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Exact solutions for spherical gravitational collapse around a black hole:
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Abstract:

Spherical gravitational collapse towards a black hole with non-zero tangential pressure is studied. Exact

solutions corresponding to different equations of state are given. We find that when taking the tangential pressure

into account, the exact solutions have three qualitatively different outcomes. For positive tangential pressure, the

shell around a black hole may eventually collapse onto the black hole, or expand to infinity, or have a static but

unstable solution, depending on the combination of black hole mass, mass of the shell and the pressure parameter.

For vanishing or negative pressure, the shell will collapse onto the black hole. For all eventually collapsing solutions,

the shell will cross the event horizon, instead of accumulating outside theeventhorizon, even if clocked by a distant

stationary observer.
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1 Introduction

In 1939 Oppenheimer and Snyder [1] studied the
gravitational collapse of a homogeneous spherically sym-
metric and pressureless dust cloud, which initiated the
study of gravitational collapse. In the work of Oppen-
heimer and Snyder (1939) [1], they predicted the phe-
nomenon of the “frozen star”, in which a test particle
falling towards a black hole will be eventually frozen near
the black hole with an arbitrarily small distance from the
event horizon for an observer at infinity, though the par-
ticle will indeed cross the event horizon and reach the
singularity at the center within finite time in the comov-
ing coordinates. For a long time it has been believed
that their work gave a faithful description of gravita-
tional collapse. On the other hand, Liu and Zhang (2009)
[2] have found that in the Schwarzschild coordinatesthe
shell around a black hole will actually cross the event
horizon of the system when taking account of the mass
of the shell.

This problem is closely related to the problem of
gravitational collapse in general relativity. Following the
original work of Oppenheimer and Snyder, many stud-
ies have been done on the formation of black holes, e.g.
Refs. [3-12]. There are also some works concerning
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collapsing shells [13-19]. Analytical results on the col-
lapse of fluids with pressure are rare, and little is known
about the end state of collapse in these systems. For
example, Christodoulou [8] introduced a two-phase fluid
model with pressure to capture some of the features of
actual stellar gravitational collapse, but the problems of
the formation of black holes in this situation have not
been investigated. Numerical methods also have been
used to integrate Einstein’s equations. Ori and Piran
[20] numerically investigated the gravitational collapse of
a perfect fluid with a barotropic equation of state p=Fkp,
where p and p are the pressure and the proper energy
density of the fluid respectively, and showed that there
are solutions with a naked singularity, as well as black
hole solutions for every value of k in the range 0<k<0.4.
In Ori and Piran’s work, only self-similar solutions are
considered and there is no black hole in the initial data.

In Liu and Zhang’ work [2], they have studied an
ideal model of a spherically symmetric and constant den-
sity shell (with finite thickness) collapsing towards a pre-
existing black hole located at the center of spherical sym-
metry, but their model of the matter shell is free of pres-
sure. However, in many real astrophysical settings, the
matter shell collapsing towards a black hole has non-
vanishing pressure. In this paper, we will deal with more
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general cases, and study the problem of one fluid shell
with finite thickness and non-vanishing pressure collaps-
ing towards a black hole in both comoving coordinates
and Schwarzschild coordinates, and compare our results
with Liu and Zhang’s [2]. To make the problem tractable,
we only consider a model of fluid with only tangential
pressure, which may serve as a guide to future investiga-
tions of more realistic models. The analysis of Einstein’s
equations is considerably simplified in this case, and this
model has attracted some studies in the past, especially
on the issue of naked singularities [11, 21-23]. For ex-
ample, Barve, Singh and Witten [11] showed that if a
singularity forms at the center in the tangential pressure
model, the conditions for the singularity to be naked are
exactly the same as in the model of dust collapse, by us-
ing a series solution for the evolution of the area radius
in comoving coordinates. Our concerns are the possible
fates of a matter shell with tangential pressure around
a pre-existing black hole in both comoving coordinates
and Schwarzschild coordinates. We find that the exact
solutions have three qualitatively different outcomes. For
positive tangential pressure, the shell around a black hole
may eventually collapse onto the black hole, or expand to
infinity, or have a static but unstable solution. For van-
ishing or negative pressure, the shell will collapse onto
the black hole. For all eventually collapsing solutions,
the results are qualitatively similar to Liu and Zhang’s,
that is, the in-falling matter shell of finite thickness with
tangential pressure can indeed cross the event horizon of
the pre-existing black hole, even if clocked by a distant
stationary observer;thus the paradox of the frozen star
is actually completely resolved even when the tangen-
tial pressure is taken into account. We adopt G=c=1
throughout this paper.

