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Entanglement in simple spin networks with a boundary *
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Abstract: We investigate the bipartite entanglement for the boundary states in a simple type of spin networks with

dangling edges, in which the two complementary parts are linked by two or more edges. Firstly, the spin entanglement

is considered in the absence of the intertwiner entanglement. By virtue of numerical simulations, we find that the

entanglement entropy usually depends on the group elements. More importantly, when the intertwiner entanglement

is taken into account, we find that it is in general impossible to separate the total entanglement entropy into the

contribution from spins on edges and the contribution from intertwiners at vertices. These situations are in contrast

to the case when the two vertices are linked by a single edge.
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1 Introduction

Entanglement is the prominent phenomenon in quan-
tum physics. Recently, it has been discovered that it also
plays a key role in understanding the emergence of space-
time in the framework of holographic gravity [1]. On the
one hand, the Ryu-Takayanagi (RT) formula provides a
geometric description for the entanglement entropy of a
subsystem on a boundary, which is measured by the area
of the minimal surface in the bulk [2]. Such an area law is
analogous to the Bekenstein-Hawking entropy for black
holes. On the other hand, the behavior of quantum en-
tanglement reflects the structure of the spacetime such
that the background information can be extracted from
the correlations of quantum states in a many-body sys-
tem [3]. In particular, it turns out that the holographic
properties of AdS spacetime can be captured by various
types of tensor network states such as multiscale entan-
glement renormalization ansatz (MERA) [4–8], perfect
tensor networks [9], as well as hyperinvariant tensor net-
works [10–12].

Above attempts of investigating the structure of
spacetime by entanglement are background dependent.
In particular, the RT formula is proposed in the large
N limit such that the perturbations in the bulk are con-

trolled by the classical Einstein equations. It is quite in-
triguing to explore the role of quantum entanglement in
the emergence of spacetime in a background independent
manner, because the holographic nature of gravity is be-
lieved to be at the core of the quantum theory of gravity,
which is beyond the large N limit of the gauge theory
in standard AdS/CFT correspondence, where the bulk
geometry is fixed and higher order corrections to grav-
ity are greatly suppressed. When the gravity is strong
enough, the dynamics of the bulk geometry can not be
treated in a perturbative manner. One has to face the
quantum nature of the background when building the
geometry of the spacetime from the microscopic point of
view by virtue of entanglement. In loop quantum grav-
ity, it is well known that the geometry of spacetime itself
can be quantized and the quantum states of the gravita-
tional field are described by spin network states, which
are SU(2) gauge invariant in four dimensional spacetime
[13, 14]. Thus spin networks provide a very clear descrip-
tion of the atomic structure of the quantum geometry. In
the traditional treatment, spin network states are mainly
considered for closed graphs with fixed spins and inter-
twiners, such that they form a set of basis states in the
Hilbert space of the gravitational field. It is clear that
for a closed graph, a spin network is just a basis state
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without carrying any entanglement. Thus, in the past
the entanglement structure of spin networks has rarely
been addressed. Recently, the role of entanglement in
building the geometry of spacetime has been revealed
[3], and several publications on the relationship between
quantum entanglement and spin networks have appeared
[15–20]. Basically, in the context of spin networks, the
possible entanglement comes in the following two ways:
the first is to consider the superpositions of intertwiners
and spins, or many spin network states, while the sec-
ond is to consider the spin networks for an open graph
with dangling edges. In ref. [16], the notion of spin
networks has been extended to the non-closed graphs
with dangling edges to describe the quantum geometry
with a boundary, and the RT formula is understood in
the coarse graining process. In this context, the SU(2)
gauge invariance is only imposed on the internal vertex,
while the uni-valent vertices linked to dangling edges are
not gauge invariant. The associated degrees of freedom
become physical on the boundary and are described by
the boundary spin states. In ref. [19], the entanglement
structure is investigated for a specific type of spin net-
works in which two neighboring vertices are linked by a
single edge, and the notion of intertwiner entanglement
is proposed. Moreover, the contribution from intertwiner
entanglement at vertices and spin entanglement on edges
are separated. Interestingly, one finds in this case that
the spin entanglement from the edge, with irreducible
representation j, always contributes to the entanglement
entropy with the term ln(2j+1), which is independent of
the group elements.

