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Abstract: We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum

version of some classical fields associated with them in the recent literature. We refer to the q-Schrödinger, q-Klein-

Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118,

61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in

the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the

above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle.

These q-fields are meaningful at very high energies (TeV scale) for q=1.15, high energies (GeV scale) for q=1.001,

and low energies (MeV scale) for q=1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE

experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual

linear fields’ logarithms.
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1 Introduction

Classical field theories (CFT) associated with Tsallis’
q-scenarios have received much attention recently [1–6].
Associated q-quantum field theories (q-QFTs) have also
been discussed [2, 3].

These CFTs cannot be directly quantified because of
non-linearity, which means the superposition principle
is not applicable, and it is then impossible to introduce
creation/annihilation operators for the q-fields. We will
here remedy such a formidable quantification obstacle by
recourse to an indirect approach.

In this paper we both extend to the quantum realm
and generalize several aspects of the above mentioned
works. We construct the CFTs corresponding to the q-
Schrödinger, q-Klein-Gordon, and q-Dirac equations in-
troduced in Refs. [1–4]. We do the same for the q-Proca
and q-Yang-Mills (Abelian) defined in Ref. [5]. Also, and
for the first time ever, we deal with the equation and q-
QFT corresponding to a non-Abelian q-Yang-Mills field.
It has been shown in Refs. [7, 8] that q-fields emerge at
1) very high energies (TeV) for q = 1.15, 2) high ener-
gies (GeV) for q=1.001, and 3) low energies (MeV) for
q=1.000001. The ALICE experiment at the LHC shows
that Tsallis q-effects manifest themselves [9] at TeV en-

ergies.
We will see that all q-QFTs employed here transform

into the well known associated QFTs for q→1, entailing
going down from extremely high energies to lower ones.

Our new quantum field theory corresponds to non-
linear equations. Thus, gauge and Lorentz invariance are
broken. These invariances reappear in the limit q→ 1.
A nice property of our new equation ∂µA

µ = 0, is that
as well as being valid for Abelian Yang-Mills and Proca
fields, it is also valid for q-Abelian Yang-Mills and q-
Proca fields.

M.A. Rego-Monteiro et al. [6] have tackled in recent
years the possible need for two coupled fields, instead of
only one, to properly handle classical non-linear equa-
tions. The quantification of these two coupled fields is
discussed in Refs. [2] and [3].

Motivations for non-linear quantum evolution equa-
tions can be divided into two types: (A) basic equations
governing phenomena at the frontiers of quantum me-
chanics, mainly at the boundary between quantum and
gravitational physics (see Refs. [10, 11] and references
therein); and (B) regarding non-linear Schrödinger-like
equations (NLSE) as effective, single particle mean field
descriptions of involved quantum many-body systems. A
paradigmatic illustration is that of Ref. [12].
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2 Non-linear q-Schrödinger field

We proceed now to effect a transformation that re-
quires some previous considerations. Consider two dif-
ferent formalisms A and B that can be connected by an
appropriate mathematical transformation. Assume that
we know how to solve the relevant equations for A. A
legitimate question is why to bother at all with formal-
ism B, that could be mathematically more involved than
A. The answer is as follows. Even though A and B are
mathematically connected, it is possible that, in some
scenarios, the variables in B provide a more appropriate
description of some natural phenomenon. There is some
experimental evidence that such is the case with Tsallis-
inspired non-linear wave equations (the ALICE experi-
ment at CERN). Empirically, they find q-exponentials,
that are solutions to the q-equations of motion, suggest-
ing that Nature uses the non-standard scenario. Another
example refers to the Schrödinger equation (SE) with
variable mass, that has multiple applications. Here there
exists a transformation connecting the SE with constant
mass with the SE with variable mass. Why bother with
such a transformation? Answer: in many problems in
solid state physics, nuclear physics, etc., the relevant
physics is described by the SE with variable mass. The
transformation that we are advancing here reads:

ψq(~x,t)=[1+(1−q)lnψ(~x,t)]
1

1−q

+ , (1)

where ψ is the usual quantum Schrödinger field opera-
tor, and the subscript + indicates the so-called Tsallis
cut-off.

At a quantum level, which is the case that we are
interested in here, the cut-off has no relevance since ψ
is an operator and the information is contained in the
pertinent operators of creation and annihilation. At this
level we have:

ψq = [I+(1−q)lnψ]
1

1−q

+ =e
1

1−q
ln{[I+(1−q)lnψ]}

=
∞
∑

n=0

an
φn

n!
=I+φ+

(q−1)
2

φ2+... , (2)

where ψ=I+φ. There are no cuts or branch points then.
No information is lost if one considers the whole series.

