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Abstract: We present a detailed study on the properties of the free energy density at high temperature by applying

the principle of maximum conformality (PMC) scale-setting method within effective field theory. The PMC utilizes

the renormalization group equation recursively to identify the occurrence and pattern of the non-conformal {βi}-

terms, and determines the optimal renormalization scale at each order. Our analysis shows that a more accurate free

energy density up to g5
s -order level without renormalization scale dependence can be achieved by applying the PMC.

We also observe that by using a smaller factorization scale around the effective parameter mE , the PMC prediction

is consistent with the lattice QCD prediction derived at low temperature.
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1 Introduction

At extremely high temperatures, hadronic matter is
assumed to undergo a phase transition to quark-gluon
plasma (QGP). The QGP might come from the early
universe up to a few milliseconds after the Big Bang or
from heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC), the Large Hadron Collider (LHC), etc.
This system therefore behaves more like a collection of
free quarks and gluons than a collection of their bound
states [1].
The static equilibrium properties of the QGP at tem-

perature T are governed by the free energy density [2]

F=−
T

V
lnZQCD , (1)

where V is the space volume and the partition function
ZQCD is a functional integral over quark and gluon fields
on a 4-dimensional Euclidean space-time, with the Eu-
clidean time taking its values on a circle with circumfer-
ence 1/T . In the limit where the quarks are massless,
the free energy density is a function of T and the strong
coupling constant.
During the past decades, the free energy density, or

equivalently the negative pressure, of the QGP has been
calculated by using lattice gauge theory [3–23] or pertur-
bative QCD (pQCD) theory [2, 24–31]. In the present
paper, we shall focus on the situation where the QGP

has a high temperature T (T is considered as a measure
of the average energy of the constituents), indicating the
quarks and gluons are of high energy and the strong cou-
plings among them are small due to asymptotic freedom.
Within this temperature region, pQCD is a feasible tool
to study the free energy density. During the calcula-
tion, we shall resum specific diagrams such as the “ring
diagrams” [2, 29], and it is helpful to expand the pertur-
bative series by the coupling constants gs rather than αs.
The free energy density at high temperature has been cal-
culated up to O(g2

s ) [24], O(g
3
s ) [25], O(g

4
s ln(1/gs)) [26],

O(g4
s ) [27, 28], O(g

5
s ) [2, 29, 30], and part of O(g

6
s ) [31],

respectively. The O(g0
s ) term is the free energy density

of the ideal gas. The O(g2
s ) and higher-order terms con-

tain the corrections from the interactions among the ba-
sic particles, the screening effects from the plasma, etc.
There are new nonperturbative effects entangled with the
infrared divergence which emerge at the O(g6

s )-order [32–
34], and at present, only the specific terms of the form
O(g6

s lngs) have been achieved.
For a high-order pQCD prediction, one has to choose

a renormalization scheme and a renormalization scale
µr to finish the renormalization. The scale µr is usually
taken as the typical momentum flow of the process or
that to eliminate the large logs such as to make the
pQCD series relatively steady over the scale changes.
For the present case, one usually sets µr = 2πT , which
corresponds to the energy of the first non-vanishing
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Matsubara mode [35]. However, such a simple choice of
“guessed” scale leads to mis-matching of the perturbative
coefficients to the strong coupling constant, resulting in
the well-known scheme-and-scale ambiguities which per-
sist at any fixed order [36–41]. By using the “guessed”
scale, there are some other defects [42, 43], especially:
I) the predictions for a guessed scale are incorrect for
quantum electrodynamics, whose renormalization scale
can be unambiguously set by the Gell-Mann–Low pro-
cedure [44]; II) the perturbative series is factorially di-
vergent at large order – the renormalon problem [45, 46];
III) it is often argued that such scale uncertainties can be
suppressed by including enough high-order terms, which
however shall be diluted by the divergent renormalon
terms; IV) if a poor pQCD convergence is observed for
an observable, one cannot decide whether it is an in-
trinsic property of the pQCD series or is caused by an
improper choice of scale.
Many attempts have been made to improve the pre-

diction of the free energy density [47–75]. However, in
those studies, the renormalization scale uncertainty is
still quite large. In the paper, we will apply the princi-
ple of maximum conformality (PMC) [76–79] to the free
energy density up to O(g5

