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A minimal gauge inflation model *
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Abstract: In this paper, we present a gauge inflation model based on the orbifold M4×S1/Z2 with non-Abelian

SU(2) gauge symmetry, which is probably the simplest model in this category. As the inflaton potential is fully

radiatively generated exclusively by gauge self-interactions, the model is predictive; thus, it is protected by gauge

symmetry itself, without the introduction of any additional matter fields or arbitrary interactions. We show that

the model fully agrees with the recent cosmological observations within the controlled perturbative regime of gauge

interactions, g4 ∼
< 1/(2πRMP), with the compactification radius (10.RMP . 100): the expected magnitude of the

curvature perturbation power spectrum and the value of the corresponding spectral index are in perfect agreement

with the recent observations. The model also predicts a large fraction of the gravitational waves, negligible non-

Gaussianity, and a sufficiently high reheating temperature.

Keywords: inflation, non-Gaussianity, extra dimension

PACS: 98.80.Cq DOI: 10.1088/1674-1137/42/9/095102

1 Introduction

It is now widely accepted that the theory of the early
accelerating expansion of the Universe or cosmological
inflation [1], has the capacity to solve several cosmo-
logical problems including the problem of flatness, hori-
zon, and magnetic monopole and can also provide the
required initial conditions for the subsequent hot Big
Bang evolution of the observed Universe [2]. From a
particle physics point of view, inflation takes place due
to one or multiple number of scalar fields, known as in-
flatons, which dominate the energy density of the Uni-
verse during the inflationary period, with a flat poten-
tial [3]. Under such a condition, a nearly scale invariant
curvature perturbation R is produced, according to the
precise measurements of the anisotropies of the cosmic
microwave background (CMB) and observations of the
large-scale structure [4]. The most important recent ob-
servation on the anisotropy of CMB is from the Planck
observatory [5]. It should be noted, that the observa-
tion of the primordial gravitational waves from the infla-
tionary period, which can be expected soon, provides a
valuable testing ground for the theoretical realization of
inflation (see, e.g. the Higgs inflation [6]).

For the theoretical realization of inflation, symmetry
principles are often introduced to ensure that the inflaton

potential is flat. The shift symmetry, under which the
Lagrangian is invariant with respect to the translation of
the inflaton field by a constant amount as φ→φ+a, is one
of such symmetries. As long as the shift symmetry is un-
broken, the potential is completely flat; however, when
the symmetry is broken at a scale f , the pseudo-Nambu-
Goldstone boson(pNGB) acquires a potential with a cer-
tain tilt, which is controlled by the scale f as in the
natural inflation model, where the inflaton potential is
given as [7]:

V (φ)=Λ4

[

1±cos

(

φ

f

)]

. (1)

To successfully apply this potential to inflation, a super-
Planckian scale, f>MP, is required; however, this large
scale itself has been regarded as an essential drawback
of the model (see Ref. [8]).

The framework of higher-dimensional gauge theory
can solve the super-Planckian problem [9]. The inflaton
dynamics is controlled by the gauge-invariantWilson line
of the higher-dimensional gauge theory:

eiθ≡exp

(

ig

∮

A5dy

)

, (2)

where g is the gauge coupling constant and A5 is the
extra dimensional component of the higher-dimensional
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gauge field. In the existing models, higher-dimensional
matter fields are additionally introduced to generate the
proper form of the inflaton potential [9, 10]. Apply-
ing these matter fields at one-loop level, the generated
potential has essentially the same form as that in in
Eq. (1), while in this case, the scale f is determined
by the gauge coupling constant and the compactifica-
tion radius f = 1/(g4R). It is important to note that
the potential can be trusted, because f is a derived
scale, effectively parametrizing the inflationary dynamics
within the perturbative regime of the coupling constant:
g4.1/(RMP)≪

√
4π.