The separation of spin entanglement and intertwiner
entanglement in a network looks peculiar if one recalls
the nonlinear nature of entanglement entropy. One may
speculate if it is always possible to separate the entropy
into these two contributions in a general spin network.
This clarification would improve our understanding of
the structure of entanglement in spin networks. There-
fore, in this paper we further develop the results of [19]
by considering a more practical situation of a spin net-
work with dangling edges where two neighboring vertices
are linked by two or more edges, in either direct or indi-
rect manner. We investigate the bipartite entanglement
entropy associated with the boundary degrees of freedom
on dangling edges. Moreover, for simplicity, we perform
numerical analysis for a simple type of spin networks con-
taining two multi-valent vertices or several tri-valent ver-
tices. We believe that the results are general enough and
could be applicable to more complicated spin networks.
We first consider the spin entanglement from edges in
the absence of intertwiner entanglement. By virtue of
numerical evaluations we demonstrate that, in general,
the entanglement entropy depends on the group elements
on edges, which has previously been pointed out in ref.

[19]. Our numerical results imply that once the spins
on edges are defined, bounds for the spin entanglement
should exist. Secondly, we consider the bipartite entan-
glement entropy in the presence of intertwiner entangle-
ment. In this case, we find that, in general, it is not
possible to separate the total entropy into spin entangle-
ment and intertwiner entanglement. Mathematically, it
can not be written as a sum of two distinct parts any
more. Our conclusions and outlook are given in the last
section.

2 Entanglement in the absence of inter-
twiner entanglement

In this section, we evaluate the bipartite entangle-
ment entropy for a few simple spin networks in the ab-
sence of intertwiner entanglement. First, we consider
the case when the two neighboring vertices are linked
by two edges directly. In general, a spin network is a
graph Γ composed of edges and vertices, which could
be closed or non-closed. The spin network state for a
non-closed graph Γ with dangling edges o is denoted by
|Γ,{je,jo},{Iv},{Mo}〉, where je denotes the spin on the
internal edge e and Iv denotes the intertwiner at internal
vertex v, while spin jo and magnetic quantum number
Mo are assigned to each dangling edge o. The corre-
sponding spin network function can be written as

〈{he},{ho}|Γ,{je,jo},{Iv},{Mo}〉
=

∑
me,ne,mo

∏
e

U je
mene

(he)
∏
v

(Iv)
{jejo}
{me,ne,mo}

∏
o

U jo
moMo

(ho),

(1)

where he and ho are holonomies along the internal
edge e and dangling edge o, respectively, and U j is
the matrix representation of SU(2) group with spin
j. This kind of spin networks is constructed for a
spatial region with a boundary. The total Hilbert
space is composed of the Hilbert space associated
with the bulk H and the Hilbert space associated
with the boundary H∂ . Thus, a spin network state
can be written as the direct product of two parts,
namely |Γ,{je,jo},{Iv},{Mo}〉 = ⊗|I{je,jo}v 〉 ⊗ |jo,Mo〉.
We define a boundary state |Ψ̃[Γ,{je,jo},{Iv},{ho}]〉 ∈
H∂ , such that ⊗

〈
jo,Mo|Ψ̃[Γ,{je,jo},{Iv},{ho}]

〉
=

〈Γ,{je,jo},{Iv},{Mo}|{he},{ho}〉. Next, we study the
bipartite entanglement in the boundary spin state
|Ψ̃[Γ,{je,jo},{Iv},{ho}]〉.

For simplicity, we first consider a spin network with
only two vertices A and B. When the spins on edges
are defined, the Hilbert space of the bulk is given by the
products of two intertwiners,

HAB = HA⊗HB, (2)
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where HA and HB are the spaces of intertwiners at-
tached to two vertices A and B, respectively,

HA = InvSU(2)[V
J1⊗...V Jp⊗V j1 ···⊗V jn ],

HB = InvSU(2)[V
K1⊗...V Kq⊗V j1 ···⊗V jn ], (3)

where we have assumed that p dangling edges with spins
Jp are joined to vertex A, q dangling edges with spins Kq

are joined to vertex B, and the two vertices are linked
directly by n internal edges with spins jn.

