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Abstract: There are different constructions of the flux of triad in loop quantum gravity, namely the fundamental and

alternative flux operators. In parallel to the consistency check on the two versions of operator by the algebraic calcu-

lus in the literature, we check their consistency by the graphical calculus. Our calculation based on the original Brink

graphical method is obviously simpler than the algebraic calculation. It turns out that our consistency check fixes the

regulating factor k. of the Ashtekar-Lewandowski volume operator as 5 which corrects its previous value in the lit-

erature.
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1 Introduction

Loop quantum gravity (LQG) takes the key lesson
from general relativity (GR) that the spacetime geometry
is dynamic rather than static to build a background inde-
pendent quantum theory of gravity, which has made an
outstanding impact in the field (see [1, 2] for books, and
[3— 6] for articles). Two formulations, the canonical
(Hamiltonian) and covariant (Lagrangian) formulations
are being studied in LQG. In the canonical formulation,
the kinematical representation of the holonomy-flux al-
gebra is shown to be unique to certain sense [7], and the
geometric operators corresponding to length, area, and
volume functions are constructed and all have discrete
spectrum [8—12]. An open problem of LQG is how to im-
plement the quantum dynamics. Approaching to this
problem in the canonical formulation, some mathematic-
ally well-defined Hamiltonian constraint operators were
constructed to determine quantum dynamics [13—15], and
their key properties were also studied [16—19]. Moreover,
the non-perturbative quantization technique was also ex-
tended to define the Hamiltonian constraint operators for
other important alternative theories of gravity [20-24]. In
the covariant formulation, some reasonable transition
amplitudes were also proposed [25-28].

The first mathematically well-defined Hamiltonian

Received 28 May 2019, Published online 3 September 2019

DOI: 10.1088/1674-1137/43/10/103106

constraint operator for pure gravity was constructed in the
canonical LQG by Thiemann using the cotriad operator
[13], which is often called Thiemann's trick in the literat-
ure. Moreover, the cotriad operator was also applied to
construct densely defined Hamiltonian constraint operat-
ors for gravity coupled to matters [29], as well as a length
operator [11]. In order to enhance the confidence in em-
ploying the cotriad operator to construct the Hamiltonian
constraint, a consistency check was proposed at the kin-
ematical level by comparing the action of the alternative
flux operator defined by the cotriad operator with the one
of the fundamental flux operator on the same state [30,
31]. Furthermore, similar ideals were recently adopted to
define new alternative volume and inverse volume oper-
ators for LQG by using the cotriad operator [32]. Both the
volume and inverse volume operators in [32] share the
same qualitative properties with the volume operator
defined in [10]. To implement these consistency checks,
one need to compute in detail the actions of these operat-
ors on the quantum states. Obviously, it is important to
choose a suitable method for the calculus.

Recently, the graphical calculus based on the original
Brink graphical method has been systematically applied
to LQG [33-35]. The graphical method provides a very
powerful technique for simplifying the complicated cal-
culations. In this paper, the graphical calculus will be
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used to check on the consistency between the alternative
flux operator and the fundamental flux operator, which
was also studied by the algebraic calculus in [30, 31].
Comparing to the algebraic method, our derivation is ob-
viously more compact and simple. Moreover, our result
corrects the value of the regulating factor k., of the
volume operator in the literature.

2 Consistency check on the fundamental and
alternative flux operators

In this section, we briefly summarize the elements of
LQG. Then we introduce the construction of the funda-
mental and alternative flux operators. The consistency
check on them will be studied in detail by employing the
graphical calculus.