2 The general solution

We consider a spherically symmetric spacetime with
a black hole surrounded by a fluid shell initially outside
the apparent horizon and having only tangential pres-
sure.

In the comoving coordinates, the spherically symmet-
ric metric is [24]

ds?=e’dt*—e*dr’—R?d2?, (1)

where o, w and R are functions of ¢ and r. In the comov-
ing coordinates, the energy-momentum tensor is [25]

Tl?:(paiplafp277p3)7 (2)

where p is the proper energy density, and p,(a=1, 2, 3)
represents the principal pressures. In the case we are
considering, p; =0 and p, = p3 = pr, that is the radial
pressure vanishes. Let r=a and r=0b be the inner radius
and outer radius of the fluid shell, respectively.Einstein’s

equations for this system are [9, 11]:

m'=0, (3)
m'=4npR°R/, (4)
12 p/ R/< pT)

w=—2 47 (1427, 5
PR ; (5)

’ R/pT

:4——
ot )

and )

m(t,r):5R(1+67“R'—67”R'2), (7

where we use dots and primes to indicate the partial
derivatives with respect to t and r, respectively. Here
m can be interpreted as an energy, which includes con-
tributions from the kinetic energy and the gravitational
potential energy. From Eq. (3) we have

m=m(r). (8)
We take
pr=Fkp (9)

as the equation of state of the shell. The weak energy con-
dition will hold if p>0 and —1<k<1. Integrating Egs.
(4) and (5) by virtue of this, we obtain

i R4k
e * ):C(T) R2 : (10)
Substituting this equation into Eq. (7), we then have
dR\* 2m
— | ==-1 Ak 11
(§) =27 -1econ (1)
where dr=e°/2dt is the proper time.
We rewrite Eq. (11) as
dRr\?
— V(R)=1 12
() +vim=1 (12)
where
2
V(R)=— <%+C(7)R4k) . (13)

Thus the dynamics can be thoughtof as a particle mov-
ing in the potential field V' (R) with mass M =2 and total
energy F=—1,

1 (dR\?

M| — V(R)=E. 14

v () v (1)
Note that the potential energy depends on the initial
velocity of the shell. The acceleration equation is

d*R_ m _
2 :—ﬁ+2kC(T)R4’“ h (15)
We define Schwarzschild-like coordinates (T, R) as[20,
2]

ds’=B(R,T)dT°—A(R,T)dR*~R*d2°,  (16)
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where T is the clock time at infinity.According to
Birkhoff’s theorem, in the region r>b, the metric is

d52:<1 2”;()>d:r2 ( QmT@>_1dR2—R2dQ2.

(17)
Similarly, in the region r <a, under the requirement that
the metric should be continuous, the metric takes the
following form,

ds*=f(T) (1-%@) dTZ—(l—Qm—]é“)> _1dR2—R2d92,

The characteristic equation of Eq. (16) is

)4k
The metric on the outer boundary can be obtained by
inserting r=»b in Eq. (17),

~(-siren '
)

2m(b)
B (1_ R(r,r=b)

From this condition we obtain a boundary condition for
T(r,r), which reads

dr

dr

r

:—R’R(E (20)

(dr?),-

OR

2
- — 2
57 ) (r,r=b)dr

(21)

(18)
where f(T') is a non-negative function.
Using the fact that ¢7"%=0, we get
T 7 4k
———=R'R(—=) . 19
oT/or (R) (19) |
om(b) \ '
T =b)= 11— 1
(7,r=0) / ( R(T,sz)) ( +

In view of Eq. (11), we have
T(r r:b):/ o 2mlb) \/ r=b) R* (r,r=b)dr

’ R(T’I“ b '
(23)

Integrating Eq. (20) with the boundary condition in Eq.
(23), we can obtain.