The Hilbert space of the boundary spin states is

H∂
AB = H∂

A⊗H∂
B, (4)

where H∂
A and H∂

B are the spaces of spins on dangling
edges joined to vertices A and B, respectively,

H∂
A = V J1⊗V J2 ···⊗V Jp ,

H∂
B = V K1⊗V K2 ···⊗V Kq . (5)

For numerical simulation we consider a specific ex-
ample as shown in Fig. 1. The corresponding boundary
spin state is

|ΨJ1;J2〉 =
∑
M1M2

NCJ1 j1 j2
M1 m1 m2

Dm1n1Dm2n2Uk1∗
n1

(g(θ))

×Uk2∗
n2

(g(0))CJ2 j1 j2
M2 k1 k2

|M1M2〉, (6)

where N is the normalization coefficient, CJ j1 j2
M m1 m1

=
〈j1 m1;j2 m2|J M〉 is the standard Clebsch-Gordan coef-
ficient, andDmn=(−1)j−mδm,−n is the virtual two-valent
intertwiner denoting the direction of the holonomy. Uki

ni

is the matrix representation of the holonomy along the
edge with ji. In particular, we specify the group ele-
ments for each holonomy as Uki

ni
(g(θ))=e−ikiθδkini

, where
θ is the group parameter. For simplicity, we also ignore
the holonomy along dangling edges, where they are uni-
formly taken as the unit element of SU(2).

We now consider the entanglement entropy for this
bipartite system. We choose A = {J1} and B = {J2},
so that the reduced density matrix is given by ρA =
TrB(|ΨJ1;J2〉〈ΨJ1;J2 |). As a result, the entanglement en-
tropy can be evaluated as

EρA(θ)=−Tr(
ρA lnρA

〈ΨJ1;J2 |ΨJ1;J2〉
). (7)

The numerical results for various spins are shown in
Fig. 1. Firstly, we note that the entanglement entropy
is not independent of the group elements any more; it
is a function of the parameter θ. Secondly, we find that
the entropy satisfies the bounds |ln(2j1+1)−ln(2j2+1)|≤
EρA(θ)≤ ln(2j1+1)+ln(2j2+1). In fact, in this special
case, since there is only one dangling edge at each ver-
tex, a stronger upper bound holds EρA(θ)≤min{ln(2J1+
1),ln(2J2+1)}. It is also interesting to note that the en-
tanglement entropy vanishes for θ=π (lower left plot of
Fig. 1), which means that it is simply a direct product
state.

Next, we consider the case that two vertices are linked
by more than one path, which means that some paths
may connect them indirectly by passing through other
vertices. This is, of course, a common case for general
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Fig. 1. (color online) Sketch of the spin boundary state described by Eq.(6). The spins on dangling edges are taken
as J1 =J2 =1. The entanglement entropy as a function of θ with j1 =j2 = 1

2
(upper right); j1 =j2 =1 (lower left);

and j1=2,j2=1(lower right).
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Fig. 2. (color online) Sketch of the boundary state described by Eq.(8). The spins on dangling edges are taken as
Ji=1(i=1,...4). The entanglement entropy as a function of θ with ji=

1
2
(i=1,...4) (upper right); ji=1(i=1,...4)

(lower left); and j1=j3=2,j2=j4=1 (lower right).

spin networks. As an example, we consider the spin net-
work shown in Fig. 2. The corresponding boundary state
is given as

|ΨJ1J4;J2J3〉 =
∑
Ml

NCJ1 j1 j4
M1 m1 k4

Dm1n1Uk1∗
n1

(g(θ))

×CJ1 j2 j1
M2 m2 k1

Dm2n2Uk2∗
n2

(g(0))CJ3 j3 j2
M3 m3 k2

×Dm3n3Uk3∗
n3

(g(0))CJ4 j4 j3
M4 m4 k3

Dm4n4

×Uk4∗
n4

(g(0))|M1M2M3M4〉, (8)

where, for a bipartite system, we have chosen A={J1,J4}
and B={J2,J3} and l=1,···4. The reduced density ma-
trix for the bipartite entanglement entropy is given as
ρA=TrB(|ΨJ1J4;J2J3〉〈ΨJ1J4;J2J3 |). Numerical results for
a few specific spins are shown in Fig.2. We note that
the entanglement entropy is generally a function of the
parameter θ. In particular, when two parts are linked
by two edges with spins j1 and j3, respectively, we find
that the entropy is bounded as |ln(2j1+1)−ln(2j3+1)|≤
EρA(θ)≤ln(2j1+1)+ln(2j3+1).