2.1 The fundamental and heuristic alternative flux

operators

In the canonical LQG, the 4-dimensional spacetime
manifold M is split into M = Rx X with ¥ being a 3-di-
mensional manifold of arbitrary topology. GR can be cas-
ted in the Hamiltonian formulism as a dynamical theory
of the Ashtekar-Barbero connection with SU(2) gauge
group. The canonical variables are the S U(2) connection
Al =T +BK} and the densitized triad £ := y/detge? on
>, where spatial indices are denoted by a,b,c,--- and
i, j,k,---=1,2,3 are internal indices, I’ is the spin connec-
tion on ¥, B is the Barbero-Immirzi parameter, K!, is the
extrinsic curvature of 3, det(q) denotes the determinant of
the three-metric g, on %, and e¢ is the triad. The only
nontrivial Poisson bracket between these canonical vari-
ables reads

(AL, ES0)) = kB5,016° (x,), (1)

where k = 872G with G being the usual gravitational con-
stant. The fundamental variables for LQG are the
holonomy h,(A) of Al along an 1-dimensional curve
(edge) e:[0,1] - £ and the flux E(S) of £¢ through a 2-
dimensional surface S. It is shown that the diffeomorph-
ism invariant representation, the Ashtekar-Isham-Lewan-
dowski representation, of holonomy-flux is unique to cer-
tain sense [7]. The unique representation space, called
also the kinematical Hilbert space, is Hyin = L>(A,du,),
where A is the space of distributional connections, and
du, is the Ashtekar-Lewandowski measure [36, 37]. The
typical elements of Hi;, is the so-called cylindrical func-
tions f, of A € A with respect to a graph y. The spin net-
work states provide the basis of Hi, [1-6].

A holonomy function is directly quantized as a multi-
plication operator on Hyi,. The flux E;(S) through a sur-
face § can also be quantized as the fundamental flux op-

erator ﬁi‘:““(S) by first implementing suitable regulariza-
tion and then replacing E¢ by its quantum distribution
E® := —ihkBS/SAL [2, 9]. Given a graph y and a surface S
on ¥, by changing the orientations of some edges of y
and splitting edges of y into two halves at an interior
point if necessary, we can obtain a graph ys adapted to S
such that the edges of ys belong to the four types: (i) e is
up w.r.t S if n3(e(0))¢*(0) > 0; (ii) e is down w.r.t S if
n3 ((0))e%(0) < 0; (iii) e is inside w.r.t SifenS =e; (iv) e
is outside w.r.t. S if enS =0. Here n} is the co-normal
with respect to S, and ¢%(¢) denotes the tangent vector of
e. Then the flux operator £/""(S) acting on a function f,
cylindrical with respect to a graph y adapted to S is given
by [1,2,4,5,9]
EFun S _ ffz’ﬁ i
PS) fy= 0 DL DL eeSHify @
veynsS b(e)=v

where fg = ik, the factor p(e,S) takes the values of 0, +1
and —1 corresponding to the edge e is inside/outside, up
or down with respect to the surface S, the first sum is over
the intersecting points v between y and S, and the second
sum is over those edges which have v as a beginning
point, and J! is the self-adjoint operator of the right-in-
variant vector field on the copy of SU(2) corresponding
to the edge e.

Alternatively, the classical flux function can also be
expressed in terms of the cotriad ¢}, since the densitized
triad is related to the cotriad by E¢= leijk@“hcse,{e’g,
where &%¢ is the Levi-Civita tensor tensity of weight 1
and S = sgn[det(e!)]. Therefore, it can be quantized as an
alternative flux operator using the cotriad operator [30,
31]. We now introduce the construction of the heuristic
alternative flux operator. Consider an edge, in a graph v,
e : [0,1] — X, isolated intersects a surface denoted by S,
at an additional vertex 7, = We(r) with @Wed(H)n>' > 0, and it
is subdivided into two edges ““e! and e, starting from 7,
(see Fig. 1). Then the classical flux can be expressed in
terms of the cotriad ¢} as [30, 31]

(a) (b)
Fig. 1. (color online) (a) An edge ®e intersects a surface S,
at v, = We(p). (b) The original edge ™e is partitioned by S, in-
to two edges “e! and W/, starting from ¥.
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E,Alt(S,)=f(*E,-)bc=fSe,~jke£ef=fdx3dx486,~jkeée§=(
S, S, s, K
2