In this paper, we exploit the benefits of this line study
and suggest a minimal realistic model, which enables def-
inite predictions for cosmological observations without
assuming ad hoc matter fields and arbitrarily chosen in-
teractions between them. The model is based on a gauge
theory in the simplest orbifold extra dimension S1/Z2,
and a non-Abelian gauge group SU(2) of rank 1. The
gauge self-interaction, without introducing any matter
fields, induces the inflaton potential, which is completely
determined by only two parameters: the size of the extra
dimension, R, and the gauge coupling constant, g.

The rest of the paper is organized as follows: In the
next section, we provide a detailed description of the the-
oretical setup. Section 3 is devoted to the cosmological
predictions of the model; in particular, we provide the
analytic expressions for the essential observable quanti-
ties. Finally, we address the reheating process, followed
by the conclusion in Section 4.

2 The model

As mentioned in the previous section, the introduc-
tion of any exotic matter must be avoided only for infla-
tion. The gauge self-interactions of non-Abelian gauge
theory can generate the potential by the quantum effects;
thus, we applied an SU(2) symmetry of rank 1 without
introducing any other exotic matters. The extra dimen-
sion is assumed to be compactified by an S1/Z2 orbifold
1).

The SU(2) gauge theory on the orbifold is constructed
by specifying two independent parity conditions at the
two fixed points, y=0 and y=πR, where R is the com-
pactification radius, as

Aµ(x,−y)=P0Aµ(x,y)P0 , (3)

A5(x,−y)=−P0A5(x,y)P0 , (4)

Aµ(x,πR−y)=P1Aµ(x,πR+y)P1 , (5)

A5(x,πR−y)=−P1A5(x,πR+y)P1 , (6)

where P0 and P1 are 2×2 matrices satisfying P 2
0 =P 2

1 =1.
The translational transformation, y → y+2πR, is gen-

erated by successive operations of the parity operators,
P1P0. Assuming that P0 = P1 = diag(1,−1), the SU(2)
gauge symmetry is reduced to U(1) by the orbifold pro-
jection at the classical level. Here, we explicitly write
out the parity assignment with P0 and P1 as

Aµ=

(

(++) (−−)

(−−) (++)

)

, (7)

A5=

(

(−−) (++)

(++) (−−)

)

; (8)

thus, the zero modes are given by the (+,+) boundary
conditions, hence A3

µ and A1,2
5 are the zero modes. The

component field Aa
M belongs to the σa/2 of the SU(2)

generator. The scalar field A1,2
5 can develop a vacuum

expectation value, which can be written in the form
Aa

5∼(φ,0,0), due to the remaining U(1) global symmetry.
Considering the effects of the gauge, ghost, and scalar-
self interactions, the one-loop effective potential for the
field φ can be calculated as

V1-loop(φ)=− 9

(2π)6R4

∞
∑

n=1

cos(nφ/feff)

n5
, (9)

where the effective decay constant is introduced as

feff≡
1√

2πRg
=

1

2πg4R
(10)

for the canonical normalization of φ [11] (see also [13]).
Here, we can add a cosmological constant

9ζ(5)

(2π)6R4
, (11)

where ζ(5)=
∑

∞

n=1
n−5, such that V1-loop(0)=0 to fix the

cosmological constant. Finally, the total inflaton poten-
tial is given by the sum of Eqs. (9) and (11) as:

V (φ)=
9

(2π)6R4

∞
∑

n=1

1

n5

[

1−cos

(

nφ

feff

)]

. (12)

In principle, we can introduce additional matter fields;
however, for simplicity and predictability we refrain to do
so. In the next section, we calculate the observable quan-
tities based on the above potential and provide analytic
expressions, which can be useful in the future analysis of
the similar models.