s ) with the goal of eliminat-
ing the renormalization scale ambiguity and achieving an
accurate pQCD prediction which is independent of the-
oretical conventions. Because the running behavior of
the coupling constant is controlled by the renormaliza-
tion group equation (RGE) or the β-function, the PMC
suggests using the knowledge of the {βi}-terms from the
known pQCD series to determine the optimal scale of
a particular process. A recent review on this point can
be found in Ref. [80]. If one fixes the renormalization
scale of the pQCD series using the PMC, all the non-
conformal {βi}-terms in the perturbative series shall be
resummed into the running coupling. One thus obtains
a unique, scale-fixed, and scheme-independent prediction
at any fixed order. Many PMC applications have been
done in the literature, cf. the review in Ref. [81]. All of
those examples show that due to the rapid convergence
of conformal pQCD series, the residual uncertainties are
highly suppressed, even for low-order predictions.
There are several typical momentum flows for the

free energy density up to O(g6
s ), e.g. T , gsT , g

2
sT [82–

84]. The QCD hard thermal loop effective field the-
ory (EFT) [2, 30] provides a systematic way to unravel
the contributions under different energy scales. The
QCD EFT is a three-dimensional one in which all the
quarks and non-static bosons have been integrated out of
the theory such that it reduces to purely static bosonic
modes [2, 30, 82–84]. The EFT factorizes the free en-
ergy density of the hot QCD into the perturbative coef-
ficients and the non-perturbative parts via proper match-
ing. The PMC can be applied separately to set the renor-

malization scale of the free energy density within differ-
ent scale regions.
The rest of the paper is organized as follows. In Sec-

tion 2, we present the calculation technique for achieving
the PMC prediction on the free energy density. Numer-
ical results and discussions are presented in Section 3.
Section 4 gives a summary.

2 Calculation technology

Using the EFT, the free energy density can be de-
composed into various parts which are characterized by
typical scales as T , gsT and g2

sT , and they are labeled
as FE, FM, and FG, respectively. Here the hard part FE

can be treated as a power series in αs=g
2
s /4π, the softer

part FM is a power series in gs which begins at the g
3
s

order, and the softest part FG is a power series in gs

which begins at the g6
s order. At present, the complete

g6
s -order terms are not known, so we shall concentrate
our attention on the free energy density up to g5

s order.
Up to g5

s order, the free energy density F can be for-
mulated as [2, 30],

F=FE(ΛE)+FM(ΛE), (2)

where ΛE is the factorization scale. The hard part
FE(ΛE) can be expressed as

FE(ΛE)=Fideal+
8π2

3
T 4F̃E(ΛE), (3)

where Fideal stands for the contribution of the ideal
quark-gluon gas

Fideal=−
8π2

45
T 4

(
1+
21

32
nf

)
, (4)

and F̃E(ΛE) represents the “canonical” QCD part,

F̃E(ΛE)=F
′
E−

[
144

(
1+
1

6
nf

)
ln

ΛE

2πT

]
a2

s (µr), (5)

where µr is the (arbitrary) renormalization scale. The re-
maining part F ′

E is perturbatively calculable, which can
be expressed as

F ′
E=r

E
1,0as(µr)+

(
rE
2,0+r

E
2,1β0

)
a2

s (µr), (6)

where as=αs/4π, β0=11−2/3nf with nf being the number
of active flavors which emerge in the αs-renormalization.
As required by the PMC, we have transformed those nf-
terms into the {βi}-series. The conformal coefficients
rE

i,j(=0) and the nonconformal ones r
E
i,j(6=0) under the MS-

scheme read

rE
1,0 = 1+

5

12
nf , (7)

rE
2,0 = −214.54−29.15

(
1+
5

12
nf

)
, (8)
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rE
2,1 =

(
−1.59+2ln

µr

2πT

)(
1+
5

12
nf

)
. (9)

Here the nf -terms in those coefficients ri,j are free quark
numbers in QGP, which are irrelevant to the running of
the coupling constant and should be kept as conformal
coefficients when applying the PMC [76–79].
After applying the PMC, the pQCD series of F ′

E,
e.g. Eq. (6), can be improved as the following scheme-
independent conformal series,

F ′
E=r

E
1,0as(Q

e
1)+r

E
2,0a

2
s (Q

e
1), (10)

where ln(Qe
1)

2/µ2
r = −r

E
2,1/r

E
1,0. We have set the NLO

PMC scale Qe
2=Q

e
1 to ensure the scheme independence.

