus we do not in-
clude it in the following discussion.

The calculation of lepton asymmetry generated by
CPPT follows from solving the EOM for the leptonic
doublet quasiparticles.

We now consider the amplitude of y;, transition to
x2; and use the techniques developed in [7] for elec-
troweak baryogenesis (EWBG). The transition from left-
handed fermion to right-handed fermion via a spacetime-
varying mass is similar to our case of the transition from
left-handed lepton to right-handed anti-lepton via the
time-varying Weinberg operator.

The first step is to consider the propagation of quasi-
particles in Phase I, where we restrict our discussion to
the j,=-1/2 quasiparticles yi, and y,;. The relevant
Green functions are

(—iéz + Kin(oul))G[(z)(Z —2z0) = 16(z—zp). (19)

In order that there are no sources of quasiparticles at spa-
tial infinity, the boundary conditions
G(=0) =Gy(+00) =0, (20)
are necessary.
The solution of the Green functions with these bound-
ary conditions is given by

G(z—z20)=16(z— Zo)e_iK'"(Z_z")
=10(z — ZO)e—(z—z‘))/(2L)e—i/<m(z—zl))’

G(z—z20)= =ifzg — z)e K2

= —if(zp — Z)e—(zo—z)/(ZL)e—ik‘,u.(z—ZO)‘ (21)
The lepton quasiparticle will propagate from Phase I into
Phase IIL. For this purpose, we may consider leptons with
a §-function source at z = zo propagating into the bubble
wall. ‘The influence of the wall leads to an effective
“mass” term, M,(z), as explained above, and the evolu-
tion of quasiparticles is described by Eq. (17). Taking ad-
vantage of the Green function method, we obtain

Xx10(2) = =G e(z—z0)x1¢(z0)
; f d21G (2 - 2)M G o),

X27(2) = deIGZ(Z_Zl)[_M{’(Zl)]Xlt’(Zl)~ (22)

Since the Weinberg operator is relatively weakly coupled
to the thermal plasma, we ignore all corrections < O(M?).
Therefore, the amplitude for yi.(z0) = x27(z0)s Rez(z0),
corresponding to the reflection matrix R g in [7], is giv-
en by

Rp(z0) = idele(Zo —20)M¢(z1)Ge(z1 — 20)

+00
=i f dzye @/ Eethd My(zg + 21 )e o,
0 (23)

We can calculate the amplitude for y,7(z0) — x2¢(z0)
by assuming a similar treatment of a §-function source at
7o and moving in the +z direction. The resultant reflec-
tion matrix Rz, corresponding to the reflection matrix R,z
in [7],1s

+00
RZ[(ZO) — lf dzle—m/Lelkan.M;(Zo +Zl)e—1km21 ) (24)
0

Finally, we obtain the CP asymmetry of the amplitude
(defined in Eq. (5)) as

—+00
Acp(20) :f dzldzze—(zl+z2)/Lel(km“—km)(z1—z:)
0
X [M;(Zo +20)M(z0 +22) = M(z0 + 21 )M;(Zo +22)]
+00
=2 f dzydzoe™ @/ sinf(kou — kin)(@1 — 22)]
0

xIm[M(z0 +21)M} (z0 + 22)]. (25)
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This quantity is determined by: 1) the momentum change
kout —kin due to the pressure from the wall; and 2) the
imaginary part of the interference of two varying Major-
ana mass-like matrices Im[M}f(zU +21)M(zo + z2)). The cri-
teria Acp # 0 at order O(M?) can only be fulfilled if these
two conditions are satisfied. As discussed in Section 2,
the z-varying Weinberg operator can lead to momentum
non-conservation in the z direction. Ignoring the mo-
mentum exchange with the Higgs boson, the momentum
non-conservation is explicitly written as

kout * kin . (2 6)

