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Abstract: A classical analysis of shape phase transitions and phase coexistence in odd-even nuclei has been per-

formed in the framework of the interacting boson-fermion model. The results indicate that the effects of a single

particle may influence different types of transitions in different ways. Especially, it is revealed that phase coexistence

can clearly emerge in the critical region and thus be taken as a indicator of the shape phase transitions in odd-even

nuclei.
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1 Introduction

Quantum phase transitions in nuclei have attracted a
lot of attention in the past two decades [1–9]. Quantum
phase transitions in nuclei are not of the usual thermo-
dynamic type, but are related to changes in the ground
state shapes of nuclei at zero temperature, hence the
name “shape phase transitions” (SPTs) given to them.
Most of the work related to SPTs has been carried out
for even-even nuclei, using either the Bohr-Mottelson
model [10] or the interacting boson model (IBM) [11].
Based on these two models, some important concepts re-
lated to quantum phase transitions, such as the triple
point [12] and shape/phase coexistence [13], have been
tested. In recent years, studies of SPTs have been ex-
tended to odd-even nuclei [14–30], and signals of phase
transitions and phase coexistence have been clearly re-
vealed [25]. A theoretical tool suitable for studying
odd-even nuclei is the interacting boson-fermion model
(IBFM) [31]. In this model, an odd-even nucleus is
approximately considered as an odd-even system with
an even-even core (boson) coupled to a single particle
(fermion). Previous studies of SPTs in the IBFM focused
on either the spherical to prolate transitions [20, 22] or
the spherical to the γ-unstable transitions [16, 17, 21].
In this work, we will present a systematic analysis of

the effects of a single particle on spherical to deformed
SPTs in the IBFM, with the deformed shapes including
the prolate, oblate and the deformed γ-unstable. Par-
ticularly, we will investigate how the presence of an odd
particle can influence phase coexistence and triple point

in odd-even systems.

2 Model Hamiltonian and shape phase

diagram

2.1 Hamiltonian

The IBFM Hamiltonian can be generally written as

Ĥ=ĤB+ĤF+V̂BF , (1)

where ĤB represents the boson core part, ĤF is the sin-
gle particle part, and V̂BF represents the interactions be-
tween core and particle. Specifically, we consider the
IBFM consistent-Q form [21]

Ĥ=ε
[

(1−η)n̂d−
η

4N
Q̂BF·Q̂BF

]

, (2)

where n̂d=
∑

u
d†udu is the d boson number and

Q̂BF≡Q̂χ
B+q̂F , (3)

is the total quadrupole operator with

Q̂χ
B=(d

†s+s†d̃)(2)+χ(d†d̃)(2) (4)

being the boson quadrupole operator and

q̂F=(a
†
j ãj)

(2) (5)

being the fermion quadrupole operator. In addition, η
and χ are the control parameters with η ∈ [0,1] and
χ ∈ [−

√
7/2,

√
7/2], and ε is a scale factor, which will

be set as 1 for convenience. From Eq. (2), it is easy to
get

ĤB=
[

(1−η)n̂d−
η

4N
Q̂χ

B·Q̂χ
B

]

, (6)
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which is actually the well-known consistent-Q Hamilto-
nian for the IBM [32]. One can also derive from Eq. (2)

V̂BF=−
η

2N
Qχ

B·q̂F , (7)

which is quadrupole-quadrupole interaction between bo-
son and fermion. As a result, the even-even core of
the system in the present scheme is described by the
IBM, while the effect of a single particle works through
the quadrupole-quadrupole interaction between core and
particle. It should be noted that the fermion part HF

contributes nothing but an additional constant to the
ground state energy, since a fermion moving in a single-j
shell case is supposed to be considered here. This term
will thus be ignored in the following discussions for con-
venience.

