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In-medium NN—NA cross section and its dependence on effective Lagrange
parameters in isospin-asymmetric nuclear matter”
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Abstract: The in-medium NN — NA cross sections and its differential cross sections in isospin asymmetric nuclear
medium are investigated in the framework of the one-boson exchange model by including isovector mesons, i.e., ¢
and p mesons. Our results show that the in-medium NN — NA cross sections.are suppressed when the density in-

creases, and the differential cross sections become isotropic with an increase in'the density around the A threshold en-
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of NN — NA, especially around the threshold energy for all the effective Lagrangian parameters. By analyzing the

ergy. The isospin splitting on the medium correction factor, R = o is observed for different channels

selected effective Lagrangian parameters, our results show that the larger effective mass is, the weaker medium cor-
rection R is.
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1 Introduction

The isospin dependence of in-medium NN cross sec-
tions is a subject of much interest in the field of interme-
diate energy neutron-rich heavy ion collisions (HIC), be-
cause it can influence the predictions of reaction dynam-
ics, collective flow, stopping power, and particle produc-
tions in HIC simulations [1-8]. By comparing the HIC ex-
perimental data to the transport model calculations, in-
formation on in-medium NN cross section and equation
of state (EOS) can be indirectly extracted. Principally,
both the mean field (or EOS) and nucleon-nucleon cross
sections in the transport models should be determined by
the same effective Lagrangian or effective interaction.
However, the mean field potential and nucleon-nucleon
cross section in different transport models are treated in-
dependently, owing to the complexity of the transport
equations and, particularly, their dimensionality. In par-
ticular, the solution of the collision integral is not ob-
tained directly but through the Monte-Carlo cascade
method, in which the in-medium nucleon-nucleon scatter-
ing cross sections are adopted, and their correction factor
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is ad hoc determined by fitting the related HIC observ-
ables. Thus, the direction of further improving the trans-
port models in theory is to consider the mean field and
nucleon-nucleon cross section consistently, it naturally
requires to understand the relation between the in-medi-
um NN cross section and the EOS (or the nuclear matter
parameters).

Several studies have investigated the in-medium NN
elastic cross section and its isospin dependence using mi-
croscopic approaches [9-12]. In transport models,*the

. . . . o
isospin-dependent medium correction factor R= —— =
o
2
.

— | for elastic NN cross sections was adopted in the
m

isospin-dependent  Boltzmann-Uhling-Uhlenbeck and
Lanzhou quantum molecular dynamics [13-15] models.
In addition, phenomenological forms have also been ap-
plied to different versions of quantum molecular dynam-
ics models (ImMQMD, UrQMD), such as R=(1-ap/po)
[16], R=F(p,p) [8, 17], and o* = optanh(c™¢ /o) in
Boltzmann-Uhling-Uhlenbeck models (pBUU) [18].
However, few theoretical works discuss the relation
between the in-medium NN — NA cross section and the
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EOS parameters, which has become increasingly import-
ant for further development of the transport models to
study the physics around the A threshold energy. Espe-
cially, with the urgent requirements on constraints of
symmetry energy at supersaturation density.

Recently, the isospin-dependent elementary two-body
NN — NA cross section, i.€., Gyy_,ya» Was studied in the
framework of relativistic Boltzmann-Uehling-Uhlenbeck
microscopic transport theory by Li and Li [19]. Their res-
ults showed that the 5% has a sharp increase around

NN—-NA
the threshold energy, without considering the A mass

distribution, and the medium correction factor
R=Gyy a0 ya clearly depends on the isospin
channels of NN — NA, ie., pp—nA*t, pp— pA*,

pn — nA*, pn— pA°, nn — nA° and nn — pA~, in isospin
asymmetric nuclear matter. As a short-living resonance,
A subsequently decays into a nucleon and a pion, and the
measured cross section for NN — NA is the elementary
two-body cross section averaged over the mass distribu-
tion of A resonance. Thus, the medium correction factor
R, including the effects from the mass distribution of A,
should be investigated. Furthermore, the scalar and " vec-
tor self-energies of the incoming and outgoing particles
are different in the NN — NA process in isospin asym-
metric nuclear matter, which named as threshold energy
effects in A production [20-22]. In our previous work
[23], this effect on the in-medium NN — NA cross sec-
tion was analyzed. Our results confirm the isospin split-
ting of R near the threshold energy in isospin asymmetric
nuclear matter; however, the splitting magnitude tends to
vanish when the beam energy is above 1.0 GeV.