The momentum difference ko —kin represents the im-
pulse of the wall acting on leptons and anti-leptons. A
similar problem is encountered in EWPT studies and the
on-shell condition is usually assumed, where the mo-
mentum difference is correlated with the mass varying
along the z direction. The on-shell condition is relaxed
once transition radiations are included, and the latter is
more important if the bubble wall moves very fast [15].
In our case, applying the on-shell condition can only give
a very small momentum change, because M, is very
small. A large momentum change can be obtained
through interactions of the scalar excitation with leptons,
anti-leptons and the Higgs. Such processes appear as
there is an energy gradient within the bubble wall and the
scalar excitation can be produced off-shell and interact
with leptons, anti-leptons and the Higgs, thereby causing
perturbations in their distribution functions from equilib-
rium. To simplify the problem, we make a reasonable as-
sumption that the maximum value of the momentum
transfer is of the order of the plasma temperature [6].

We now discuss in detail the term Im[MZ(zO +271)
Mi(zo0+722)] in Eq. (25). We can rewrite this term as
AB/A?, where A and B specify the flavour and gauge
component contributions, respectively. For CP violation
between ¢, — ¢z and its conjugate process to occur, we
have

Aqp = Im{dap(z0 +21)A,5(20 + 22)}. 27)
The total contribution with all flavour summed together is
given by
A= ZA"ﬁ = Im{tr[A"(z0 +21)A(z0 + 22)]}. 28)
aff
For CP asymmetry between v—v, [-v, v—1, [—1 trans-
itions, B is given respectively by
By, = 4H"H'Y,
Bj, = 4(H"H°)H"H"),
By = 4(H"H'),
By = 4(H"H°)Y(H™ H"). (29)
Ignoring the energy-momentum exchange between
leptons and the Higgs, and taking mean values on the

right-hand-side and using (11) and (12), we obtain

4 T4 (30)
By, =Bj=—, Bj=By=—.
=g T 36
The average among gauge components is given by
1 T4
B = 5 (Bsy + By, + By + By) = 7. GD

Taking into account the results for A and B as given
above, we can perform the integration of Eq. (25). We
find that it depends on three terms: the interference of the
coefficient term A, the damping term e~@*2)/L and the
oscillation term sin[(kous = kin)(z1 —z2)]. In general, the wall
length and decoherence length are inversely proportional
to the temperature, and the momentum transfer is propor-
tional to the temperature. Therefore, the CP asymmetry
Acp(z0) in Eq. (25) is proportional to Im{tr[A°A"*]}T?/A2,
with the coefficient depending on the competition of the
three  terms, ‘where Im{tr[A°2"*]}/A? = Im{te[mOm; ]} /v,

The final baryon asymmetry is given by

2
nB ~ Ane Im{tr[memj]}TT, (32)

I’ly vH
which is qualitatively the same as our previous result [2].
Through this simplified treatment, we recover the com-
bination Im{tr[m®m?]} and the temperature-dependent con-
tribution « 72 to the number density asymmetry between

lepton number and anti-lepton number.

5 Conclusion

In this paper, we apply the semi-classical approxima-
tion to calculate the lepton asymmetry generated by a
varying Weinberg operator. Firstly, we approximate the
Higgs field as a background field. Following this treat-
ment, we can effectively regard the Weinberg operator as
an effective “Majorana mass term ” for the leptonic
doublet. Then, we write out the EOM for both lepton and
anti-lepton quasiparticles, in which the ‘“Majorana mass
term” results in lepton anti-lepton transition. During the
CP-violating phase transition, the “Majorana mass term”
varies with spacetime, and the transitions from lepton to
anti-lepton and from anti-lepton to lepton are not equal.
This treatment is analogous to the approximation used in
EWBG, where the varying fermion mass results in asym-
metric transitions between left-handed and right-handed
components.

In the semi-classical approximation, we do not try to
provide quantitatively precise results for lepton asym-
metry as the energy-momentum transfer with the Higgs
has been ignored. However, this simplified treatment al-
lows to present the mechanism more intuitively.
Moreover, one of the main results of this paper is that, in
the single scalar case, the number density asymmetry
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between leptons and anti-leptons Ang o Im{tr{mOm} 1} T2 /v,
agrees with the result obtained using the non-equilibrium
QFT approach.
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