3 Entanglement in the presence of inter-
twiner entanglement

In this section, we take the intertwiner entanglement
into account. In ref. [19], it was shown that when two
neighboring vertices A and B are linked by a single edge
carrying a spin j, as shown in Fig. 3(1), then the to-
tal entanglement entropy of the boundary states can be
separated into two parts, one from intertwiner entangle-

ment at vertices and the other from spin entanglement,
which is nothing but ln(2j+1), the maximal entropy al-
lowed by the spin on the edge and independent of the
group elements of the holonomy. We point out that the
following relation plays a crucial role in the separation
of spin entanglement and intertwiner entanglement; it is
the orthogonal relation between two intertwiners∑

N1···Nq

〈
Ik2 |N1 ···Nqm

〉〈
N1 ···Nqm

′|Ik′2
〉

=
1

2j+1
δk2k′2δmm′ , (9)

where |Ik2〉 represents the k2-th component of the inter-
twiner state, and Ni (i=1,··· ,q) is the magnetic quantum
number of the spin on the i-th dangling edge, while m
is the magnetic quantum number of the spin j on the
single edge linking two vertices.

This orthogonal relation can be represented as a di-
agram, as shown in Fig. 3(2). Obviously, this identity is
applied during the evaluation of the reduced density ma-
trix such that the final result can be written as a product
of the spin contribution and the intertwiner contribution,
as shown in Eq. (24) in [19].

However, when two vertices are linked by two or more
edges, we find that this situation does not hold any more.
In general, the bipartite entanglement entropy can not be
separated into a spin part and an intertwiner part. For
explicitness, we consider two vertices A and B linked by
two edges carrying spin j1 and j2, respectively, as shown
in Fig. 4(1). For the evaluation of the reduced density
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Fig. 3. (color online) (1) Two neighboring vertices A and B are linked by a single edge carrying a spin j. The
dashed line denotes the entanglement of two interwiners. (2) The sketch of the orthogonal relation described by
Eq.(9).
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Fig. 4. (color online) (1) Two neighboring vertices A and B are linked by two edges carrying spin j1 and j2,

respectively. (2) The extension of the orthogonal relation does not hold.

matrix, we need to simplify the contractions of tensors.
Unfortunately, we find that the following identity, needed
to separate the intertwiner entanglement from spin en-
tanglement, does not hold,∑

N1···Nq

〈
Ik2 |N1 ···Nqm1m2

〉〈
N1 ···Nqm

′
1m
′
2|Ik

′
2

〉
6= 1

(2j1+1)(2j2+1)
δk2k′2δm1m

′
1
δm2m

′
2
, (10)

This is diagrammatically sketched in Fig. 4(2). We pro-
vide the proof for this statement in the Appendix. Sim-
ilarly, one can show that such relations are also absent
when two vertices are linked by more than two edges
indirectly. Therefore, for a general spin network with
dangling edges, it is not possible to separate the total
entropy into the contributions from spins on the edges
and from intertwiners at vertices.

The above orthogonal relation is not a necessary con-
dition for separating the intertwiner indices and spin in-
dices. However, we remark that, in a general case, they

can not be separated if two vertices are linked by more
than one path. To support this statement, we evalu-
ate the total entanglement entropy and the intertwiner
entanglement entropy numerically for a few specific spin
networks. An example is shown in Fig. 5, and the bound-
ary spin state reads

|Ψ〉 =
∑
MiNi

ϕk1k2√
(2k1+1)(2k2+1)

Ck1 J1 J2
n1 M1 M2

Ck1 j1 j2
n′
1 m1 m2

×Dn1n
′
1Ck2 j1 j2

n′
2 m′

1 m′
2
Ck2 K1 K2
n2 N1 N2

Dn2n
′
2Dm1m

′
1

×Dm2m
′
2 |M1M2N1N2〉, (11)

where i=1,2 and k1,k2 are possible spins on virtual edges
inside intertwiner A and B, respectively.