2.2 Shape phase diagram for the boson system

In this section, we first give a brief discussion of the
shape phase diagram described by Eq. (6). The Hamilto-
nian in Eq. (6) can be characterized by U(5) dynamical
symmetry at the parameter point (η,χ)=(0,0), by O(6)
dynamical symmetry at (η,χ)=(1,0), by SU(3) dynam-

ical symmetry at (η,χ) = (1,−
√

7
2
), and by SU(3) dy-

namical symmetry at (η,χ)=(1,
√

7
2
). To get the energy

surfaces, one usually adopts the intrinsic state defined
as [11]

|β,γ,N〉B =
1

√

N !(1+β2)N
[s†+βcosγ d†0

+
1√
2
βsinγ(d†2+d

†
−2)]

N |0〉. (8)

Then the energy surface corresponding to Eq. (6) is given
by

VB(β,γ)≡〈β,γ,N |ĤB|β,γ,N〉B . (9)

To determine the types and orders of the SPTs, one
should minimize the energy surface VB(β,γ) with respect
to β and γ for given χ and η. Then one gets the ground
state energy Eg ≡ VB(η,χ,βe,γe) with βe and γe being
the optimal values. For χ 6= 0, one can prove that the
γ-dependence in Eq. (9) gives either γe=0

◦ or γe=60
◦,

but the results for γe=60
◦ can be equivalently obtained

by taking γe = 0
◦ and β = −βe [11]. For χ = 0, one

can prove that the energy surface in Eq. (9) is always γ-
independent. Particularly, the deformed γ-unstable situ-
ation may correspond to the energy surface with a valley
in γ ranging from 0◦ to 60◦. In this case, one may get
VB(η,χ = 0,βe) = VB(η,χ = 0,−βe) and this feature can
be taken to characterize the deformed γ-unstable shape.
One should bear in mind that it does not mean that
there are really two degenerate minima at ±βe, but one
can always use the energy curve obtained from Eq. (9)
at γ=0◦ with two degenerate minima located symmetri-
cally at ±βe to indicate the deformed γ-unstable shape,

which is similar to the treatment in Ref. [21]. In short,
by setting γ=0◦, it is shown that βe=0, βe> 0, βe< 0
and ±βe 6=0 represent the spherical, prolate, oblate and
deformed γ-unstable case, respectively. Thus βe is often
considered as the classical order parameter for identi-
fication of different shapes as well as the SPTs among
them [11].
For the 1st order SPT, βe as a function of y is not con-

tinuous and jumps around the critical point yc from one
value to another, where y represents the control param-
eter η or χ. For the 2nd order SPT, βe is continuous but
∂βe

∂y
is not. According to these criteria, it can be found

that the system described by Eq. (6) may experience 1st
order SPTs at the critical points [33]

ηc=
28N

56(N−1)+χ2(5+2N)
(10)

with χ∈ [−
√
7/2,

√
7/2], except for the U(5)-O(6) SPT

occurring at the triple point ηc=N/2(N−1) [12], which is
a 2nd order transition. In addition, the prolate to oblate
transitions along the χ direction are also proven to be 1st
order SPTs with χc=0 [12]. The two-dimensional param-
eter space of the IBM can be characterized by a symmet-
ric triangle [12] as shown in Fig. 1, which covers all types
of SPTs in the IBM up to two-body interactions. Here
we focus on only the spherical to deformed SPTs with
the deformed shape phases including the prolate, oblate
and deformed γ-unstable. In the following sections, we
will discuss the case with a single fermion moving in the
j=11/2 shell coupled to the even-even core that under-
goes the spherical to deformed SPTs mentioned above.

χ > 0

η

χ < 0

OP

SU(3) SU(3)O(6)

U(5)

•T

S

Fig. 1. Phase diagram in the IBM parameter space,
where S represents the region with βe=0, corre-
sponding to a spherical shape, P denotes the re-
gion with βe>0, corresponding to prolate defor-
mation, and O represents the region with βe<0,
corresponding to oblate deformation. In addition,
the horizontal line represents the 1st-order tran-
sitional point, while the solid dot indicated by T
denotes the triple point.
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2.3 Energy surfaces for the boson-fermion sys-

tem

To identify the SPTs in this boson-fermion system,
one should adopt the intrinsic state for the coupled sys-
tem [21, 22]

|β,γ,N ;j,K〉BF=|β,γ,N〉B⊗|j,K〉F . (11)