We studied in-medium NN — NA cross sections and
their differential cross sections under the three effective
Lagrangian parameters in the isospin asymmetric nuclear
matter, i.e., NLos, DDMES§, and DDRHpé to further un-
derstand the relation between the in-medium NN — NA
cross section and the nuclear matter parameters. The ef-
fective Lagrangian and the model of the in-medium
NN — NA cross section are briefly described in Section 2.
In Section 3, we discuss the results of isospin-dependent
in-medium NN — NA cross sections in different effective
Lagrangian and analyze its relation to the effective mass.
In addition, we briefly discuss its dependence on the
slope of symmetry energy in the theoretical framework
used in this study. A summary is provided in Section 4.

2 The model

2.1 Effective Lagrangian and nuclear matter properties

To calculate the in-medium NN — NA cross sections
in isospin asymmetric nuclear matter, we used the one-
boson exchange model with the relativistic Lagrangian

including nucleon and A (A is the Rarita-Schwinger
spinor of spin-3/2 [24-26]), which are coupled to o, w, p,
¢, and 7 mesons. Unlike the work in Ref. [27], we in-
cluded the isovector mesons p and ¢ to describe the
isospin asymmetric nuclear matter and isospin-dependent
in-medium NN — NA cross section. The Lagrangian we
used is as follows:

L=L+Lp, (D
where Lr is
Lr =P[iy, 0" —my ¥ + Aliy, 0" — mplA*

+ % ((9,,0'6‘“0' - mgcrz) -U(o)

1 Sl
- Zwﬂvw“ + Emz) w, !
1 |
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1
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0
wyy and p,, in Eq. (2) are defined by d,w,-0,w, and
0upy — 0,py, respectively. Here, T and T are the isospin
matrices of the nucleon and A [25, 26], and 7 is the
isospin transition matrix between the isospin 1/2 and the
3/2 fields [24]. [y 1s the meson-nucleon coupling con-
stant

T - 8mNN NLp5 (5)
"NN=1 gmwn(os) DDMES,DDRHps

The values of I',,,yy are listed in Table 1.

For the coupling constants [aa, m=o0,w,p,6, We
simply take them to be equal to the meson-nucleon-nucle-
on coupling, i.e., [;yaa = [y, similar to the transport
model calculations [19, 20, 27]. The coupling constant
grnva must be calculated for describing the NN — NA
cross section, and it is determined by analyzing the A-
isobar decay width from Ref. [28]. However, the 7 meson
in the relativistic mean field does not contribute to the
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Table 1.
8ana=2.202, m;=138, my=939, mya=1232 (all masses are in
MeV), g/g3,y=0.03302 fm' (NLps), g3/g*,y=0.00483
(NLpd), Axnyny=1000 MeV. The coupling constants I',,yy and guna

Parameters used in the effective Lagrangian, g,yy=1.008,

are dimensionless.

NLpd-A DDMES§S-A* DDRHps-A"
my/MeV 550 566 550
my,/MeV 783 783 783
my/MeV 770 769 763
ms/MeV 980 983 980
Tonn 8.9679 10.3313 10.7286
Tuvn 9.2408 12.2905 13.2902
Tonn 6.9256 63117 5.8284
Csnw 7.8525 7.1515 7.6009
Agya/MeV 410 416 417
Apn/MeV 1000 650 580
E/AMeV -16.00 -16.12 -16.25
po/fm” 0.160 0.152 0.153
Ko/ MeV 240.0 219.1 240.2
So/MeV 30.60 32.35 25.34
L/MeV 101.46 52.85 4533
my [my 0.75 0.609 0.55
m [ma 0.809 0.702 0.661
AmS 0.0312 0.0236 0.0265
Ay 0.0079 0.0060 0.0068

“The values of coupling constants at pp = pp for DDMEGS-A and DDRHp6 -
o,
and Amy = ——.
my ma

b .
A. Here AmN =

EOS without the Fock term. For the coupling constant
V3 m, .
—FpNNm—, which is derived using
N