If we take all spins on the dangling edges to be 1
2
,

then the spins on virtual edges inside an intertwiner can
be 0 and 1. With this assumption, the boundary state
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takes the following general form,

|Ψ〉 =
∑
MiNi

(ϕ00C
0 1

2
1
2

0 M1 M2
C

0 1
2

1
2

0 N1 N2

+
1

3
ϕ11C

1 1
2

1
2

n1 M1 M2
C

1 1
2

1
2

n2 N1 N2
Dn1n2)|M1M2N1N2〉,

(12)

where ϕ00 and ϕ11 are two components in the intertwiner
space. It should be noted that the other two components
ϕ01 and ϕ10 do not appear in the above equation simply
because the contraction of the corresponding CG coeffi-
cients in these terms vanishes.

A B

Ik1 Ik2

J1
1

2

J2
1

2

K1
1

2

K2
1

2

j1
1

2

j2
1

2

Fig. 5. Sketch of the boundary spin state with in-
tertwiner entanglement described by Eq. (11).

The reduced density matrix for bipartition is given as
ρM1M2

=TrN1N2
(|Ψ〉〈Ψ|). It is straightforward to obtain

the entanglement entropy, which is

E = −Tr(
ρM1M2

lnρM1M2

〈Ψ|Ψ〉
)

= − 3|ϕ00|2

3|ϕ00|2+|ϕ11|2
ln(|ϕ00|2)

− |ϕ11|2

3|ϕ00|2+|ϕ11|2
ln(|ϕ11|2)

+
|ϕ11|2−3|ϕ00|2

3|ϕ00|2+|ϕ11|2
ln3+ln(3|ϕ00|2+|ϕ11|2). (13)

On the other hand, the intertwiner entanglement en-

tropy is determined by the matrix ϕk1k2 ,

ϕk1k2 =

 ϕ00 ϕ01

ϕ10 ϕ11

. (14)

The reduced density matrix is ρk1 =
ϕk1k2

ϕ
†
k1k2

Tr(ϕ
†
k1k2

ϕk1k2
)
. The

entanglement entropy between intertwiners is

EI=−Tr(ρk1 lnρk1)=−(a+ lna++a− lna−), (15)

where

a±=

(
1

2
±1

2

√
1− 4|ϕ00ϕ11−ϕ01ϕ10|2

|ϕ00|2+|ϕ01|2+|ϕ10|2+|ϕ11|2

)
.

In Table 1, we evaluate the entanglement entropy E of
the boundary spin state and the entanglement entropy
EI of intertwiners for a few specific values of intertwiner
parameters. It manifestly indicates that the total entan-
glement entropy measured in boundary states can not be
written as the sum of the spin contribution and the in-
tertwiner contribution. For instance, in the fifth column
of the table, the entanglement entropy between inter-
twiners is even larger than the entanglement entropy for
the boundary state. In the last column, the total entan-
glement entropy of the boundary state is zero, but the
entanglement of intertwiners is not. In the next-to-last
column, “meaningless” means that the boundary state
|Ψ〉 vanishes. Finally, we remark that the total entangle-
ment entropy is not larger than ln4 in all cases consid-
ered, simply because all dangling edges carry spin 1/2.
In general, the bounds we found in the previous section
do not hold any more when the intertwiner entanglement
is involved.

4 Conclusions and outlook

In this paper, we have investigated the bipartite en-
tanglement for the boundary spin states in spin networks
with dangling edges. In particular, we have constructed a
simple type of spin network in which two complementary
parts are linked by two paths, either in a direct or indi-

Table 1. The entanglement entropy E of boundary spin state and the entanglement entropy EI of intertwiners for
various intertwiner matrices.