We then diagonalize the total Hamiltonian (2) in this
basis with K=−j, −j+1,...,j to get the energy expecta-
tion values E(β,γ). Here, we consider, for simplicity, the
γ=0◦ case, which indicates that the quantum number K
would be a good quantum number in this case. Due to
the K↔−K symmetry, the dimension of the basis space
is j+1/2, which indicates that one only needs to consider
positive values of K. If the single fermion effect is anal-
ogous to an external field to the boson core, γ=0◦ here
means the field has an axial symmetry [22, 23]. Then
the energy expectation values can be solved as

E(β)K =
Nβ2

1+β2
[(1−η)−(χ2+1)

η

4N
]− 5Nη

4N(1+β2)

− Nη(N−1)
4N(1+β2)2

[4β2−4
√

2

7
χβ3+

2

7
χ2β4]

+

√
5η

2

β

1+β2
(2−βχ

√

2

7
)Pj [3K

2−j(j+1)]

(12)

with Pj = 1/
√

(2j−1)j(2j+1)(j+1)(2j+3). Minimiza-
tion of E(β)K with respect to β for given χ and η gives
the optimal values βe, by which one can examine how the
presence of a single fermion can influence different types
of SPT. Notably, one should replace the dynamical sym-
metry G shown in Fig. 1 with G⊗U(2j+1) for the boson-
fermion system, where G denotes U(5), O(6), SU(3) or
SU(3), because the fermion occupying a single j orbit
may generate the dynamical symmetry U(2j+1) [31].

3 SPTs in the boson-fermion system

Based on Eq. (12), the energy surfaces at typical pa-
rameter points and the evolutionary behaviors of the
classical parameter have been extracted for different
types of SPT, and the results are given in Figs. 2–6.

3.1 Spherical to prolate SPT

As seen in Fig. 2(a), the energy curves for different K
have almost the same configurations as that for the even-
even core, which indicates that the single fermion has
little effect on the collective shape of the boson-fermion
system in the spherical case. Similarly, the results in
Fig. 2(c) indicate that the energy curves for different K
are also similar to that for the even-even core with the
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Fig. 2. (color online) Results related to the spherical to prolate SPT with χ=−1.32. (a) Energy curves in the
spherical case. (b) Energy curves at the critical point ηc. (c) Energy curves in the prolate case. (d) Order
parameter βe as a function of η. In each panel, the curves denoted by 1/2, ..., 11/2 represent the cases with
K=1/2, ..., 11/2, respectively, and “core” represents the results for the even-even core described by Eq. (9).
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Fig. 3. (color online) Results related to the spherical to prolate SPT with χ=−0.66. (a) Energy curves in the
spherical case. (b) Energy curves at the critical point ηc. (c) Energy curves in the prolate case. (d) Order
parameter βe as a function of η. In each panel, the curves denoted by 1/2, ..., 11/2 represent the cases with
K=1/2, ..., 11/2, respectively, and “core” represents the results for the even-even core described by Eq. (9).
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Fig. 4. (color online) Results related to the spherical to oblate SPT with χ=−1.32. (a) Energy curves in the spherical
case. (b) Energy curves at the critical point ηc. (c) Energy curves in the prolate case. (d) Order parameter βe as
a function of η. In each panel, the curves denoted by 1/2, ..., 11/2 represent the cases with K =1/2, ..., 11/2,
respectively, and “core” represents the results for the even-even core described by Eq. (9).
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Fig. 5. (color online) Results related to the spherical to oblate SPT with χ=−0.66. (a) Energy curves in the spherical
case. (b) Energy curves at the critical point ηc. (c) Energy curves in the prolate case. (d) Order parameter βe