Its exact value can be determined by using the NNLO
terms, which are not available at present.
The softer part FM(ΛE) can be expressed by using

the EFT parameters, m2
E and g

2
E, as [2, 30]

FM(ΛE) = −
2T

3π
m3

E

[
1−

(
0.256+

9

2
ln
ΛE

mE

)
g2
E

2πmE

−27.6

(
g2
E

2πmE

)2]
. (11)

In deriving FM(ΛE), the RGE-involved fermion-loop
contributions have been incorporated into the EFT pa-
rameters m2

E, g
2
E, etc. [2, 30, 82–84], so it is better to ap-

ply the PMC directly to those parameters to get more ac-
curate predictions of those EFT parameters and to avoid
the double counting problem1).
To be consistent with the known g5

s -order prediction
for the free energy density, we need to knowm2

E up to the
next-to-leading order (NLO) level and g2

E to the leading-
order (LO) level. The m2

E up to NLO level [2, 30] can be
written as

m2
E=16π

2T 2
[
rm
1,0as(µr)+

(
rm
2,0+r

m
2,1β0

)
a2

s (µr)
]
, (12)

where rm
i,j under the MS-scheme read

rm
1,0 = 1+

1

6
nf , (13)

rm
2,0 = 8−22.50

(
1+
1

6
nf

)
, (14)

rm
2,1 =

(
1.54+2ln

µr

2πT

)(
1+
1

6
nf

)
. (15)

Here the nf -terms in those coefficients ri,j are again free
quark numbers in QGP. After applying the PMC scale-
setting, we obtain

m2
E=16π

2T 2
[
rm
1,0as(Q

m
1 )+r

m
2,0a

2
s (Q

m
1 )

]
, (16)

where ln(Qm
1 )

2/µ2
r=−r

m
2,1/r

m
1,0.

By using the LO g2
E alone, we cannot determine its

renormalization scale, and to ensure the scheme indepen-

dence of FM(ΛE) at the g
5
s -order level, we directly set its

value as Qg

1=Q
m
1 .

By using the known NLO-terms for g2
E, we can de-

termine its optimal scale by applying the PMC in the
same way. For example, by using the computed g6

s -order
terms from Ref. [31], we obtain ln(Qg

1)
2/µ2

r=−r
g

2,1/r
g

1,0

with the coefficients

rg

1,0 = 1, (17)

rg

2,0 = −29.5, (18)

rg

2,1 = 2.54+2ln
µr

2πT
(19)

and

g2
E=16π

2T
[
rg

1,0as(Q
g

1)+r
g

2,0a
2
s (Q

g

1)
]
. (20)

As a summary, our final prediction for the free energy
density F with the factorization scale ΛE=2πT is

F = Fideal+
8π2

3
T 4

[
rE
1,0as(Q1)+r

E
2,0a

2
s (Q1)

]

−
2T

3π
m3

E

[
1−

(
0.256+

9

2
ln
2πT

mE

)
g2
E

2πmE

−27.6

(
g2
E

2πmE

)2]
. (21)

If choosing the factorization scale ΛE=mE, we obtain

F = Fideal+
8π2

3
T 4

[
rE
1,0as(Q1)+r

E
2,0a

2
s (Q1)

]

−
8π2

3
T 4

[
144

(
1+
1

6
nf

)
ln

mE

2πT

]
a2

s (Q1)

−
2T

3π
m3

E

[
1−0.256

g2
E

2πmE

−27.6

(
g2
E

2πmE

)2]
. (22)

3 Numerical results and discussion

To do the numerical calculation, we adopt the value
αs(1.5 GeV,nf=3)=0.336

+0.012
−0.008 [85] as a reference point

to determine the QCD asymptotic scale ΛMS. By us-
ing the two-loop αs-running formulae, we obtain Λ

nf=3

MS
=

0.343+0.018
−0.012 GeV. If not specially stated, we shall adopt

ΛE=2πT as the default value for the factorization scale.
In the following, we shall set the temperature T = 10
GeV as an example to show the basic properties of the
free energy density.
Firstly, we discuss the properties of the hard part

(FE) of the free energy density, which is characterized
by the scale around T . We present the renormalization
scale dependence of the ratio FE/Fideal before and after
applying the PMC in Fig. 1. We present the numeri-
cal results for the ratio FE/Fideal under several typical