Consider now the classical instance in which ψ is just
a plane wave

ψ(~x,t)=e
i
~

(~p·~x−Et). (3)

Replacing this into Eq. (1), we find

ψq(~x,t)=[1+(1−q) i
~
(~p·~x−Et)]

1
1−q

+ . (4)

This is just the q-wave that Nobre et al. [1] used to
obtain the q-Schrödinger, q-Klein-Gordon, and q-Dirac
equations. Thus, the q-wave is a particular case of the
quantum field defined by Eq. (1). This allows for imme-
diate generalization to the quantum realm of the classical

treatment of fields given in Ref. [1]. Accordingly, we can
obtain quantum q-fields starting from the usual q = 1
quantum fields. We can also express ψ in terms of ψq as

ψ=e
ψ

(1−q)
q −1

1−q (5)

The Schrödinger field action S is well known as

S=
∫

(

i~ψ†∂tψ−
~

2

2m
∇ψ†∇ψ

)

dtd3x. (6)

From it one deduces the equation of motion

i~∂tψ+
~

2

2m
4ψ=0, (7)

whose solution is

ψ(~x,t)=
1

(2π~)
3
2

∫

a(~p)e
i
~

(~p·~x−Et)d3p. (8)

The action corresponding to the field ψq is

Sq =

∫

e
ψ

(1−q)
q −1

1−q e
ψ
†(1−q)
q −1

1−q ψ−q
q

×
(

i~∂tψ−
~

2

2m
ψ†−q
q ∇ψ†

q∇ψq
)

dtd3x, (9)

constructed keeping in mind that the field ψq satisfies

i~∂tψq+
~

2

2m
[4ψq+(∇ψq)2(ψ−q

q −qψ−1
q )]=0. (10)

Note that the q-exponential wave (6) is, by construction,
a solution to Eq. (10). For q→1 this last equation be-
comes the usual Schrödinger equation. The same is true
for the action given by Eq. (9). One is then in a position
to assert that such an action is the q-generalization of
the usual one and that Eq. (10) is the q-generalization
of the ordinary Schrödinger equation.

Additionally, since in Eq. (1) the field ψ is a quan-
tum field, this implies that ψq is of such a nature too.
Of course, for q→ 1, ψq becomes ψ. Physically, if the
energy goes down, the q-field transforms itself into the
usual one (remember our assertions above on the connec-
tion between q-fields and the energy scale based on the
work at ALICE at the LHC [7, 8]). Given that we speak
here of a non-linear QFT, direct field quantification by
appeal to creation-destruction operators is not feasible,
since the superposition principle is no longer valid. The
reasoning applies to the propagator notion as well. Thus,
as we did here, an indirect route is necessary to quantify
a classical field.

3 Non-linear q-Klein-Gordon (KG) field

In the same vein as above, we define a quantum q-
Klein Gordon (KG) field φq(xµ) in terms of the ordinary
KG field φ(xµ) as

φq(xµ)=[1+(1−q)lnφ(xµ)]
1

1−q

+ . (11)
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In the classical instance, if we have

φ(xµ)=ei(~k·~x−ωt), (12)

we re-obtain the q-wave used by Nobre et al. in Ref. [1]:

φq(xµ)=[1+(1−q)i(~k·~x−ωt)]
1

1−q

+ . (13)

φ can be given in terms of φq as

φ=e
φ
(1−q)
q −1

1−q . (14)

From Ref. (11) we see that φq is not Lorentz invariant
(LI). We saw above that it manifests itself at very high
energy. If the energy becomes smaller, and this happens
for q→ 1, φq becomes φ and LI is restored. The usual
KG action is

S=
∫

[

∂µφ(xµ)∂
µφ†(xµ)−m2φ(xµ)φ

†(xµ)
]

d4xµ, (15)

from which one deduces

(¤+m2)φ=0, (16)

whose solution is

φ(xµ)=
1

(2π)
3
2

∫

a(~k)√
2ω

ei(~k·~x−ωt)+
a†(~k)√
2ω

e−i(~k·~x−ωt)d3k,

(17)
this being the field φ in Eq. (11). For φq one has

Sq=
∫

e
φ
(1−q)
q −1

1−q e
φ
†(1−q)
q −1

1−q
(

φ−q
q φ†−q

q ∂µφq∂µφ
†
q−m2

)

d4xµ,

(18)
leading to an equation of motion whose solution is φq,
that is

¤φq+∂µφq∂
µφq(φ

−q
q −qφ−1

q )+m2φqq=0. (19)

For q→1, Eq. (18) becomes Eq. (15) while Eq. (19) goes
to Eq. (16).