8pNA, WE USC gyoNa ~
the static quark model [24, 29]
The coupling constants of nucleon to o, w, p, and §
mesons are important for the prediction of the in-medium
NN — NA cross section, as well as for the EOS. In this
work, we selected three parameter sets, i.e., NLp§,
DDMESg6, and DDRHpé from five alternative sets [30-34],
which contain o, w, p, and §, and the compressibility was
in a reasonable region, i.e., Ko =230+40 MeV as in [35].
For the NLpS parameter set, U(o) includes the nonlinear
o self-interaction, which can reproduce reasonable val-
ues of the incompressibility and nucleon effective mass
by adding two additional free parameters; however, it can
also be realized by adopting the density-dependent coup-
ling constants in DDMES [34] and DDRHpé [32]. Be-
cause we included A degree in the effective Lagrangian,
we labeled them as NLps-A, DDMES-A, and DDRHpé-A
in this paper to distinguish them from the original para-
meter sets in the relativistic mean field model (RMF).

In the nuclear matter at rest, the effective momentum
can be written as p; = p; because the spatial components
of the vector field vanish, i.e., X =0. Thus, in the mean
field approach, the effective energy is

p;O :p?_zio’ (6)

and
20 = T @ +Tonnts ipy- (7
Here, 13; is the third component of the isospin of the nuc-
leon and A, and i = n, p, A*t*, A*, A%, A-, where 13, = -1,
Bp=1, t3p-=1, o ==, Ba=—7, B =-1, and

3’ 3’
r
5y = ﬂzN(p,7 —pp). The Dirac effective masses of nucle-

7Y
on and A are

m; =m;+ Zis , (8)
where
25 = —Town0 — Csynts 03, ©
- I’
and 63 = ZVZN (05 —py)-
s
The density-dependent of symmetry energy is
Ko Doy
S(pp) =+ ——-pp
6E7, me,
1 l%NN m7\12 PB
-= , (10)

2 m? 2
0 E;2(1+ “VZNA(kF,m;))
m
0

which depends on the effective mass, coupling constant
of I'ynn, and Isyy. The slope of symmetry energy L is:

dS (o)
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with Ef. = \[kZ+m}? and

2 (ke k*dk
== - (15)
72 J, 2 2\3/2
( +mN)

The corresponding nuclear matter parameters at nor-
mal density are listed in the lower part of Table 1, where
the NLpd-A predicts the largest slope of symmetry en-
ergy L, effective mass m*, effective mass splitting
Amy, = (my, —m;)[my, and Amjy = (my.. —m,.)/ma, among
these three parameter sets at normal density. For the sym-
metry energy coefficient S, the DDRHpd-A predicts the
smallest value and DDMES§-A predicts the largest value
among the three selected parameter sets. Among the three
selected parameter sets, the larger 1. corresponds to lar-
ger m*.

In Fig. 1, we present the Dirac effective masses as
functions of density for nucleon and A in symmetric nuc-

1.0 T
I=0 N
N
.
08 N i
N
"N
0.6 - Y e
- —
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-‘ ——
04 S e
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*
i
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Fig. 1. (color online) (a) and (b) Effective masses of nucle-
on and effective pole masses of A as a function of pg/pp in
symmetric nuclear matter. (c) Effective masses splitting as a
function of density for nucleons and As at /=0.2.

lear matter. The black solid lines, red dashed, and green
dotted lines denote the results for NLps-A, DDMEG-A,
and DDRHpé-A, respectively. The upper panel is the ef-
fective masses for nucleons and the middle panel is the
effective A pole masses. Among the selected parameter
sets, NLpds-A has the largest effective mass, while
DDRHpé-A has the smallest value. In symmetric nuclear
matter, mj /my=0.75, my /my=0.609, and m) /my=0.55
for NLps-A, DDMESGS-A, and DDRHp6-A at saturation
density, respectively. In the neutron-rich matter, the ef-
fective masses of nucleons and A are split owing to the
contributions from the isovector-scalar § meson. There is
my, > my, m(’;’ A > ma A > mz‘)’ A > ma A The splitting mag-
nitude of the effective masses for nucleons and A de-
pends on the coupling constant Tsyn(I'saa) and 85 in Eq.
(9). Here, we define the splitting magnitude of the effect-
ive mass as Amy/my = (my, —my)/m and Amj}/mp =
(m,.., = my.)/ma. As shown in the bottom panel of Fig. 1,
NLpd-A gives the largest effective mass splitting above
normal density, but the two other parameter sets
DDMEGS-A and DDRHpd-A predict a comparatively
small effective mass splitting because the strength of
I'syn(Tsan) decreases with density.