1) The PMC resums the {βi}-terms into the running coupling and the pQCD series of the free energy density also includes par-
tial resummation effects [27–29]. A straightforward application of PMC to the pQCD series might contain a mixing of inequivalent
resummations, leading to a double counting problem.
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choices of renormalization scale, µr=πT , 2πT and 4πT ,
in Table 1. After applying the PMC, FE is independent of
the choice of µr, while the NNLO prediction under con-
ventional scale-setting still shows a strong scale depen-
dence. For example, Table 1 shows that FE/Fideal varies
by [−2%,+4%] for µr∈[πT,4πT ]. It is interesting to find
that the typical momentum flow of FE should be '4πT ,
at which the PMC and conventional scale-settings give
almost the same prediction, which is about twice as high
as the usually considered 2πT . This condition is similar
to the observation that the preferable choice of the renor-
malization scale for gg→H or H→gg is mH/4 [86] and
the preferable one for H→γγ is 2mH [87], different from
the usually considered mH. The typical momentum flow
under conventional scale-setting is usually approximated
by eliminating the large log-terms of the perturbative se-
ries, while the PMC scale-setting provides a reliable way
to set the exact value for the typical momentum flow for
high-energy processes.

40 60 80 100 120 140

µr(GeV)

0.96

0.98

1

1.02

1.04

1.06

1.08

F
E
/F

id
ea
l

Conv.
PMC

Fig. 1. (color online) The ratio FE/Fideal versus
the renormalization scale (µr) under conventional
(Conv.) and PMC scale-settings. T=10 GeV.

Table 1. The ratio FE/Fideal under conventional
(Conv.) and PMC scale-settings. Three typical
renormalization scales, µr = πT , 2πT and 4πT ,
are adopted. T=10 GeV.

FE/Fideal µr LO NLO NNLO total

πT 1 −0.11 0.17 1.06

Conv. 2πT 1 −0.10 0.12 1.02

4πT 1 −0.09 0.09 1.00

PMC [πT,4πT ] 1 −0.09 0.08 0.99

Secondly, we consider the properties of the softer part
(FM) of the free energy density, which is characterized by
a softer scale around gsT .

To show how the scale uncertainty of the EFT pa-
rameters such asm2

E change, we vary the renormalization
scale from gsT (∼mE) to approximately 2πT . We present
the scale dependence of m2

E before and after applying
the PMC in Fig. 2. It shows that the PMC prediction
for m2

E is independent of the choice of µr, whose value
under conventional scale-setting shows a non-negligible
scale dependence ∗. We present the scale dependence of
m2

E by using three typical scales πT/2, πT and 2πT in
Table 2. Under conventional scale-setting, m2

E varies by
[−7%,+2%] when µr∈[πT/2,2πT ].

15 20 25 30 35 40 45 50 55 60 65

µr(GeV)

180

185

190

195

200

205

m
2 E

Conv.
PMC

Fig. 2. (color online) The EFT parameter m2
E ver-

sus the renormalization scale (µr) under conven-
tional and PMC scale-settings. T=10 GeV.

Table 2. The results of m2
E under conventional

and PMC scale-settings. Three typical scales,
µr = πT/2, πT , and 2πT , are adopted. T = 10
GeV.

m2
E µr LO NLO total

πT/2 271.77 −88.09 183.68

Conv. πT 235.22 −36.85 198.37

2πT 207.66 −6.00 201.66

PMC [πT/2,2πT ] 238.78 −41.32 197.46

As mentioned in Section 2, for a O(g5
s )-order predic-

tion on the free energy density, we only need a LO g2
E.

However, by using the LO g2
E alone, we cannot deter-

mine its renormalization scale. To achieve a more accu-
rate prediction for g2

E itself, we adopt the known NLO-
terms [31] to set the scale for m2

E. The scale dependence
of g2

E up to NLO level before and after applying the PMC
scale-setting is presented in Fig. 3, which shows the scale
dependence can be eliminated by applying the PMC. Nu-
merical results for g2

E under three typical scales πT/4,
πT/2 and πT are presented in Table 3. It shows that g2

E

∗A similar discussion on the EFT parameter has been done by using the prototype of PMC, i.e. the Brodsky-Lepage-Mackenzie
(BLM) scale-setting [41], and our corresponding PMC scales are consistent with the BLM predictions [2, 30].
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under conventional scale-setting varies by [−26%,+10%]
for µr∈[πT/4,πT ].