ϕk1k2

 1 0

0 0

  1 0

0 1

  1 0

0 3

  3 0

0 1

  1 1

1 1

  1
√
3

√
3 3

  0 1

1 0

  1 1

1 0



E 0 ln4−
1

2
ln3 ln4 ln28−

20

7
ln3 ln4−

1

2
ln3 ln4 meaningless 0

EI 0 ln2 ln10−
9

5
ln3 ln10−

9

5
ln3 0 0 ln2

−
3+
√
5

6
ln

(
3+
√
5

6

)

−
3−
√
5

6
ln

(
3−
√
5

6

)
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rect manner. The numerical evaluation of entanglement
entropy leads to the following two main results. Firstly,
in the absence of the intertwiner entanglement, the en-
tanglement entropy for the boundary state depends on
the group elements of the holonomy, which can not be
simply determined by the spins j1 and j2 on the edges
connecting the complementary parts. Nevertheless, we
have proposed a bound for the entanglement entropy,
which is |ln(2j1+1)−ln(2j2+1)|≤E≤ln(2j1+1)+ln(2j2+1).
It would be very important to prove or test this bound in
a general case. Secondly, when the intertwiner entangle-
ment is taken into account, the total entanglement can
not be written, in general, as the sum of intertwiner en-
tanglement and spin entanglement, but as a mixture of
these two contributions.

Although we have only considered the simple case
with two paths connecting two vertices, we believe that
the above statements could be applicable to more com-
plicated cases in which two vertices are linked by more
than two edges directly, or by indirect paths.

Finally, based on our current work it is quite intrigu-
ing to further explore the relationship between quantum
entanglement and quantum geometry, described by spin
network states in loop quantum gravity. Our investi-
gation is in progress and will be published in the near
future [21].

We are very grateful to Yuxuan Liu and Zhuoyu Xian
for helpful discussions and suggestions.

Appendix

In this Appendix, we demonstrate the absence of the or-
thogonal relation for intertwiners when two vertices are linked
by two edges, namely the inequality in Eq. (10), by applying
the proof by contradiction. Assume that Eq. (10) is true. Let
us consider the following contraction, which appears in the
evaluation of the reduced density matrix

D =
∑

N1···Nq

〈
Ik2 |N1 ···Nqm1m2

〉∑
k′2

〈
N1 ···Nqm′1m′2|Ik

′
2

〉
×
〈
Ik

′
2 |M1 ···Mpm

′′
1m
′′
2

〉
. (A1)

From Eq.(10), one can write Eq.(A1) as,

D=
1

(2j1+1)(2j2+1)
δm1m

′
1
δm2m

′
2

〈
Ik2 |M1 ···Mpm

′′
1m
′′
2

〉
.

(A2)

For convenience, we define the operator P̂ =∑∣∣∣Ik′2〉〈Ik′2 ∣∣∣, so that Eq. (A1) can be rewritten as

D =
∑

N1···Nq

〈
Ik2 |N1 ···Nqm1m2

〉
×
〈
N1 ···Nqm′1m′2|P̂ |M1 ···Mpm

′′
1m
′′
2

〉
. (A3)

A diagrammatic sketch of Eqs. (A1), (A2) and (A3) is

shown in Fig. A1. We introduce the operator Ĵ2=(Ĵ1+Ĵ2)2.

The action of operators Ĵ1 and Ĵ2 is defined as〈
m1m2|Ĵ1|m′1m′2

〉
=
〈
m1|Ĵ1|m′1

〉
δm2m

′
2〈

m1m2|Ĵ2|m′1m′2
〉

= δm1m
′
1

〈
m2|Ĵ2|m′2

〉
, (A4)

where Ĵ2
i |jim〉= ji(ji+1)|jim〉 (i= 1,2). Next, we consider

the following action of this operator on D, which is denoted

as F and shown in Fig. A2.

F =
∑

N1···Nq

〈
Ik2 |N1 ···Nqm1m2

〉 ∑
m′

1m
′
2

〈
m′′′1 m

′′′
2 |Ĵ2|m′1m′2

〉
×
〈
N1 ···Nqm′1m′2|P̂ |M1 ···Mpm

′′
1m
′′
2

〉
. (A5)

On the one hand, by virtue of Eq. (A2), Eq. (A5) can be
simplified as

F =
1

(2j1+1)(2j2+1)

〈
m′′′1 m

′′′
2 |Ĵ2|m1m2

〉
×
〈
Ik2 |M1 ···Mpm

′′
1m
′′
2

〉
. (A6)