3 Cosmological evolution

In this section, we study the cosmological evolution
of the model described in the previous section in detail.
For analytic simplicity, we consider only the first term of
the sum in Eq. (12) as leading approximation, as

V (φ)≈ 9

(2π)6R4

[

1−cos

(

φ

feff

)]

. (13)

1) If 1/R is O(TeV), the theory could be relevant for the Higgs mechanism through the Hosotani mechanism [11, 12].
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As can be seen in Table 1, this approximation is appro-
priate. Thus, the potential is identical to that of the
natural inflation, given by Eq. (1), and the analytic cal-
culations are straightforward, especially when φ is close
to the top [14]. Here, we just give the results of the ob-
servable quantities: the power spectrum of the curvature
perturbation, PR, the corresponding spectral index, nR,
the tensor-to-scalar ratio, r, and the non-linear param-
eter fNL [15]. Under the slow-roll approximation, these
parameters are given by

P1/2
R

=

√

8V

3ǫM 4
P

, (14)

nR=1−6ǫ+2η, (15)

r=16ǫ, (16)

fNL=
5

6
(3ǫ−η) . (17)

Here, ǫ and η are the usual slow-roll parameters defined
by

ǫ≡M 2
P

16π

(

V ′

V

)2

, (18)

η≡M 2
P

8π

V ′′

V
, (19)

where prime denotes a differential with respect to φ. it
should be noted, that the running of nR, which in the
slow-roll approximation can be written as

dnR

dlogk
=−16ǫη+24ǫ2+2ξ2 , (20)

where

ξ2≡ M 4
P

64π2

V ′V ′′′

V 2
(21)

is another slow-roll parameter, is second order in the
slow-roll approximation and it is negligibly small com-
pared with the other quantities1); thus, the calculation
is straightforward and not presented here. Also, the run-
ning of r [17],

dlogr

dlogk
=2(2ǫ−η), (22)

is another first order quantity; thus, it is an observable.
However, the same results can be obtained by combin-
ing Eqs. (15) and (16), which can serve as a consistency
check. Writing Eqs. (14), (15), (16), and (17) in terms
of feff and Rm such as in Eq. (12), we can obtain

P1/2
R

=
8
√
3

(2π)5/2
feff/MP

(RMP)2

{

2− 32π(feff/MP)
2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}{

32π(feff/MP)
2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}1/2

,

(23)

nR=1− 1

8π(feff/MP)2

{

2+
32π(feff/MP)

2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}{

2− 32π(feff/MP)
2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}−1

,

(24)

r=
1

π(feff/MP)2
32π(feff/MP)

2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]{

2− 32π(feff/MP)
2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}−1

, (25)

fNL=
5

48π(feff/MP)2

{

1+
16π(feff/MP)

2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}{

2− 32π(feff/MP)
2

16π(feff/MP)2+1
exp

[

−N

8π(feff/MP)2

]}−1

,

(26)

where

N≡
∫

Hdt (27)

is the number of e-folds. Using Eq. (10), we can write these in terms of g4 and R as

P1/2
R

=
8
√
3

(2π)7/2g4(RMP)3

{

2− 8

π(g4RMP)2+4
exp

[

−N
π

2
(g4RMP)

2
]

}{

8

π(g4RMP)2+4
exp

[

−N
π

2
(g4RMP)

2
]

}1/2

,

(28)

nR=1−π

2
(g4RMP)

2

{

2+
8

π(g4RMP)2+4
exp
[

−N
π

2
(g4RMP)

2
]

}{

2− 8

π(g4RMP)2+4
exp

[

−N
π

2
(g4RMP)

2
]

}−1

, (29)

1) In more general classes of inflation models [16], a sufficiently large dnR/dlogk can be obtained.
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r=
32π(g4RMP)

2

π(g4RMP)2+4
exp

[

−N
π

2
(g4RMP)

2
]

{

2− 8

π(g4RMP)2+4
exp

[

−N
π

2
(g4RMP)

2
]

}

−1

, (30)

fNL=
5

12
π(g4RMP)

2

{

1+
4

π(g4RMP)2+4
exp
[

−N
π

2
(g4RMP)

2
]

}{

2− 8

π(g4RMP)2+4
exp
[

−N
π

2
(g4RMP)

2
]

}

−1

. (31)
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Fig. 1. Plots of P
1/2
R

on the feff/MP-RMP plane (left pane) and on the g4-RMP plane (right pane) determined at

N=60. The shaded regions denote 10−5.P
1/2
R

.10−4, and the solid lines correspond to nR=0.96. It should be
noted, that while for a large region nR is saturated at nR≈0.967 [see Eq. (32)], only a limited region is allowed

for P
1/2
R

.