= (z) lim
Kﬁ e—0

oeP. ()Y

2
%) L dx3dX4SEijk {Aé V} {Alft’ V}

f dx’dx*Sei (AL, Vi AL, Vo | = 24 [kBx (0] lim Z f dx*dx*Tr,

neP.(S,)Y P

< ({A]7). Ve | S A% T Vi ) = 24 [kBx(O] lim Z Tre (heyon {0 Voo | TiSheo (g Ve ])  (3)

where * denotes the Hodge dual, y(£) = V&£ + 1D +1).
In the third step the coordinates {x*, x*} adapted to the ori-
entation of S, was chosen such that the triplet with the
right-handed orientation consists of the coordinate basis
8/8x3, 8/dx*, and the normal vector ng of §; in 3-dimen-

. Sy 2
sional ¥. In the fourth step the identity e}, = —{A},V} was
K]

used. In the fifth step a partition P.(S;) of S adapted to
the coordinates {x*,x*} into boxes o with parameter area
€ was implemented, and /(0) are the edges starting
from v'(O) along /-th coordinate lines with positive orient-
ation and parameter length €’ (see Fig. 2). In the sixth step

the identity €j =—6 [/\/(f)]_ZTI'[(T,'Tka) was used, here
Ti= —%o-,- (with o; being the Pauli matrices) and Tr, de-

notes the trace in the representation &, with spin ¢. In the
last step we have used the identity

ne(he@){mellig (o) Vi ) = =€ {A] 702 )), Vi |+ O,
“)
where /() = he)(A) indicates the holonomies of con-
nection along edges ¢}(0), and VW(D) denotes the volume
operator corresponding to the classical function Vg of a
3-dimensional region R, containing V'(O), and
Ry — V'(O) as the limit ¢’ — 0.
To quantize E2'(S,) expressed in Eq. (3) in a certain
manner such that its quantum version is consistent with

()t
(Z

Fig. 2. (color online) A partition P (S,) of S, adapted to the
coordinates {x3,x*} into boxes o with area €2, in which each
box g contains a vertex v/(0) and the edges ¢4(0) and ¢}(0)
starting from v/(0) along the x* and x* coordinate lines, re-
spectively, with length €. Moreover, the partition P, (S,) is
also required to adapted to the graph y in a way that the
graph y intersects at least one 0 € P (S,) at ¥ =V/(D).

oeP.(S,)

[

the fundamental flux operator éf““(S,) in Eq. (2), we re-
place V by its operator version V, holonomies by
holonomy operators (since the holonomy operator acts as
a multiplication operator, we also omit the hat for simpli-
fication of notation), and the Poisson bracket by 1/(i%)
times the commutator. Then we obtain the alternative flux
operator EA(S,) after removing the regulator €’ by tak-
ing the limit ¢ — 0. In this paper we only consider the
volume operator defined in [10, 38], which was used to
define a Hamiltonian constraint operator in LQG [13],

and it is given by
Z sleres,ex) k|,

V., = =
! Z v;(y) J I<J<K
(5)

veV(y)

where the sum }; ;.x is over all triples (e;,e;,ex) of
edges at the vertex v € V(y) for a given graph y, kg de-
notes the regularization constant coming from averaging
over the relevant background structures in the regulariza-
tion procedure of the volume operator [10], s(e;,e;,ex) =
sgn[det(¢e;(0),¢5(0),ex(0))] takes the values of 0, +1 and -
1, corresponding to whether the determinant of the mat-
rix formed by the tangents of the three edges at v in that
sequence is zero, positive, or negative, and

Quik = ~4iepJt JL Ik (6)

e;veg

iy p3
T3y

A

Oy

Due to the factor ¢(e, ey, ex), the volume operator V van-
ishes on the linearly dependent triplets. Since Eq. (3) con-
tains the volume V), in order to get an alternative flux
operator whose action on the edges of type up or down
with respect to the surface S, takes the similar result as
that of the fundamental flux operator, the holonomies in-
volving e%(0) and ¢/ (0) should be arranged to the right-
hand side of V). Under the above considerations and
noticing that holonomies commute with each other clas-
sically, the alternative flux is arranged as the following
ordering