On the other hand, from Eq. (A3), we may rewrite Eq. (A5)
as

F =
∑

N1···Nq

〈
Ik2 |m1m2N1 ···Nq

〉 ∑
m′

1m
′
2

〈
m′′′1 m

′′′
2 |Ĵ2|m′1m′2

〉
×
〈
N1 ···Nqm′1m′2|P̂ |M1 ···Mpm

′′
1m
′′
2

〉
. (A7)

Next, we prove that the operators Ĵ2 and P̂ commute
with each other. For any |Ψ〉 ∈H1⊗H2⊗···Hp, we have

P̂ |Ψ〉 ∈ InvSU(2)[H1⊗H2⊗ ···Hp]. We also know that[
Ĵ2,Ĵ1+Ĵ2+···Ĵp

]
=0 and (Ĵ1+Ĵ2+···Ĵp)P̂ |Ψ〉=0. So, we have

(Ĵ1+Ĵ2+···Ĵp)Ĵ2P̂ |Ψ〉=0. That means Ĵ2P̂ |Ψ〉∈InvSU(2)[H1⊗
H2⊗···Hp]. We conclude that P̂ Ĵ2P̂ |Ψ〉 = Ĵ2P̂ |Ψ〉. Be-

cause |Ψ〉 is arbitrary, we have P̂ Ĵ2P̂ = Ĵ2P̂ . If we take its

transposed-conjugate P̂ Ĵ2P̂ = P̂ Ĵ2, we get Ĵ2P̂ = P̂ Ĵ2, i.e.
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Fig. A1. Diagrammatic sketch of the processes in Eqs. (A1), (A2), (A3) .
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Fig. A2. Diagrammatic sketch of the processes in Eqs. (A5), (A6), (A7), (A8), (A9).[
P̂ ,Ĵ2

]
=0. With this fact, Eq. (A7) becomes

F =
∑

N1···Nq

〈
Ik2 |N1 ···Nqm1m2

〉
×
∑
m′

1m
′
2

〈
N1 ···Nqm′′′1 m′′′2 |P̂ |M1 ···Mpm

′
1m
′
2

〉
×
〈
m′1m

′
2|Ĵ2|m′′1m′′2

〉
. (A8)

With the help of Eq. (A2) and Eq. (A3), the above

equation can be further simplified as

F =
1

(2j1+1)(2j2+1)
δm1m

′′′
1
δm2m

′′′
2

×
∑
m′

1m
′
2

〈
Ik2 |m′1m′2M1 ···Mp

〉〈
m′1m

′
2|Ĵ2|m′′1m′′2

〉
.

(A9)

A diagrammatic sketch of Eqs. (A5)–(A9) is shown in Fig.
A2.

If we contract both Eq. (A6) and Eq. (A9) with〈
M1 ···Mpm

′′
1m
′′
2 |Ik2

〉
, we get
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〈
m′′′1 m

′′′
2 |Ĵ2|m1m2

〉 ∑
k2,m

′′
i ,Ml

〈
Ik2 |M1 ···Mpm

′′
1m
′′
2

〉〈
M1 ···Mpm

′′
1m
′′
2 |Ik2

〉
= δm1m

′′′
1
δm2m

′′′
2

∑
k2,m

′
i,m

′′
i ,Ml

〈
Ik2 |M1 ···Mpm

′
1m
′
2

〉〈
m′1m

′
2|Ĵ2|m′′1m′′2

〉〈
M1 ···Mpm

′′
1m
′′
2 |Ik2

〉
, (A10)

where i=1,2 and l=1,···p. Although this equation looks
complicated, as there exist k2, M1,···Mp, m

′′
1 , m′′2 , such

that 〈Ik2 |M1 ···Mpm
′′
1m
′′
2 〉 6=0, Eq. (A10) is nothing else

but 〈
m′′′1 m

′′′
2 |Ĵ2|m1m2

〉
= Kδm1m

′′′
1
δm2m

′′′
2

= K 〈m′′′1 m′′′2 |m1m2〉, (A11)

where K∈C is a constant. This means that Ĵ2 has only
one eigenvalue K. However, when j1≥ 1

2
and j2≥ 1

2
, Ĵ2

has at least two different eigenvalues (j1+j2)(j1+j2+1) and
|j1−j2|(|j1−j2|+1). Therefore, our starting assumption
is not true and the orthogonal relation as shown in Eq.
(10) does not exist.
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