as a function of η. In each panel, the curves denoted by 1/2, ..., 11/2 represent the cases with K=1/2, ..., 11/2,
respectively, and “core” represents the results for the even-even core described by Eq. (9).
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Fig. 6. (color online) Results related to the spherical to deformed γ-unstable SPT with χ=−0. (a) Energy curves
in the spherical case. (b) Energy curves at the critical point ηc. (c) Energy curves in the prolate case. (d) Order
parameter βe as a function of η. In each panel, the curves denoted by 1/2, ..., 11/2 represent the cases with
K=1/2, ..., 11/2, respectively, and “core” represents the results for the even-even core described by Eq. (9).
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corresponding minima all located at β>0. This means
that the effect of the single fermion cannot change the
shape of the system when the even-even core corresponds
to a prolate deformation. For the situation at the criti-
cal point, one can derive from Fig. 2(b) that the energy
curve for different K may have different configurations,
thus indicating different types of deformation. Specifi-
cally, the cases for K =1/2, 3/2, 5/2 favor prolate de-
formation corresponding to βe > 0, while the cases for
K=9/2, 11/2 favor small oblate deformation with βe<0.
In addition, the case for K = 7/2 has almost the same
energy curve configuration as the one for the even-even
core, and both of them present two degenerate minima
located at β=0 and β>0, respectively. Clearly, the re-
sults indicate that the boson-fermion system may allow
multi-phase coexistence at the critical point. As further
seen from Fig. 2(d), one can find that the effect of the
single fermion is to weaken the transitional features for
states with K=1/2, 3/2, 5/2 and to enhance them for
states with K=9/2, 11/2. This feature was first revealed
in Ref. [22]. In contrast, the state for K=7/2 may re-
tain the same configuration as that for the even-even
core. This point can be understood by seeing Eq. (12).
The contribution of the last term in Eq. (12), which rep-
resents the effect of the single fermion, can be ignored in
the case with K=7/2 and j=11/2, since Pj [3K

2−j(j+1)]
approaches zero in this case. In addition, the presence of
the single fermion may induce a critical region (the grey
color), in which βe for different K rapidly changes with
variation of η, in the coupled system, while the critical
point ηc is just involved in the critical region, as seen in
Fig. 2(d). All these features indicate that there should
be more chances to identify shape/phase coexistence in
odd-even nuclei near the critical point than in even-even
nuclei. It should be noted that phase coexistence and
shape coexistence are two different concepts in princi-
ple [13, 34]. Here we do not emphasize their differences
but instead use the concept of phase coexistence to il-
lustrate that different types of deformation induced by
either single-particle excitation or collective excitation
can coexist at the same parameter point (η, χ).
To test the similar transitional situations in the in-

ner area of the triangle phase diagram, we do the same
calculations but for χ=−0.66. The results are given in
Fig. 3. As shown in Fig. 3, the energy surface configura-
tions as well as the transitional features are very similar
to those shown in Fig. 2, except that the effect of the sin-
gle fermion may further enhance the transitional feature
for large K values and meanwhile enlarge the range of
the critical region (phase coexistence region). In short,
phase coexistence in the boson-fermion system may be-
come more pronounced when the parameter trajectories
fall into the inner area of the triangle phase diagram
shown in Fig. 1.

3.2 Spherical to oblate SPT

For the spherical to oblate SPTs, we will examine the
results calculated for χ=1.32, corresponding to the U(5)-
SU(3) leg, and those calculated for χ=0.66, as an exam-
ple for the inner area of the phase diagram. As shown in
Fig. 4, the energy curves for different K in the spherical
or oblate case may have configurations similar to that
for the even-even core, which indicates that the pres-
ence of the single fermion cannot change the collective
shape of the system in these two cases. In contrast, the
energy curves at the critical point favor different types
of deformation for different K values. This means that
phase coexistence may also occur at the critical point for
the spherical to oblate SPT. The evolutions of βe shown
in Fig. 4(d) further suggest that the effect of the single
fermion in this case is to weaken the transitional features
for states with large K (K=11/2, 9/2) but to enhance
the features for states with small K (K=1/2, 3/2, 5/2),
which is actually the inverse situation of those shown
in Fig. 2 and Fig. 3. As expected, the state for K=7/2
shows the same transitional features as that for the even-
even core. The results shown in Fig. 5 indicate that the
transitional features and phase coexistence in this type
of SPT will be further strengthened in the inner area of
the triangle phase diagram.