EN(S) == 24[kBx(O]* lim >
oeP.(S,)
X [P el o)1 p {xelhgio)T 1 Vo)
xS {Vw(u), [ﬂf(he_gl(g))]DE} [ﬂf(heg(u))]EA ,
(7
where the indices A,B,--- = —¢{,—(+1,---,£, the upper (or
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former) indices are the row indices while the lower (or definition of the volume [30, 31]. Finally, the quantum
later) are the column indices in the matrix elements. It is version of the alternative flux function £2(S) in Eq. (7)
shown that S can be identified with the sign that appears can be written as

inside the absolute value under the square roots in the

EN(S) =24[28x(0] lim > e clrethee)) [ Imelligio)1 . Vo |
DePFr(S)

A

X8 Vo ez o)1” | reheonl® . ®)

[
where Sis the sign operator defined by Qy: () =: Vv’(D)S Vo (u=0,%1), corresponding to 7; (i = 1,2,3), defined by
[30, 31]. To compute the action of the alternative flux op-
erator on a spin network state, the graphical calculus T := T3, Tl i= 17 (T1£72). 9)
based on the original Brink graphical method is adopted 2
(see e.g. [35] for reference). In practical calculation, it is ~ Then the alternative flux operator defined by 7, is given
convenient to introduce the spherical tensors 7, by

EN(s) =24[2x(0] lim > el clretheo)) [ eV . Voo

oeP.(S,)
X8 [V, el o)1” | et @)l . (10)
[
Let us now consider the spin network state corres- mentum J = 0 with the magnetic quantum number M = 0.

ponding to the original edge e in Fig. 1 (a). Assigninga  Notice that EA“(S,) involves the volume operator V
spin j to the original edge “e in Fig. 1, the spin network which has non- tr1V1a1 action only on the states containing
state corresponding to this edge is [ ;(hw,)]™,. Partition of at least one non-coplanar trivalent or multivalent vertex.
We at ¢ into two edges (”>efl and (“>ef2 induces a spin net- Therefore, in order to obtain a non-trial :action of the al-
work state associated to two edges “e! and “e, in Fig. 1~ ternative flux operator on (lj O)mlmz , the partition

(b) as (the derivation in graphical calculus will be given P« (S;) of S, should be graph-dependently chosen in such

below) a way that the graph vy intersects at least one O e P.(S;)
e \I=0 " at ¥, =V/(0). For the partition adapted to y, the sum over
( :Bt)M:0> =[nj(h)]”, oe P.(S,) in E;;““(S ;) reduces to the only one box g that
- J=0 M=0 I s intersects y at ¥, and we will omit the only box o for sim-

N2+ 1( ) L jCoe DI, [ Chee )T, plifications. Since the volume operator vanishes the co-

(1 planar vertices, only one term in the commutator in the
where (1! O)m " M=0_ (J =0,M =0|jmy; jmp) denotes the alternative flux operator EA“(S ;) has nontrivial contribu-

normalized gauge-invariant intertwiner at ¥, which de-  tion. Hence EA]I(S ) deﬁned in Eq. (10) acts on the state
scribes the coupling of two angular momenta j, j with the (("),Bt) 0> yields
magnetic quantum numbers m,,m;, to a total angular mo-

EX'(S))

(“B)"™" o) 24 GBO] tim Lo e o)1 el 1 08 Vo e 017,
x[mehe 1%, |(“8) >= 24[22px0)|” lim [xe(r))” clmeChe 1 el T,

A8 ) 12)

X 05 [me(hgO1P lme(he)1®

We now compute Eq. (12) by the graphical method. ing to 1 (b) in the algebraic Eq. (11) are related by (see
Note that the initial spin network state corresponding to Ref. [35] for details)
Fig. 1 (a) and its induced spin network state correspond-
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n mn n

welhj el

N e T R BT SR

((u)eé)—lﬂj (u)cé ]

where in the second and the third steps we have used Egs.
(A.36) and (3.17) in [35], respectively, in the four step we
have used the graphical rule (see e.g. Eq. (A.47) in [35])

<.