3 Special solutions

3.1 Analytical solutions in comoving coordi-
nates

Assume that at the time 7 =0 we have the scaling
condition

R(0,r)= (24)

We choose the unknown function in Eq. (1
1
C(r)=

This is equivalent to choosing the initial velocity as

1) to be

(25)

7'4k

dR

dr

For collapsing shells, we should choose the minus sign in

Eq. (26). Under such initial conditions, our special so-

lutions coincide with Liu and Zhang’s [2] for dust shells
as shown below.

Taking into account of those conditions, Eq. (11)

2m(r) .

(r,7=0)= (26)

(1-%) B ((Z—]j)2(7',7‘=b)> dr. (22)
| becomes .
(i—f) :2%—1—1—7”%}%4’“. (27)

This equation can also be written inthe form of Eq. (14).
The potential function is

(28)

Consider a shell collapsing towards a black hole with
the following mass distribution,

m(r)=mg—c(r’—a®) (29)

where mp is the mass of the pre-existing black hole;
the above results are reduced to that in Ref. [11] when
mp=0 and a=0

Integrating Eq. (27), we then obtain the evolution
equation of area radius R for a fixed particle (r = const.)

R dR T
/ ::t/ dr,
T >4k 0

+ (
where ”"+” and ”—" correspond to the outgoing and in-
going motion of fluid particles, respectively.

When k=0, the solution is

(30)
R

r

7

fr— (R3/27T3/2).

(31)

34/2m(r)

When k=1/4, there is an exact solution
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++/r(r—8m r—y/r(r—8m
:I:T:\/Qr(r—i- r(r—8m)) {F Arcsin ) , ( )
r++/1(r—8m)
r(r— 8m r(r—8m
—FE | Arcsin | = ( )
2 "r4/r(r—8m)
7 Avesi LR [r+y/r(r=8m) | r—y/r(r—8m)
— resin ,
27 m r++/7(r—8m)
1R r(r—8m r—y/r(r—8m
+FE | Arcsin | =— ( ) , ( ) }, (32)
2r m r++/r(r—8m)
where 1 (R=3m,, V(k=3mg)) 4
F(0,k)= / T — /
’ o V1—k2sin6 2r /4 Dust shell =0
is the incomplete elliptic integral of the first kind, and s 3 Shell with tangential
N pressure k=1/4
o =3m
E(H,k):/ V 1—k2sin*0d6 4r \ :1=2.50m0
0 Shell with tangential b=5.0m,
is the incomplete elliptic integral of the second kind. 50 pressure k=-1/4 Zi%lw
When k=—1/4, there is also an exact solution ‘ ‘ ‘ ‘ ‘ ‘
y 0 2 4 6 8 10
. 2mr—+/(2m—+r—R)r
:I:T—(2m+7")Arc51n< VI ) ) R/my
2m+r
Fig. 1. (color online) The potential functions of
+V2mr— \/(2m+7‘—R)R. (33) shells eventually collapsing onto a black hole with
L. . ) three different values of k. (R=3mo,V(R=3myo))
3.2 Qualitative features of the special solutions is the common initial position of the shells.
in comoving coordinates
So far we have obtained the analytical solutions for 0F N
shells with three different values of k. In this section, 7 ~
we give some qualitative descriptions of the motion of 2 4 .
shells in comoving coordinates for three typical scenarios, | (R=3m, V(R=3my)
which represent the three possible outcomes of collapsing 4 \
i Shell with tangential
Shells . § pressure k=1
The first possible scenario is that a shell eventually = 6 .
collapses onto the pre-existing black hole within finite [ a=2.5m,
proper (comoving) time, as illustrated in Fig.1 for the po- 8 ”i;z:’]’ )
tential function (in Eq. (28)) of a shell with positive, neg- [ 05 m
ative or vanishing tangential pressure. Note that eventu- 107
ally collapsing onto the pre-existing black hole is the only 0 ; 5 3 i S
possible ending for a shell with vanishing or negative tan- Rimy
gential pressure, since the potential function decreases . ) ) )
monotonically as the shell collapses, i.e., R decreases. In Fig. 2. (color online) The potential function of a