10 15 20 25 30

µr (GeV )

9.5

10

10.5

11

11.5

12

12.5

13

g
2 E

Conv.

PM C

Fig. 3. (color online) The EFT parameter g2
E ver-

sus the renormalization scale (µr) under conven-
tional and PMC scale-settings. T=10 GeV.

Table 3. The results of g2
E under conventional and

PMC scale-settings. Three typical scales, µr =
πT/4, πT/2, and πT , are adopted. T=10 GeV.

g2E µr LO NLO total

πT/4 21.53 −12.94 8.59

Conv. πT/2 18.12 −6.57 11.55

πT 15.68 −2.98 12.70

PMC [πT/4,πT ] 17.65 −5.82 11.83

Table 4. The ratio FM/Fideal under conventional
and PMC scale-settings. Four typical scales, µr=
πT/4, πT/2, πT and 2πT , are adopted. The LO
g2
E with Qg

1 = 0.93πT (PMC-I) or Qg
1 = 0.56πT

(PMC-II) is adopted for a O(g5
s )-order prediction.

T=10 GeV.

FM/Fideal µr LO NLO NNLO total

πT/4 0.07 −0.15 −0.16 −0.24

πT/2 0.10 −0.15 −0.13 −0.18

Conv. πT 0.12 −0.14 −0.10 −0.12

2πT 0.12 −0.13 −0.08 −0.09

PMC-I [1/4πT,2πT ] 0.11 −0.14 −0.10 −0.13

PMC-II [1/4πT,2πT ] 0.11 −0.16 −0.12 −0.17

As a summary, by substituting the EFT parameters
m2

E and g2
E into Eq. (11), we obtain the PMC predic-

tions for the ratio FM/Fideal, which are presented in Ta-
ble 4. Summing the FE and FM together, by taking
Qg

1≡Q
m
1 =0.93πT to calculate the LO g2

E, we obtain

F

Fideal

∣∣∣∣
T=10 GeV

=0.866+0.003
−0.002. (23)

where the uncertainty is for ∆αs(1.5 GeV)=
(
+0.012
−0.008

)
. If

we take Qm
1 =0.56πT , determined from the known NLO

g2
E-term, to calculate the LO g2

E, we obtain

F

Fideal

∣∣∣∣
T=10 GeV

=0.827+0.004
−0.003. (24)

4 Summary

In the paper, we have studied the properties of the
free energy density up to g5

s order at high temperature T
by applying the PMC within the EFT framework. The
PMC provides a systematic method to set the renormal-
ization scale of the high-energy process. Its predictions
are free of renormalization scale dependence even for low-
order predictions. As shown by Tables 1 and 4, our pre-
dictions for the free energy density up to g5

s order confirm
this observation.

10
-1

10
0

10
1

10
2

10
3

T (GeV)

0

0.2

0.4

0.6

0.8

1

F
(T

)

F
id

e
a

l

PMC prediction up to g5
s -order

lattice data

Stefan-Boltzmann limit

Fig. 4. (color online) The PMC prediction of the
free energy density up to g5

s order versus the
temperature T with free quark numbers in QGP
nf =3. The upper edge of the band corresponds
to ΛE=mE and the lower edge of the band cor-
responds to ΛE = 2πT . The lattice data with
pion mass mπ = 160 GeV [13] and the Stefan-
Boltzmann limit of the ideal gas are presented as
a comparison.

It is noted that the determination of the factorization
scale is a completely separate issue from the renormal-
ization scale setting problem, since it is presented even
for a conformal theory with β = 0. With the help of
Eqs. (21) and (22), we present a prediction for the fac-
torization scale dependence on the ratio F/Fideal up to
g5
s order as a function of T in Fig. 4. The factoriza-
tion scale uncertainty is discussed by taking the range
gsT∼mE<ΛE<2πT [61]. The dashed line indicates the
Stefan-Boltzmann limit of the ideal gas. The lattice data
for the case nf =2+1 [13] is adopted for a comparison.
The upper edge of the band corresponds to ΛE=mE and
the lower edge of the band corresponds to ΛE=2πT . Fig-
ure 4 shows that when ΛE=mE, the free energy density
agrees with the lattice data even for low temperature T
around 1 GeV, indicating a smaller factorization scale is
preferable.
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