L (14)

m > m

) 13)

of the following four steps.
In the first step, we consider the action of the two
holonomies on the most right-hand side of Eﬁ‘“(S ;) in Eq.

(12). The alternative flux operator acts on ((”),8,)]701”_ 0>
by attaching two additional edges ¢} and ¢/ to the edge e
(and to “e! and ““e}). Notice that the holonomy operator
acts as a multiplication operator. Thus the two matrix ele-
ments of holonomies can be represented as

A D A D A D
[ (b)) Te(he))”, = T e ce =(2C+1) T , (15)
¢ P 0 14 0 0
0 ¢ 0 o~ ¢ 0
|“BY sy a5

where we have used Eq. (14) in the second step. Then the two holonomies in é;;““(S ¢) on the most right-hand side act on

J=0
()
( L ﬁ’) M:O> as
EN(S,)

n

x| V2£+1

(B o) =24 [ EBX(O]  lim N2+ TNV T ()P LI e (DT O,

A D

(16)

In the second step, we consider the action of Q;. No-
tice that

A ity ° .
Or, = Kreg 5~ Z eler,ey,ex)qrik
I<J<K
ie5 g
= Kreg > [e(1,3,4)q134 + €(2,3,4)§234]
i5p°
=Kreg§—2((?134—Q234) (17)

is gauge invariant, and thus it only changes the intermedi-

Y

ate couplings @ in the intertwiner associated to the spin

network state

J=0 .
((“)ﬂ,) M_0>. Denote the gauge-invariant

~ a,=0

> > M=0
a, =/ J=0

intertwiner of ((“)ﬁ,)J:O[‘/I= o> at ¥; by |ay =0,a3 = £,J = 0).
Then the action of Q}f on |ay =0,a3 = ¢,J =0) can be lin-
early expanded by |a},a} = £,J = 0) as

Oy lay =0,a3 = £,J =0) = Z<a’2,ag = 0,0 =0|05,az =0,
a,
az =C,J =0) |}, a5 = f,.} =0)
2 p6 23
=Zxreg1€§—f [1 = (=D%|<d5,d = €,7 = Olgu3alaz = 0,
a
a3 ={,J =0)|a},dy=€,] =0)

iy
=Zkreg4p—\/§ ViGF DN+ 1601 b, dy=£,0 =0)

@
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TAYCH where we have used the formula of the matrix elements
P . ’ ’
= Kreg_4\/§ ViG+DVll+ D) lay =1,a3=C,7=0), (18) of g7k (see, e.g. Egs. (4.35) and (4.36) in [35, 39] for de-
tails). Then Eq. (16) yields

196 23
EXS) B o) =24] EBx0)] 1;5%Kreg£x<j)x<f> [rem)1” e 1€ [me DY
m A D
el “eihi  eihe ()Y
x| /32e+1) (19)
J l l
- aff:l - ag=:/ - J:O M=0

In the third step, we implement the action of the remaining holonomies. The action only involves the contractions of
holonomy and its inverse, which is given by

[xe (W glreh™P ¢ = 6¢.. (20)
Hence the result of this action yields

3

2 _ - fﬁ 2
ENGS)[(B) o) = 24[£8x(O] lim e O a1 | NFEETT)

21
3 @n

l

o
|
—
In the last step, we deal with the action of [ﬂ'g(Tﬂ)]B ¢» Which involves the contraction of [ﬂ[(Tﬂ)]B ¢ With the state it
acts. Notice that the matrix element of [7r,(r,)]? . can be expressed by [35]

I
(1)1 =ix(0) ot +1/ . (22)