2.2 In-medium NN — NA cross section

In quasiparticle approximation [36], the in-medium
cross sections are introduced by replacing the vacuum
plane waves of the initial and final particles with the
plane waves obtained by the solution of the nucleon and
A equation of motion with scalar and vector fields. In de-
tail, the matrix elements M* for the inelastic scattering
process NN — NA are obtained by replacing the nucleon
and A masses and momenta in free space with their ef-
fective masses and kinetic momenta [27], i.e., m — m*
and p* — p**. In this work, all the calculations were per-
formed in the center-of-mass frame of colliding particles,
it coincides with the nuclear matter rest frame, where the
spatial components of the vector field vanish [27].

The Feynmann diagrams corresponding to the inelast-
ic-scattering NN — NA processes are shown in Fig. 2,
which include the direct and exchange processes. The
M*-matrix for the interaction Lagrangian Eq. (4) can be
written by the standard procedure [24],

M= MT =M+ M - M, (16)
where
Fig. 2.  Left diagram represents the direct term; right dia-

gram represents the exchange term.
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. . 8anNExNAld 5, . " .
M == i == (W (ph)yys Qo P (p))]
T mQy - my
X[A(p Q) ¥(p3)], (17)
o Lonngonala - B e A
MF =i 1 (), W ()] x ————L—F
my, Qd —my

X [Ba(p)Yay5(Q5'60=0 $20) ¥ (P3)]:
(18)

The upper index in M;7" refers to the exchanged
boson, and the lower index to the direct or exchange pro-
cess. Q' =p—p/ for the direct term; the exchange
term M is obtained by p}* «— py* and Q. = p}' - p}/'.
The isospin factors I; and I, can be found in the Ref.
[24].

The in-medium NN — NA cross section is the in-me-
dium elementary two-body cross section averaged over
the mass of A by considering the A as the short-living res-
onance, and it can be written as

(19)

T
TNNNA = f dmy f(my)o" (m)y),

&*(my) is the in-medium elementary two-body cross sec-
tion. In the center-of-mass frame of colliding nucleons, it
is obtained as

1 &Ipy  &p
4F* ] Qn2E; 212K,
X (2m)*6*(p1 + p2 — p3 — p)IM P

1 |p:;ut,c.m.|

G (my) =

= IMA2dQ,  (20)
2 ¥ [oF 5
64n V Sin SOL\KIpin,cm.'
where p; = and pj, ., are the momenta of incoming (1

and 2) and outgoing particles (3 and 4), respectively.

F* = \J(pip3)* = PPy’ = S|P}, . | 18 the invariant flux

factor, 7 =(pt+py)?% and i, =(p;+p;)?. Here

s 1 w2 -
IMP =G0+ 1)(2s2+1)31§54 M s,
Z |M*|2 — Z {|M;ﬂ|2 _M;ﬂ'I'M:n _M:ﬂ'}'M:‘iﬂ_{_ |M:7r|2
818,838, 818,838,

HMPR = MFPIME = METME + M

+MTME = MTME = MM+ MM

MM - MPTMT — MM+ MM,

21

All the terms are calculated by using Mathematics with
the packages of “High Energy Physics” [37]. Here, we
only show the direct term as an example for 7 mesons,

1e., Z |MZ”|2:

51828384

2
§ * gﬂNNgn'NAld
|M ﬂ|2 ( )

2 2 2
1525584 m;r(QZ _mrr)

X Y IOy O P (Y5 0]
X [W(p)P(Py) O Av(pDA(p) QLT
_ (gerNgnNAId )2
mi(r* —m2)

2(m;‘\,I + m;‘\,l)z((m}*v1 - m}*v%)2 —1)

x (G, =iy =) (G, + s P =)’ 22)

where 1 = Q7 for IM;™? is N & Na. In Eq. (20), note that
the crucial requirement for two-body collisions is the en-
ergy-momentum conservation in terms of incoming and
outgoing , canonical momenta (pf,, ph,), e,
5*(p1 +p> — p3 — ps). From the viewpoint of kinetic mo-
mentum, the energy-momentum conservation p+p} =
py+p, can be expressed as p+X+pt+E) = pl+
i +pl+z), and plf+plf = pl+pl - ATH, where,
ASF =3 +35-3E -3 isthe change in kinetic mo-
mentum between the initial and final states. The change
in effective energy is expressed as AL’ = X0+ %) -39 - 59,
which is the same as the equation in Ref. [38]. A similar
issue exists in the calculation of m . , my,. and ['(m})
which are described in the following.