3.3 Spherical to deformed γ-unstable SPT

As mentioned in Section 2, the γ-unstable deforma-
tion can be identified as the energy curve with two de-
generate minima located symmetrically at ±βe. For the
spherical to deformed γ-unstable SPT, the related re-
sults corresponding to χ = 0 are given in Fig. 6. It
should be noted that a classical analysis of the spher-
ical to deformed γ-unstable SPT in the IBFM was pre-
viously given in Ref. [21] through the same Hamiltonian
form with j=9/2, and the authors found that the tran-
sitional features could be smoothed out for all K values
due to the effects of the odd fermion. Here we hope to
revisit the this type of transition but with j=11/2, and
to reveal the situations corresponding to more general j
values. As shown in Fig. 6, the energy curves for all K
values in the spherical case present the same features as
that for the even-even core, while the results at ηc in-
dicate clearly the coexistence of three shapes including
spherical, prolate and oblate. It thus hints at a much
clearer meaning of the triple point in odd-even systems
than in even-even systems. In addition, the results in
Fig. 6(c) indicate that the cases for large K favor oblate
and those for small K favor prolate. In contrast, the en-
ergy curve for K=7/2 shows the same configuration as
that for the even-even core with two degenerate minima
located at ±βe, thus indicating the deformed γ-unstable
shape. One can further find from Fig. 6(d) that the effect
of the single fermion in this case is to weaken the transi-
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tional features for all K values relative to the even-even
core, except for the case with K = 7/2, for which the
transitional features remain almost the same as for the
even-even core.
It is not difficult to understand the above results, as

well as those obtained in Ref. [21], by seeing Eq. (12),
where one can find that [3K2−j(j+1)] will determine the
sign of the last term of Eq. (12) and thus the intrinsic
shape for a given K, since the first two terms in Eq. (12)
with χ=0 may generate either one minimum at βe=0 or
two degenerate minima at ±βe 6=0. Specifically, one can
derive that the cases with K>

√

j(j+1)/3 always favor
oblate during the entire process of the spherical to γ-
unstable SPT, while those with K<

√

j(j+1)/3 always

favor prolate. In contrast, cases with K '
√

j(j+1)/3
may maintain the same deformation as that for the even-
even core. It thus explains why the spherical to γ-
unstable SPT in the coupled system can be smoothed
out for almost all the K values with given j. Accord-
ingly, the j=11/2 case shown in Fig. 6 and the j=9/2
case considered in Ref. [21] provide two concrete exam-
ples for the above argument.

4 Summary

In summary, a classical analysis of SPTs and phase
coexistence in odd-even nuclei has been given within the
framework of the IBFM. The results indicate that the ef-
fects of the single particle may influence different types of
SPT in different ways. Specifically, the transitional fea-
tures in the spherical to prolate SPTs or the spherical to
oblate SPTs may be enhanced for some states and weak-

ened for others, except for the state with K=7/2, which
has the same features the even-even core for all types of
SPTs in the j=11/2 case. In contrast, the transitional
features in the spherical to deformed γ-unstable SPT are
smoothed out for almost all K values, which further con-
firms the analysis given in Ref. [21]. More importantly, it
is revealed that more pronounced phase coexistence can
emerge in the SPTs in odd-even systems near the criti-
cal point than in even-even systems, which suggests that
phase coexistence can be taken as a robust signature of
SPTs in odd-even nuclei. Although all the discussions
in this work are based on the classical analysis of the
IBFM, the related predictions can in principle be exam-
ined in experiments, as the IBFM has been proven to
be a powerful theoretical tool to describe the spectro-
scopic properties of odd-A nuclei [27, 29–31]. For exam-
ple, the effects of an odd particle on the STPs could be
tested by checking the evolutionary features of some ob-
servables in odd-A nuclei relative to adjacent even-even
nuclei, where the observables may include two-neutron
separation energy [22, 23], odd-even mass difference [24],
pairing excitation energy [26] or some specific E2 transi-
tional rates [30].
It is worth mentioning that the present study is just a

schematic illustration of the actual situation in odd-even
nuclei, as we have confined our discussion to an odd-even
system with the core coupled to a fermion within a single
j shell via quadrupole-quadrupole interactions. A multi-
j situation and more interaction terms such as exchange
interaction and monopole interaction [31] may need to
be taken into account to further prove or disprove the
conclusions. Related work is in progress.
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