—— M=0

1~ 4 T=0

Then we can write down the action as

i
> - op R VAR ¥
RAl e \J=0 _ 2 2. ) ) , .
ENS ) |(“B) o) = =24 [ €8x (0)] limicss ==X WO | V3@L+D Ao
] A Vi
—d,=1—d=0— j_g M=0
n
[ 1 “eid j
welhj  wefj ,
=~2eliBx(lim) N3 7 =2l A, 3
J J 1
0 ey
il
where in the second step we have used
Iz 4 .
4 +1 / _ 1 . Jrl , _ 1 . Jrl Lo 1 1 m 1
¢ [ V20+1 ¢ ¢ V20+1 ' N2l w
1 - 4 - 0 1 — 7 > = .
1 1 K
XY s I (24)
3v2e+1 V3R+T) ——L—=—0
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and the trivial limit was taken in the third step. 2

X B
ESNS) fy= ), DL 0eS fy.  (29)

On the other hand, the action of the fundamental flux VeynS, blerey

AR . AR . J=0 . .
operator £,*"(S,) corresponding to E3*"(S;) in Eq. (2) on oy the same state ‘((”),Bt) M:0>, its action can be simpli-

a cylindrical function is given by fied algebraically as

2
Erngs,) }(“‘%,)’:”M_O}:g S st

veynS, b(e)=v

((u)ﬁt)‘]:OM:O>

<(M)'B’)JZOM:0>

(“B) " o) =822 (B) ) 26)

((u)ﬁ’>J=0M:O> =0.

ep
= oS 0t

we!

+0(“eh, S )L, |

we!

=628 0("e). S ),

(u)QYZ

whereinthethirdstepweusedthefactthat, forthestate ((”),B,)]:OM:0>, gaugeinvarianceatf/,implies(Jﬁ,fe,1 + Jﬁﬁe,z )
In graphical calculus the action in Eq. (26) can be written as (see [35])

EFn(s)

(“B)" o) = —=CBX(DN2j+T X

“ep j
“eidj  “eid . 27)
=~6Bx()| V3 ; =—6Bx() b,
J J 1
0 ek
where in the second step we have used the identity Eq. (4.14) in [35].
. . J=0 . .
To summarize, the actions of the two flux operators on ‘((”)ﬁ,) e 0> in Egs. (23) and (27) can be written as
n
n
etk j
2 Fun _ 2 . . — _a,Fun/A]t€2 - 42 1 1, 28
EE /All(St) |((u)/_g[)-] OM:0> :EE /Ah(St) (W) 4 pﬂ/\/(.}) j ( )
(u)eé J
m
where the factor o™"/Al takes 1/(2k.,) for the fundament- Vi = @De(r) with @e(r)nl' <0, and it is subdivided into two
al/alternative flux operator. edges “e! and e} starting from ¥, (see Fig. 3). Similarly,

. . . J=0 .
Now we consider another case different from Fig. 1, the initial spin network state ((‘”ﬁt) M—0> corresponding

where an edge in a graph y, “e: [0,1] — X, isolated inter- o Fig. 3 (a) and its induced spin network state corres-
sects a surface denoted by S, at an additional vertex ponding to Fig. 3 (b) are related by
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(@) (b)
Fig. 3. (color online) (a) A edge @e intersects a surface S,
intersects at 7, = @e(r). (b) The original edge @e is parti-
tioned by S, into two edges @e! and @e}, starting from 7.

mn n Tl

(“e) Vi ek

|((JBT)J:0M=0> ="eli= . = ’ =

ety j (@ety 4

(29
Similar to the above calculations, we obtain the actions of

R J=0
the two flux operators EE"n/ Alls,) on ‘((‘Dﬂz) M 0> as

EEUH/AH(S:) |((d)ﬂt)j=OM=0> — EN'EUH/AH(S,) (e Y j

n n

@et) (D)t

:ﬁzun/All(Sr) \/2j+1 i 0 :_a,Fun/Alt{;;BX(j) _]jz
J

(D)t j (Dt 5
‘2 “2 |

m m

(30)
Thus, the coefficients in front of the resulting spin net-
work states in the two cases are the same.