order for a shell with positive tangential pressure to end
this way, the maximal value of the potential function
should be less than the total energy F = —1, as shown
in Fig. 1, or the initial point lies on the left side of the
maximal point.
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The second possible scenario is that an initially col-
lapsing shell eventually escapes from the gravitational
field of the pre-existing black hole to infinity. This is
possible only for shells with positive tangential pressure.
In this case, the maximal value of the potential func-
tion must be larger than F=—1 and the initial position
should be on the right-hand side of the maximal point
of the potential function, as shown in Fig. 2, where any
motion on the potential function above E'=—1is not al-
lowed. The left-hand part of the maximal point of the
potential function cannot be reached by the shell in this
case. When the shell initially collapses from any point on
the right-hand side of the maximal point of the potential
function, the shell will be reflected at point A and then
expand eventually to infinity, due to the repulsive force
from the positive pressure.

1.0
B

1.2r

1.4k (R=9my» V(R=9m,) )
g vm - - ()
~ 6
~ m(r):gIr

1.8l r=9my

2.0¢

2.2k .

0 2 4 6 8 10
R/I’ng
Fig. 3. (color online) The static solution for a shell

around a black hole. (R =9mo,V(R =9my)) is
the initial point, and B is the static, but unstable
point.

The last possible scenario is between the above two,
i.e., the shell with positive tangential pressure neither
falls onto the black hole nor escapes from the black hole,
that is, the shell will be static at a particular point, which
is a static solution to Eq. (11). For such a solution, both
the velocity and acceleration must vanish, namely

dR

v 4

dr 0, (34)
and

dv

@_0. (35)

According to Egs. (11) and (15), these two conditions
can also be written as

Ak 1
RT= (4k+1)C(r)’ (36)
and
m(r)=2kC(r)R**+. (37)

These static solutions are all unstable, because such
a solution has a maximal potential energy at the static
point, that is

d*V._ [(4m b2

= —4k(4k+1)C(r)R* 2 <0, (38)

for £>0. Such a scenario is illustrated in Fig. 3 by choos-
ing a potential function with maximal value E=—1; the
shell starting from the initial point will eventually stop
at the static point B. However, the shell will leave this
static position under any small perturbation due to the
unstable nature of the static solution; the shell will either
fall onto the black hole or expand eventually to infinity.

3.3 Numerical results for collapsing shells

The motion of a shell around a black hole in comov-
ing coordinates is described by Eqs. (31), (32) and (33).
In this section, we will only consider the scenario wherea
shell will eventually collapse onto the pre-existing black
hole in the comoving coordinates, i.e., the first scenario
discussed in Section 3.2. Our goal is to find out exactly
how the shell evolves in Schwarzschild coordinates, i.e.,
clocked by a distant stationary observer, by integrating
the characteristic equation (20) with boundary condition
(23).

In Fig. 4, we show the evolution curves of collaps-
ing shells with respect to proper time and Schwarzschild
time, i.e., clocked by the comoving observer and the dis-
tant stationary observer, respectively. The parameters
in this figure are thus the same as the ones in Fig. 1
and are chosen in such a way that the shell can falls onto
the black hole in comoving coordinates and shell-crossing
singularities will not appear.

As shown in the Fig. 4(a), compared with the case
of a dust shell, the shell with positive tangential pres-
sure collapses more slowly due to the resistance from
pressure, and the shell with negative tangential pressure
collapses faster due to the attraction from negative pres-
sure. According to the Fig. 4(b), we can see that every
part of the shell can cross the event horizon with finite
Schwarzschild time T except the outermost boundary,
which approaches the event horizon with an arbitrar-
ily small distance. It can be seen that the qualitative
features of the evolution curves are similar for all three
cases.

4 Summary

With the analysis presented above, we conclude that
the gravitational collapse of shells with positive tangen-
tial pressure is different from that of shells with van-
ishing or negative pressure. For the latter two cases, a
shell must eventually collapse onto the pre-existing black
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Fig. 4.