my i i the equation of the cross section, is determ-
ined by the A —» N+ in isospin asymmetric nuclear mat-
ter as in Refs. [22, 23], when both N and r are at rest; the
modification of scalar and vector self-energies in this
isospin exchange process should also be considered.
Thus, my i = m}‘V+E?V +m +1p(w, q)—22=mz‘v +mi— AES,
with ALY =%0 +1p(w,q)—X%. Considering m}/m;, less
than ~10% at normal density from the calculations by
Kaiser and Weise [39], we assume that the effect of the
nuclear mean field on the pions is negligible and m;. = m,.
Thus, we have AZ) =30 -39, My o 1S €valuated from
NN — AN for producing N and A at rest:

My max = VS —my —X% — 224. (23)

The in-medium A mass distribution f(m}) is another
important factor of in-medium NN — NA cross section
for which proper energy conservation is required, be-
cause f(m}) is related to the A — N+ process in isospin
asymmetric nuclear matter. In this study, the spectral
function of A is taken as in Ref. [27],

2 mT(m})

P R N I YR
7T(m0’A mA) +mAF(mA)

flmy) =

24

*

0.A
’ T
normalization factor. The decay width T'(m}) is taken in

. . 2.
Here, m} , is the effective pole mass of A, and — is the
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the parametric form [27]

3 2
q3(mz,m;‘v,m;) q (maA,m;‘\,,m;’;)+n maA

T(m?,) = Tp———
A q>(m

oA ) @iy iy )+ my
(25)
where
q(my,my,my) =
2
(m’y + 30 _30N2 4 gp*2 — 2
( ATHAT AN N ™ ) B m;/z 26)

* 0 0
Anr, +30 30 2

is the center-of-mass momentum of nucleon and pion
from the decay of A in its rest frame. The factor of
(m}, +2% —X%) in Eq. (26) comes from properly consider-
ing the energy conservation in A — Nz process in the
isospin asymmetric nuclear matter. The coefficients of
I'=0.118 GeV and = 0.2 GeV/c are used in the above
parametrization formula.

As an example, we present the decay width T'(m}) and
f(m}) as a function of m} —m . in Fig. 3 for symmet-
ric nuclear matter / =0 and pp = po because their depend-
ence on isospin asymmetry and density is negligible.
my —m, . 1is used in the plot of the I'(m}) and f(m}) be-
cause the my i are different in different parameter sets,
such as NLpd-A (black lines), DDMES§-A (red lines), and
DDRHpé-A (green lines). Based on Eq. (26), the values
of m, can be related to the momentum of nueleon and pi-
on from the decay of A in its rest frame. The larger the m}
is, the larger the ¢ is.

The form factors are adopted to effectively consider
the contribution from high-order terms and the finite size
of baryons [24, 40], which read

2

Fa(t) = exp(—b./s*—ztm*z) @7
A2 -t N
AZ
FA(t) = —5—. (28)
A —r
NL};J—A
== DDMEJ—A
047, DDRHps-A

I(m}) (GeV)

0.0 0.2 0.4 0.6
M i (GEV)

Fig. 3.

Here, Fy(t*) is the form factor for nucleon-meson-nucle-
on , Fa(t*) is the form factor for nucleon-meson-A coup-
ling, and =0.046 GeV ' for both pNN and 7NN. The
cutoff parameter A,y ~ 1 GeV for all selected three para-
meter sets, i.e., NLos, DDMES, and DDRHpé. A vy and
Ana are determined by best fitting the data of NN — NA
cross section in free space [41] ranging from +/s=2.0 to
5.0 GeV. In Table 1, A,y is determined based on the re-

AﬂNA .
as in [24].
Aznn [24]

lationship A ya = Apnw

3 Results and discussions

3.1 Cross section and its medium correction

*

ponA A8 @ func-

Figure 4(a) shows the calculated o

. d

tion of Q, and 4(b) shows 3 l
097 GeV in free space. Q represents the kinetic energy
above the pion production threshold energy /sy =