2.2 The alternative flux operator as a limitation and

the consistency check

let us consider whether the alternative flux operator
EM(S,) defined in Eq. (10) can be consistent with the

fundamental flux operator ﬁlf““(S,) in Eq. (25) for all the
cases corresponding to the relation between a surface S,
and a graph y. The first case is that the intersection points
locate at interior points of the edges of y, which is the
case discussed in the above subsection. In order to obtain
a consistent result for the two flux operators li“ﬁ“(S ;) and

2 . J=0
Ef'™(S,) acting on the same state )((“/d)ﬁ,) M:0> for any

t € (0, 1), corresponding to the situations that the intersect-
ing point ¥, locates at any interior point of “/9e, the factor

Kkreg Should be fixed as % from the results in Egs. (28) and

(30). It is easy to see that the consistent result will also be
kept if there are more than one edges of y intersecting S,
at their interior points. Hence the answer is affirmative
for the first case.

The second case is that all edges of y belong to the
type out with respect to a surface, and in this case there is
no intersection point. It is easy to see that, in this case, the
actions of two flux operators vanish, and thus are consist-
ent.

Now let us consider the third case in which the inter-
section points between S, and y locate at the end points,
rather than interior points, of the edges of y, as shown in
Fig. 4. Let us firstly analyze the difference between the
two flux operator defined in Egs. (10) and (25), focusing
on the ways of their action. Essentially, the two flux oper-
ators extract the information of quantum states by the
right-invariant vector fields. In the first case, an original
edge “¥e was divided by S; at an interior intersection
point ¥ into two edges “/?e! and “/¥¢!, which are lin-
early dependent at ¥. The linear dependence of “/?¢! and
w/de! at 7, ensures that only two terms, each term only in-
volving an edge “/?¢! for the given graph and two new
additional edges, contribute to the sum of Q5 in Eq. (17)
for the reduced expression (12) of (10). In other words,
the action of éﬁ“(S ;) consists of two terms, in which each
term only contains the information of “/?e! or “/¥¢}. On
the other hand, it is easy to see that éﬁ“(S,) has the same
way of action from Eq. (26). Hence it is not surprising to
us that the two flux operators are also consistent to each
other for this case. However, the situation in the third
case differs from that in the first case, because in the
former the intersection points are the end points, at which
other edges of y may also intersect. Thus the sum in the
volume operator appeared in Egs. (10) should take over
all possible triplets of edges with the intersection point as
their end points, rather than takes over the triplets in
which each triplet only consists of an edge of y and two
new additional edges. In other words, the action of
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= W), 0?5 0-

(b)

Fig. 4. (color online) (a) A surface S, intersects a graph y
at the end points @?Pe(r = 0) of edges ®e and @e in y. (b)
The surface S,- is modified as a region consists of a fam-
ily of {S,} with ¢ € (—¢,+¢) for a small enough parameter e.

éﬁ‘“(S ;) in Eq. (10) will mix the informations of different
edges of y by the action of the volume operator. Appar-
ently, the coupled action of the alternative flux operator
in Eq. (10) on edges differs from the linear decoupled ac-
tion of the fundamental flux operator in Eq. (25). Hence
in order to obtain a consistent action of the two flux oper-
ators, one has to slightly modify the definition of the al-
ternative flux operator in Eq. (10) in a way that its ac-
tions on different edges are decoupled. A strategy was
proposed in [30, 31] by redefining the alternative flux op-
erator as a limiting operator, which is discussed as fol-

(]im)E//l\lt (S t:O)

where dt denotes the Lebesgue measure, éﬁ‘“(S,) is
defined in Eq. (10). The advantages of the limitation op-
erator are in twofolds. First, the actions of the flux operat-
or at the intersection points of the edges with the surface

- () ()
lim) FAlt (v De)
(lm)EH (St=0) Ty >
“eid j
i
J
ey j
. _2Kreg€§ﬁ/\/(j) e i
=lim —— 2 [ | e S ——
€0 26 0 1 a a a

T(”’“”e’”’e)> tim [ dAs,)
Y ._ e—0 2€ —€ H !