3.0

(b)

Shell with tangential
2.8¢
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2.0
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Schwarzschild time 7/m,

0

(color online) (a) The evolution curves for a dust shell and a shell with tangential pressure in the comoving

coordinates. (b) The evolution curves for a dust shell and a shell with tangential pressure in the Schwarzschild
coordinates. The upper dashed lines indicate the final event horizons, and the lower dashed lines indicate the initial
event horizons. Here we choose mp=mgo, a=2.5mo, b=5.0mo and C:O.OOImO_Q.

hole.However, for the former case, a shell may eventually
collapse onto or away from the black hole, depending on
the initial conditions of the shell and the parameters of
the system. For all collapsing solutions in the comov-
ing coordinates, even with positive or negative tangen-
tial pressure, the qualitative features of the motion of
the shell are similar to a dust shell in both coordinates.
Therefore, the conclusions in Ref. [2] are still valid in the
presence of tangential pressure for shells with collapsing
solutions, as follows. A shell can indeed cross the event
horizon of the black hole from the point of view of a dis-
tant stationary observer if the shell does so in the comov-
ing coordinates, even when taking tangential pressure
into account. There will be only an infinitesimal amount
of matter remaining outside the event horizon eventually,
which apparently contradicts the picture obtained when
the mass of in-falling matter is not considered, i.e., the
test particle scenario commonly used to describe matter
falling onto a black hole. It is easy to see that, in a real
astrophysical setting, the whole shell will cross the event
horizon completely, since we can mimic the outer part
of the shell as all matter between the observer and the
observed in-falling matter shell [2]. Such a solution is dif-
ferent from the so-called frozen star [26], in which case
all in-falling matter is supposed to accumulate outside
the event horizon in the reference system of a distant
stationary observer. Therefore, in real astrophysical set-

tings, contrary to the well-known phenomenon of frozen
stars [26], black holes can indeed be formed and all in-
falling matter (even with tangential pressure) can cross
the event horizon of the pre-existing black hole within
finite time, according to the clock of a distant station-
ary observer. In this sense we can observe the matter
falling into a black hole and the frozen star paradox is
solved. This implies that only gravitational wave radia-
tion can be produced during the merging process of two
black holes formed by matter collapse, which is very dif-
ferent from the case of two merging frozen stars formed
by matter collapse, in which case electromagnetic waves
may also be generated besides gravitational waves due
to the accumulated matter outside their event horizons.

It is also worth noting that although the in-falling
matter can indeed reach the singularity within finite time
of the comoving observer, the in-falling matter cannot
approach the singularity at the center if clocked by a
distant stationary observer; this conclusion is the same
as that in Ref. [2], because the time of the comoving ob-
server cannot be mapped to that of the distant stationary
observer after the event horizon crossing. Since the uni-
verse has a finite age, the clocks of all observers outside
black holes must be finite and can be synchronized in
principle.It thus can be concluded that no matter can
reach the singularity point at the center of any astro-
physical black hole formed through matter collapse after
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the birth of the universe, within the finite clock time of
any observer outside any black hole. For example, if an
astronaut leaves the earth to travel to a black hole and
eventually falls into the black hole, the astronaut will
end up at the central singularity point within his finite
time, as shown in Fig. 4(a); however, the final crash
never happens to us on the earth and he/she will ap-
proach indefinitely to a finite location between the event
horizon and the central singularity point, as shown in
Fig. 4(b). Since the only known mechanism of forming
macroscopic astrophysical black holes in the universe is
through matter collapse, we can further conclude that
there is nothing at the central singularity point within
any such black hole, for all observers outside any such
black hole. And finally, since the only black holes known
so far are macroscopic astrophysical black holes, it is in-
evitable that astrophysical singularities do not exist in
this universe, as far as any observer outside any black
hole is concerned. A black hole singularity is thus sim-
ply a property of a black hole for a comoving observer

who has already vanished into a black hole, but not an
astrophysical reality for observers outside black holes[27,
28].

Though our solutions are for idealized cases and the
radial pressure is also omitted in our setting, we consider
that our conclusions are generally true for all practical
situations of matter falling towards black holes. The fun-
damental reason is that the event horizon expands when
the mass of an infalling shell is taken into account for
all collapsing solutions. However, the mass of in-falling
matter has been ignored in many previous studies that
considered the infalling mass as a test particle, which
cannot influence the metric of the whole gravitating sys-
tem [2].
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