4 Non-linear q-Dirac field

Dirac’s action is known to be:

S=
∫

iψ/∂ψ−mψψd4x, (20)

or

S=
∫

iψ†γ0γµ∂µψ−mψ†γ0ψd4x. (21)

In terms of Dirac’s spinor ψ this action is

S=
∫

iψ†
a(γ

0γµ)ab∂µψb−mψ†
aγ

0
abψbd

4x. (22)

We deduce now that the spinor’s components obey the
equations of motion

iγµab∂µψb−mψa=0, (23)

(¤+m2)ψa=0, (24)

that, of course, are the Dirac and Klein-Gordon equa-
tions, respectively. We define now a very high energy
field ψqa as

ψqa=[1+(1−q)lnψa]
1

1−q

+ , (25)

not Lorentz invariant. ψqa is not a component of the
Dirac-spinor. Let us now cast ψa in terms of ψqa:

ψa=e
ψ

(1−q)
qa −1

1−q . (26)

The ψqa-associated action is

Sq =
∑

ab

∫

ie
ψ
†(1−q)
qa −1

1−q (γ0γµ)abψ
†(−q)
qb ∂µψqbe

ψ
(1−q)
qb

−1

1−q

−me
ψ
†(1−q)
qa −1

1−q γ0
abe

ψ
(1−q)
qb

−1

1−q d4xµ. (27)

Given the lack of Lorentz invariance, Einstein’s conven-
tion on repeated indexes cannot be used. This action
becomes that of Eq. (22) for q→1. From Eq. (27) one
deduces the equations of motion for ψq as

iγµabψ
−q
qb ∂µψqbe

ψ
(1−q)
qb

−1

1−q −me
ψ

(1−q)
qa −1

1−q =0 (28)

¤ψqa+∂µψqa∂
µψqa(ψ

−q
qa −qψ−1

qa )+m
2ψqqa=0, (29)

that become Eq. (23) – Eq. (24) when q→1. The energy
considerations in this limit made above in the KG case
also hold here.

5 Advancing a non-linear Abelian Yang-
Mills q-field

It is well known that the action for an Abelian Yang-
Mills field reads

S=−1

4

∫

FµνFµνd4x, (30)

where
Fµν=∂µAν−∂νAµ, (31)

and the associated equation of motion is

∂µFµν=0, (32)

which can be recast as two equations

¤Aµ=0 ∂µA
µ=0. (33)

Our present q-extension begins by defining

Aqµ=[1+(1−q)lnAµ]
1

1−q

+ , (34)

breaking Lorentz invariance (LI) once again. Conversely,
we can write

Aµ=e
A

(1−q)
qµ −1

1−q , (35)

leading to

∂µAµ=e
A

(1−q)
qµ −1

1−q A−q
qµ ∂

µAqµ=0, (36)
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and then

∂µAqµ=0, (37)

so that the field Aqµ fulfills the Lorentz gauge, a surpris-
ing result given the above LI-breaking. Our associated
q-action Aqµ is

Sq = −1

4

∑

µ,ν,ρ,η

gµρgνη
∫

[

e
A

(1−q)
qη −1

1−q A−q
qη ∂ρAqη

−e
A

(1−q)
qρ −1

1−q A−q
qρ ∂ηAqρ

]

⊗
[

e
A

(1−q)
qν −1

1−q A−q
qν ∂µAqν−e

A
(1−q)
qµ −1

1−q A−q
qµ ∂νAqµ

]

d4x,

(38)

leading to the equation of motion

¤Aqµ+∂νAqµ∂
νAqµ(A

−q
qµ−qA−1

qµ )=0, (39)

obeyed by Aqµ. It is clear that for q→1 our new theory
becomes the customary Abelian Yang-Mills theory.

6 Introducing our non-linear non-
Abelian Yang-Mills q-field

The Yang-Mills theory is a gauge theory, constructed
from a Lie algebra, that attempts to describe the behav-
ior of elementary particles via non-Abelian Lie groups.
This lies at the core of i) the unification of the weak and
electromagnetic forces, as well as ii) quantum chromody-
namics. It constitutes the foundation of our understand-
ing of the standard model. The corresponding action
is

S=− 1

2g2

∫

tr(Fµν
Fµν )d

4x, (40)

where

F
µν=Fµν

C TC . (41)

Here the matrices TC correspond to a non-Abelian, semi-
simple Lie group. One has