Figure 1 shows P1/2
R

and nR determined at N = 60
as functions of feff , R, and g4. We also compare the
analytic estimations with numerical results in Table 1.
As can be seen in Table 1, Eq. (13) is an appropriate
approximation.

It can be seen from Eqs. (24), (25), and (26), that nR,
r and fNL depend only on the effective decay constant,
feff . This leads to the following simple expressions in the
limit feff/MP→∞, which is suitable for sufficiently long
inflation1), as

nR≈1− 4

1+2N
, (32)

r≈ 16

1+2N
, (33)

fNL≈
5

3(1+2N)
. (34)

Thus, it can be seen that in this limit, determined at cer-
tain e-folds before the end of inflation, these have definite
values independent of feff or R. This is not unexpected,
as the huge feff value indicates that the total number of
e-folds we can obtain is very high, and the last 60 e-folds
are only a final small fraction of the whole expansion.
Therefore, in such a case, the physical properties become
completely insensitive to the details of the model, as the

inflationary dynamics is already following the late-time
attractor. Thus, we obtain nearly identical values of nR,
r, and fNL in the limit feff/MP→∞. This also indicates
that the shapes of PR are identical, while only its overall
amplitude depends on the inflationary energy scale2)

Figure 2 shows the r–nR plot. It should be noted,
that as shown in Eqs. (32) and (33), they are saturated
as feff/MP →∞, which corresponds to the upper right
end of the curve where nR ≈ 0.967 and r≈ 0.132. The
shaded region shows the current observational 1σ bound
nR =0.960+0.014

−0.013 which is derived from the Planck data
combined with the observations of type Ia supernovae
(SN) and baryon acoustic oscillations (BAO) [5], and the
points on the curve explicitly denote several constraints
on nR: the central value nR=0.960 (circle) and the lower
bound nlower

R
=0.947 (triangle). Our model is well below

the upper bound nupper
R

=0.974 and there is no solution
corresponding to this point (square). The corresponding
values of r for nR=0.960 and nR=0.947 are 0.0528 and
0.0230, respectively. The current upper limit, r < 0.07
(95% confidence level) [20], includes the wide predicted
range of r of our model. For the observationally allowed
range of nR, 0.01. r . 0.07, which is sufficiently large
to be detected within a few years by the forthcoming
cosmological experiments; therefore, it can serve as the

1) In the limit feff/MP→∞, i.e., g4MP≪1/(2πR), the gravitational force, which scales as (m2/M2
∗ )/r

2+n, where M∗ is the cutoff
mass scale in 4+n dimensions, becomes stronger than the gauge force between two Kaluza–Klein particles, g2/r2+n. In this param-
eter regime, the gravitational effects cannot be neglected and the effective potential can be modified: in this sense, the naive idea of
extranatural inflation is as unnatural as that of natural inflation. See Ref. [18] for a more detailed discussion.

2) See, e.g., Fig. 3 in Ref. [19].
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Table 1. Comparison of analytic estimations with
numerical results. In the top row, R is cho-
sen to transform the inflationary energy scale as
Λ=10−3MP, 10

−5/2MP, and 10−2MP. It should
be noted that r is rather close to the observational
sensitivity of the experiments planned in the near
future. As can be seen, the leading approximation
applying the n=1 part of Eq. (12) is reasonably
good.