* 0 0 : 1
Amin T Zy, T 24, Which is defined as

Q = Vsin— Vs = Ey, + Ey +X3 +Z3,

—my =y i~ Xy, Xy = (Ey —my)

at the beam energy of

®
mN}+m

+ (E;‘\,2 - m;‘\,z); +my, + My, — My, — MA min
+AZS + AT, (29)

where AXS =33 +3} —Xf 3. The black circles and
squares correspond to the experimental data [41, 42]. The
black solid line, dashed lines, and dotted lines are the res-
ults for NLps-A, DDME6S-A, and DDRHpé-A, respect-
ively. To investigate the impacts of different effective
Lagrangian parameter sets on the in-medium NN — NA
cross section, all the selected parameter sets are adjusted
to reproduce the experimental data of NN — NA cross
sections and their differential cross sections at E, =0.97
GeV, where the data of differential cross section can be
obtained.

6 F
34T
g
[
=
=
2
- Do
0 1 1 1 1 1
0.0 0.2 0.4 0.6

M=y i, (GEV)

(color online) (a) I'(my) and (b) f(m}) as a function of my —mj} . at pg = po for symmetric nuclear matter / = 0. The black, red,

and green lines are the results for NLps-A, DDMEgs-A and DDRHps-A, respectively.
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30 r
®  Experiment
L NLpo—-A
m== === DDMEJ—A
20t = = = DDRHpds—A |

o (mb)

Q (GeV)
Fig. 4. (color online) (a) T posnn
do
are from [41]; (b) dcosd

ent colors correspond to different parameter sets.

Figures 5(a) and (b) present the results of o-;p_m A at
po and 2p in symmetric nuclear matter for different para-
meter sets, respectively. The black solid line, red dashed
lines, and green dotted lines are the results for NLpd-A,
DDMESé6-A, and DDRHpé-A, respectively. The values of
o-;p_m A depend on the selected parameter sets. The
NLpdS-A predicts the largest in-medium NN — NA cross
section among the three parameter sets, and ONLpo-A >
O DMES-A > (TI*DDRHP(;_ > especially at 2pg. The difference
between o)\ e 4 and O DDRHp5-A is comparatively small
owing to the slight difference” between the effective
masses as shown in Table 1. This can be understood from
the equation of in-medium NN — NA cross sections, such
as Eq. (22), where the values of cross section monotonic-
ally increase with the effective mass of the nucleon and
A. The larger the effective mass, the larger the cross sec-
tion. Similar to the symmetric nuclear matter, the in-me-
dium NN — NA cross sections in isospin asymmetric nuc-
lear matter also has O';ILP(S_ A > ThoMES-A > o-]*)DRHp S_A-
This can be observed in Fig. 5(c)-(f), where O e and
o-fm_)pA, at po (left panels) and 2py (right panels) for
isospin asymmetry /= 0.2 are shown examples.

Based on our discussion in [23], the in-medium
NN — NA cross section is split in isospin asymmetric
nuclear matter owing to the effective mass splitting for
nucleons and As. The values of in-medium cross sections
of pp = nA*™, pp — pA*, pn — nA*, pn — pA®, nn — nA°,
and nn — pA~ do not satisfy the Clebsch-Gordan coeffi-
cients as in free space. This can be understood from the
expression of matrix element in Eq. (22). For example, if
there is no isospin splitting for nucleon and A effective
mass, the difference of |M* between the different chan-
nels is due to /3 or I2 because the terms contains mj, mj,
and * in |MJ*> have the same contributions to different
channels. However, in the isospin asymmetric nuclear

30 == Experiment
=
E20}
S
g
=
S Eb=0.97 GeV

10} (Q=0.297)

0 (b) ) ) . il . .