O 2 (u)
+ f drEN(S ) ’T§”’
-€

. %) >]

lows.

Without loss of generality, we consider that a general
graph y intersects a surface S, at a vertex v, shown in
the Fig. 4. The corresponding spin network function is
denoted by

T(“‘““‘“)")>_ ....... . P
¥ = — O .

By modifying the surface S, as a region consists of
a family of {S,;} with ¢ € (—¢,+€) for a small enough para-
meter € such that there are no more vertices of y con-
tained in this region, the alternative flux operator is
defined as the following limitation [30, 31]

7O i L | [ g
Y - 1m2_6 0 3 u ( l)

e—0

T(V,‘”’e,‘“e) >
Y

(32)

S, for any ¢t # 0 are decoupled with each other. Second,
the contribution to the actions of the flux operator at the
surface S, with ¢ =0 corresponds to a measure zero set in
the integral and hence can be removed from the actions.
The action (32) can be calculated by graphical method as
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ek
lLﬂ e hj
ey j
_2Kreg€§ﬂ/\/(j) . ’ "
=  lim — — e > i - + Y —l . » > +
-0 i
weid j
“@e Y J AZL//
J
esY J
e A j e
— 26y BX()) T ,
= — e — e - + B Y I, T = - +
2 — i — T
J
ey ot
e dj ey
sl BX () A .
= — g -+ P ) [ . I - SRS - =
2 a a a a a a a j(Laﬂ
J
eY i e Y
52 v,We [ De v, (De
an i e )
20 p,We (g
=2k B8 o) 1), (33)
[
where in the first step we have used Egs. (28) and (30). an constraint operator. To test this quantization technique,
The above result shows that, for general case, the altern- an alternative flux operator was firstly constructed using
ative flux operator (lim)ﬁﬁlt( S) in Eq. (32) as a limiting op- the triad operator at the kinematical level in [30, 31], and

a consistency check on the fundamental and the alternat-
ive flux operators was also implemented. In this paper,
we first introduced the construction of the fundamental
and alternative flux operators, and then did the consist-

erator is also consistent with the fundamental flux operat-
or E;"(S) in Eq. (25) if the factor g is fixed as 1/2.

3 Summary and discussion ency check on them by employing the graphical calculus
based on the original Brink graphical method. In order to

It is well known that the triad operator plays an im- obtain a consistent result for the actions of these operat-
portant role in the construction of Thiemann's Hamiltoni- ors on the same state, the following choices for the altern-
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ative flux operator were made: (i) the volume operator in
Eq. (5) defined by Ashtekar and Lewandowski was
chosen to construct the cotriad operator appearing in the
alternative flux operator; (ii) a special operator ordering
was used in Eq. (10); (iii) the alternative flux operator
was defined as a limitation shown in Eq. (32).

By employing the consistent check in the graphical

1 . .
calculus, we fixed the factor k., as 5 which differs from

the one obtained in the algebraic calculation in [30, 31].
The relation between the factor k., in this paper and the
factor C,. in [30, 31] is kieg =48C,e,. It turns out that
there is a mistake made in [30, 31], which leads to the in-
correct value of k., = 1. The mistake happens because
different states were chosen to be acted by the funda-

mental and the alternative flux operator for consistency
check in [30, 31]. More concretely, the spin network state
associated to an edge with type of up with respect to a
surface was acted by the alternative flux operator, while
the spin network state associated to an edge intersecting
the surface at an interior point was acted by the funda-
mental flux operator in [30, 31]. Had a same state been
acted by the two flux operators, the algebraic calculation

. 1 .
would give the same results of k., = = as ours. In this

sense, our calculation also confirms the consistency of the
graphical method and the algebraic method in LQG, in
addition to the consistency of the fundamental and altern-
ative flux operators.
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