P
1/2
R

nR r

log10(feff/MP)=0.00 analytic 4.96×10−5 0.952 0.032

log10(RMP)=2.04 numerical 4.84×10−5 0.955 0.033

log10(feff/MP)=0.50 analytic 1.25×10−5 0.967 0.117

log10(RMP)=2.04 numerical 1.33×10−5 0.967 0.112

log10(feff/MP)=1.00 analytic 3.94×10−5 0.967 0.131

log10(RMP)=1.54 numerical 4.25×10−5 0.967 0.130

log10(feff/MP)=1.50 analytic 1.25×10−5 0.967 0.131

log10(RMP)=1.54 numerical 1.33×10−5 0.967 0.112

log10(feff/MP)=2.00 analytic 3.94×10−5 0.967 0.132

log10(RMP)=1.04 numerical 4.26×10−5 0.967 0.134

No solution

feff = 1.22MPl

feff = 0.918MPl

0.94 0.95 0.96 0.97 0.98

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r

nR

Fig. 2. Prediction of the model on the r–nR plane.
Both r and nR are determined at 60 e-folds be-
fore the end of the inflation. The shaded re-
gion shows the current observational 1σ bound
determined from the Planck, SN, and BAO data:
nR = 0.960+0.014

−0.013 . Our model is well within the
observational upper bound and has a wide pa-
rameter space satisfying the lower bound.

first observational test. It should also be noted that
fNL is always significantly smaller than 1; thus, the non-
Gaussian signature is not observable at all.

After the end of the inflation, the inflaton starts os-
cillating at the global minimum. Although we assume
no direct coupling between the hidden and the visible
sectors, they can communicate gravitationally and the
energy stored in the inflaton field can be converted to
the light relativistic particles of the standard model to
reheat the universe. The reheating temperature TRH by

the gravitational interaction can be determined in terms
of the parameters of our model. With an interaction rate

Γgrav∼
m3

φ

M 2
P

, (35)

using

m2
φ∼V ′′∼ 1

f 2
effR

4
=

M 2
P

(feff/MP)2(RMP)4
, (36)

we can rewrite Eq. (35) as

Γgrav∼
MP

(feff/MP)3(RMP)6
. (37)

Considering that inflation ends when φ̇2
end=Vend, we can

find the Hubble parameter at the end of inflation, under
the approximation in Eq. (13), as

Hend=
3

(2π)3/2π
(RMP)

−1 [16π(feff/MP)
2+1]

−1/2
R−1

∼O(0.1)
R−1

(feff/MP)RMP

. (38)

Thus, for most of the parameter space Hend≫Γgrav and
the energy transfer occurs at a long time after the infla-
tion. It can be seen, that the reheating temperature TRH

can be determined as [21]:

TRH.O(0.1)
√

ΓgravMP∼O(0.1)
MP

(feff/MP)3/2(RMP)3
.

(39)
As an example, if we apply feff/MP=1 and RMP=100,
the maximum reheating temperature is determined as
TRH∼1012−13GeV. Then, the Universe follows the well-
known hot Big Bang evolution.

4 Conclusions

In this paper, we have presented a cosmological sce-
nario of the hidden sector SU(2) gauge symmetry in a
five-dimensional orbifold M4×S1/Z2. The model is mini-
mal in several aspects: a non-Abelian SU(2) gauge group
of rank 1 is chosen and the minimal orbifold is consid-
ered as the extra dimension. Owing to the non-Abelian
nature, the inflaton potential is fully radiatively gener-
ated, without introducing any ad hoc interactions or ad-
ditional matter fields. Interestingly, the fully radiatively
generated one-loop potential can support a sufficiently
long period of slow-roll inflation within the theoretically
desired parameter range where the theory is weakly cou-
pled, i.e., g4 ≪ 1, during the inflationary epoch. The
model predicts the observable cosmological quantities,
which are in good agreement with the latest cosmologi-
cal observations:

1.2×10−5. PR .4.9×10−5, (40)

0.952. nR .0.966, (41)
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0.03. r .0.13. (42)

The power spectrum of the curvature perturbation PR

and the corresponding spectral index nR are in good
agreement with the current observations, while fNL is
always significantly smaller than 1 and no detectable
non-Gaussianity is expected. Furthermore, the predicted

tensor-to-scalar ratio r is quite close to the sensitivity
of the cosmological experiments planned in near future,
which can be the first test of our minimal cosmological
model. Finally, the reheating temperature TRH is deter-
mined to be sufficiently high to successfully follow the
standard hot Big Bang evolution.
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