-1.0 -0.5 0.0 0.5 1.0

cost

as a function of Q for for NLps-A, DDME6S-A and DDRHps -A in free space , the experimental data

as a function of cos@ at beam energy E, = 0.97 GeV, the experimental data from [42]. The lines with differ-

Eb (GeV)
2 4 6 8 10 2 4 6 8 10

30
—— NLpd—A pp—nA™
— — DDMEJ—-A 7=0
20l DDRHpd—A
i)
g
‘e P =2p,
2 3

2 4 6 8 10 2 4 6 8 10
pp—nA™

30

20

o" (mb)

20

Fig. 5. (color online) oy, v @s a function of Q, (a) and (b)
for symmetric nuclear matter 7 =0; (c)-(f) for asymmetric
nuclear 7=0.2.

matter, there is isospin splitting on the nucleon and A ef-

fective mass, and it causes different values of my, m}, and

r*in M|, in addition to /2 and 2 for different channels.
In the left panels of Fig. 6, we present the R ratios in

the symmetric nuclear matter. The upper, middle, and
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bottom panels correspond to the results for different beam
energies or E,= 0.4 (Q =0.052 GeV), 0.8 (Q = 0.227
GeV), and 1.2 GeV (Q= 0.389 GeV), respectively. The
different channels have the same in-medium correction
factor R, and their values decrease with the increase in
density. This is consistent with the results of [19, 27].
Similar to the dependence of cross section on the para-
meter sets, RnLps-A > RpbMEs-a > RpDRHps-A-

For isospin asymmetric nuclear medium, in the right
panels of Fig. 6, the R ratios obtained with the selected
parameter sets also decrease as functions of density, and
they are split according to the different isospin states of
collision channels. Near the threshold energy, the r val-
ues clearly depend on the channel of NN — NA and
R(pp — nA**) > R(Np — NA*) > R(Nn — NA®) > R(nn — pA~)
, here N=n or p. The amplitude of the splitting mainly
attributes to the effective mass splitting of nucleon and A,
which are presented in Table 1, via the effective mass
changes between the incoming and outgoing particles,
i.e., AYS, and the effective energy changes, i.e., AX? for
different channels. In the calculation of the in-medium
NN — NA cross section, the values of AYS and AXC
provide the opposite contribution on their isospin effects
through Q. Near the threshold (E, ~0.4 GeV), the R val-
ues are mainly effected by the effective mass changes
AYS and effective energy changes AX0. When the beam
energy increases up to 0.8 GeV, the splitting of R 'among
the different channels of NN — NA tends to vanish be-

cause the contributions from scalar and vector self-ener-
gies become relatively smaller than the contributions of
kinetic energy.

Near the threshold energy, the splitting of R is larger
in NLpd-A than that in DDRHpS-A and DDMEGS-A ow-
ing to the stronger nucleons and As effective mass split-
ting in NLpS-A. The splitting of R for different channels
vanishes when E, > 0.8 GeV for all parameter sets;
however, the reduction of in-medium correction follows
RNLpE—A > RDDMEs—-A >RDDRHp(5—A: which is caused by the
decrease of effective masses for the three parameter sets
in Table 1. This can clearly be seen in Fig. 7, in which
R(2pp) increases with an increase in mj /my (or L). This
suggests that adjusting the medium correction factor R in
transport models should also simultaneously consider the
stiffness: of isospin asymmetric nuclear EOS. However,
the concrete relationship between the medium correction
factor and stiffness of symmetry energy still needs to be
investigated, for example, by analyzing the various pro-
posed RMF parameters.

Because the differential NN — NA cross section de-
termines the scattering angle for colliding particles in
transport models, the medium effects on the differential
cross sections for NN — NA should be discussed. A para-
metrized form of differential cross sections from experi-
mental data [43] is usually used in various codes without
considering the medium correction effects. Recently,
Wang et al. [44] tried to understand the influence of the

=0 1=0.2
o E,=04GeV | | pp—nA”
Y e = = = pp—pA’
S np—nA'
-~
S === np—pA°
0.5} ] - nn—nA°
—— NLpd—A " -. R B nn—pA”
=— — DDMEJ—A
DDRHps—A
0.0 .
E,=0.8 GeV
1.0 E
\
~
m - “'\--‘-‘ =
0.5} " ]
0.0 . 0.0 .

E,=12GeV

1.0 h E,=12Gevd 1.0k
.\..‘.\.\ %%,:

0.5} 'H‘*-.._,' 0.5¢ \
0.0 L 0.0 L L L
0 1 2 0 1 0 1 0 1 2
Pe/Po Pu/Po

Fig. 6.