[TA,TB]=f
C
ABT

C , (42)

tr(TATB)=
δAB
2
, (43)

where F
µν is

F
µν=∂µAν−∂νAµ−ig[Aµ ,Aν ], (44)

with

Aµ=A
C
µTC (45)

and

FC
µν=∂µA

C
ν −∂νACµ+gfCABAAµABν . (46)

Because of the relation

tr(Fµν
Fµν )=

1

2
FµνCFµνC , (47)

the action becomes

S=− 1

4g2

∫

FµνCFµνCd4x, (48)

leading to the equation of motion

∂ρFρσD−gFρσCfCADA
A
ρ =0. (49)

We now define our q-extension

ACqµ=[1+(1−q)lnACµ ]
1

1−q

+ , (50)

again breaking both Lorentz and gauge invariance for
q>1. From Eq. (50) we obtain

ACµ=e
ACqµ−1

1−q , (51)

and the action associated with the field (50) is

S = − 1

4g2

∑

µ,ν,C

gµµgνν
∫

FC
qµνFC

qµνd
4x, (52)

where

FC
qµν = A−qC

qν e
ACqν−1

1−q ∂µA
C
qν−A−qC

qµ e
ACqµ−1

1−q ∂νA
C
qµ

+gfCAB
∑

A,B

e
AAqµ−1

1−q e
ABqν−1

1−q , (53)

leading to the equation of motion

∑

ρ

gρρ∂ρFD
qρσ−g

∑

ρAC

gρρFC
qρσf

C
ADe

AAqρ−1

1−q =0. (54)

The field ACqµ satisfies this equation, of course. Whenever
the energy becomes low enough, q→1, and one recovers
LI and gauge invariance.

7 Our non-linear quantum Proca q-field

The Proca action gives a detailed account of a mas-
sive spin-1 field of mass m in a Minkowskian space-time.
The associated equation is a relativistic-wave equation,
called the Proca equation. The action is

S=−1

2

∫

F†µνFµν−2m2A†
µA

µd4x, (55)

where

Fµν=∂µAν−∂νAµ. (56)

the equations of motion being

(¤+m2)Aµ=0 ∂µA
µ=0. (57)

At this stage we define our q-action

Aqµ=[1+(1−q)lnAµ]
1

1−q . (58)

breaking LI. Inversion of Eq. (58) gives

Aµ=e
A

(1−q)
qµ −1

1−q (59)

053102-4



Chinese Physics C Vol. 42, No. 5 (2018) 053102

From the second relation in Eq. (57) and from Eq. (59)
we find

∂µAqµ=0, (60)

whose associated action is

S = −1

2

∫

∑

µ,ν

gµµgννF†µν
q Fqµν

−2m2
∑

µ

e
A
†(1−q)
qµ −1

1−q e
A

(1−q)
qµ −1

1−q d4x, (61)

with

Fqµν=A−q
qν e

A
(1−q)
qν −1

1−q ∂µAqν−A−q
qµ e

A
(1−q)
qµ −1

1−q ∂νAqµ. (62)

From both this and Eq. (60) one finds the equation of
motion

¤Aqµ+(A−q
qµ−qA−1

qµ )
∑

ν

gνν(∂νAqµ)
2+m2Aqqµ=0, (63)

satisfied by Aqµ. LI is recovered in the limit q→1.

8 Conclusions

We have obtained some new quantum results that
may be regarded as interesting.

More specifically, we have generalized to the quan-
tum realm the classical Tsallis’ q-Schrödinger, q-Klein-
Gordon, q-Dirac, and q-Proca equations obtained in

Refs. [1–6]. We have also added equations corresponding
to q-Yang-Mills fields, both Abelian and non-Abelian.

We have obtained the q-quantum field theories cor-
responding to all the above equations, and showed that
in the limit q→1 they become the customary ones.

These results agree with our previous results [7, 8]
concerning the energies involved. One needs energies of
up to 1 TeV in order to clearly distinguish between q-
theories and q=1, ordinary ones.

All our new quantum q-fields are q-exponential func-
tions of the logarithms of the conventional q=1 fields.
We have seen that these cannot be directly quantified
because of non-linearity, which makes the superposition
principle non-applicable, and then it is impossible to in-
troduce creation/annihilation operators for the q-fields.
To remedy such a formidable quantification obstacle we
have here devised an indirect approach that has been
shown to work correctly.

An interesting fact is that a Tsallis’ q-exponential
wave is a solution of the equations of motion (10), (19),
(28), (29), (39), (54), and (63), although these all look
quite different!

We thank Prof. A. R. Plastino for helpful dis-
cussions. We are indebted to CONICET (Argentine
Agency) for economic support.
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