(color online) Medium correction factor R = o* /o™ of different channels (with different color) as the function of density for

Ey=0.4,0.8,and 1.2 GeV (0= 0.052, 0.227, and 0.389 GeV) for different parameter sets. Left three panels are for symmetric nucle-
ar matter (7= 0), right nine panels for asymmetric nuclear matter (7=0.2).
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1.0
--@- NN>NA (1= 0.0) E, = 400 MeV
-l pp—nAT (1=0.2)
I nn—pA~(1=0.2)
..m
e
Sost N ]
= L I &=
@ .
(] L=5285 L=101.46
L=4533
0.0 L L
0.5 0.6 0.7 0.8

my/my

Fig. 7. (color online) Medium correction factor R at pg = 209
in E, =0.4 GeV for different parameter sets, i.e., NLpd-A,
DDRHps-A and DDMEGSG-A, the unit of 7, is MeV.

different forms of differential cross sections on the ellipt-
ical flow in the ultrarelativistic quantum molecular dy-
namics model simulations; their results show that it could
influence nuclear stopping power, and direct and elliptic
flow at high beam energies. It also stimulated the theoret-
ical understanding of the in-medium differential
NN — NA cross sections, which are necessary for devel-
oping isospin-dependent transport codes. The-in-medium
differential cross sections become more isotropic with an
increase in density for elastic NN collisions [12]; similar
behavior was observed in the NN — NA differential cross

section in symmetric nuclear matter [27]. Our calcula-
tions also confirm the conclusion that the differential
cross section for NN — NA tends to be more isotropic for
all the parameter sets we used for the symmetric nuclear
medium, especially at the twice normal density near the
threshold energy. Furthermore, the same behavior of the
in-medium NN — NA differential cross sections can be
observed in asymmetric matter. As shown in Fig. 8, we
present the results of pp — nA** and nn — pA~ channels
at E, = 0.4 GeV as an example. The medium correction of
the differential cross sections is strong, and it mainly ap-
pears at the forward and backward regions, i.e., 6, < 60°
and 6., > 120°, respectively. When the beam energy is
higher, the medium correction effects become weaker at
approximately 6., =90°; however, it still exists at for-
ward and backward regions.

4 . Summary

In summary, we studied the in-medium NN — NA in-
tegrate and differential cross sections in isospin asymmet-
ric nuclear medium within the one-boson exchange mod-
el. Three different interaction parameter sets, with p and §
mesons, were adopted in this work. Our calculations
show that oy,_, v, decreases with the an increase in the
density; the in-medium differential cross sections be-

comes more isotropic with an increase in the density near

1=0.2
02 NLpd—A
free PO~ E,=0.4 GeV -

—_——-p PP—nA™ DDMES—A DDREpo=A

= = = = 2p
0.1 3 -

T N e e e R s"“l_"—q___-___._—-——..__________
= | peetrescusssmrrtsta] e ecsevesersEean
g
Qg OO L L L L L L L L L
§ nn—pA
S

0.1F L L
0.0 : : : : : : : :
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0
cosf
Fig. 8. (color online) do*/dcos@ for pp — nA** and nn — pA~ channels as a function of cos at the beam energy of 0.4 GeV. The lines

with different colors correspond to pp = 0,p00,200 in asymmetric nuclear matter (=0.2). The panels from left to right refer to the res-

ults obtained with NLps-A, DDMEG6-A, and DDHRpS-A.
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the threshold energy for all selected parameter sets. At
the given density, the medium correction factor R de-
creases with a decrease in the effective mass, or with a
decrease in the slope of symmetry energy. This trend can
be used to mimic the deficiency of transport models,
where the mean field and in-medium nucleon-nucleon
cross section are adjusted separately to fit the data. By
considering the relationship between the in-medium
NN — NA cross sections and slope of symmetry energy
in the transport model calculations, it could reduce the
ambiguity of the constrains on either EOS or in-medium
NN — NA cross section through the comparison with HIC
data.

To concrete the relationship between the EOS and in-
medium NN — NA cross section, further analysis on the
proposed RMF parameter sets are required. For example,
there are 263 RMF parameter sets [35] and most of them
only include o, w, and p mesons. In parameter sets with
o, w, and p mesons, the relation obtained in this study
can be modified because the isospin splitting of R is only
caused by the isospin splitting of effective energy by the
p meson. Further study in this field will be interesting and
helpful for reliable extraction of the EOS or in-medium
NN cross section through transport models.
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