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Relativistic interpretation of the nature of the nuclear tensor force *
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Abstract: The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-

Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant

tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought

about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-

spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic

model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of

the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower

components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial

wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components,

revealing clearly the nature of the tensor force.
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1 Introduction

In nuclear physics, the nuclear force that binds pro-
tons and neutrons into atomic nuclei is one of the most
important issues, and many attempts have been devoted
to explaining its nature. The meson exchange diagram
of the nuclear force proposed by Yukawa is still one of
the most successful attempts [1]. In recent years, the
worldwide construction of a new generation of radioac-
tive ion beam facilities has greatly promoted the devel-
opment of the field and a set of novel phenomena have
been discovered in exotic nuclei. This brings a series of
challenges and opportunities for nuclear physics, espe-
cially in understanding the nature of the nuclear force.
A typical example is the non-central tensor force, which
has drawn considerable attention due to its characteristic
spin-dependent nature [2]. It plays an essential role in de-
termining nuclear shell evolution [3–17], nuclear isospin
excitations and β-decays [18–23], and the properties of
nuclear matter [24].

Based on the meson exchange diagram of nuclear
force, the relativistic description of nuclear structure
properties has achieved great progress in combination
with density functional theory, namely the famous co-
variant density functional (CDF) theory (see Ref. [25]
and references therein). During the past decades, rela-
tivistic mean field (RMF) theory, the CDF theory with-

out Fock terms, has received more and more attention
due to its successful description of many nuclear phe-
nomena in both stable and exotic nuclei [26–37]. With
the covariant frame, mainly represented as large scalar
and vector fields of the order of a few hundred MeV, the
RMF theory can provide a self-consistent description of
the spin-orbit (SO) couplings, an important ingredient
of nuclear force. While limited by the RMF approach
itself, the important degrees of freedom in the meson ex-
change diagram, such as the π- and ρ-tensor couplings,
are missing, and specifically the important ingredient of
nuclear force — the tensor force, arising from the π ex-
change and ρ-tensor coupling, cannot be efficiently taken
into account. The π- and ρ-tensor couplings, as well as
the tensor force, can be considered only (or mainly) with
the presence of Fock terms, which are in general ignored
in the RMF scheme for simplicity.

Because of the complexity induced by Fock terms
and the limitation of computer power, providing an ap-
propriate quantitative description of nuclear structure
properties under the relativistic Hartree-Fock (RHF) ap-
proach remains a long-standing problem [38–42]. Un-
til ten years ago, a new RHF approach, namely the
density-dependent relativistic Hartree-Fock (DDRHF)
theory [43–45], also referred as the CDF theory with Fock
terms, was developed in combination with the density-
dependent meson-nucleon coupling, and a quantitative
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description of nuclear structure properties was achieved
with comparable accuracy to the standard CDF models.
Due to Lorentz covariance, the RHF approach maintains
the advantages of the RMF, i.e., the self-consistent treat-
ment of the spin-orbit coupling. Moreover, the presence
of Fock terms has brought significant improvements in
describing nuclear properties, such as self-consistent de-
scription of shell evolution [8, 9, 16, 46, 47], better pre-
served pseudo-spin and spin symmetries [44, 48–51], and
fully self-consistent treatment of nuclear isospin excita-
tion [52–54] and decay modes [55, 56]. Besides, the Fock
terms also present distinct contributions to nuclear sym-
metry energy [57–59].

Recently, analysis within the DDRHF theory has
shown that the Fock terms of the meson-nucleon cou-
plings represent distinct spin dependence [60], a charac-
teristic nature of the tensor force [2]. It was then rec-
ognized that the Fock diagrams of the meson-nucleon
couplings can take the important ingredient of nuclear
force — the tensor force — into account naturally [60].
Particularly, more remarkable tensor effects are found in
the Fock terms of the isoscalar σ-S and ω-V couplings,
rather than the isovector ρ-V , ρ-T and π-PV couplings.
In Ref. [60], a series of relativistic formalisms have been
proposed for the tensor force components in the Fock
diagrams of various meson-nucleons couplings, and the
self-consistent tensor effects were analysed for nuclear
ground states and nuclear matter with the proposed rel-
ativistic formalism [24, 60]. Without introducing any
additional free parameters, the spin-dependent feature
brought about by the Fock terms can be interpreted al-
most completely by the proposed relativistic formalism.
In addition, the reduction of the kinetic part of sym-
metry energy at the supranuclear density region in the
DDRHF theory can be regarded partly as the effect of
the nuclear tensor force [59].

Notice that the tensor force, as derived from shell
model calculations [2], fulfills some specific sum rules
[see Eqs. (12) and (13)] quantitatively owing to its spin-
dependent feature. Conceptually, the sum rules were ver-
ified in Ref. [60] under the assumption of neglecting the
lower components of Dirac spinors and taking the same
radial wave functions for the spin partner j± = l±1/2
states. Since the lower and upper components of Dirac
spinors are of different angular momenta, leading to op-
posite parity, the sum rules could be violated distinctly
with the complete form of the Dirac spinors in realistic
nuclei. To better understand the nature of the tensor
force, it is worth testing the sum rule in realistic nuclei
with the relativistic formalism of tensor forces, and to
reveal the relativistic effect brought about by the lower
components of Dirac spinors. The contents are organized
as follows. In Section 2, the relativistic formalism for the
tensor force components in the Fock diagrams of meson-

nucleon couplings are recalled and a supplementation to
the coupling in the σ-S coupling channel is presented.
In Section 3 the sum rules are verified by taking the
spin/pseudo-spin parters in 48Ca, 90Zr and 208Pb as ex-
amples to understand the nature of the tensor force, and
the contributions from the lower/upper components are
discussed in detail. Finally, a brief summary is given in
Section 4.

2 Supplementation of the relativistic for-

malism for tensor force components in

σ-S channel

For completeness, the relativistic formalism for the
tensor force components in the Fock terms of the σ-S,
ω-V , ρ-V , ρ-T and π-PV couplings are recalled as fol-
lows,

H
T1

σ-S=−
1

2
·
1

2

[ gσ
mσ

ψ̄γ0Σµψ
]

1

[ gσ
mσ

ψ̄γ0Σνψ
]

2
DT, µν
σ-S (1,2),

(1)

H
T
ω-V =+

1

2
·
1

2

[ gω
mω

ψ̄γλγ0Σµψ
]

1

[ gω
mω

ψ̄γδγ0Σνψ
]

2
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ω-V (1,2), (2)

H
T
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1

2

[ fρ
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]

1
·
[ fρ
2M

ψ̄σδν~τψ
]

2
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ρ-T (1,2),

(3)

H
T
π-PV =−

1

2

[ f
π

m
π

ψ̄γ0Σµ~τψ
]

1
·
[ f

π

m
π

ψ̄γ0Σν~τψ
]

2
DT, µν
π-PV (1,2),

(4)

where the relativistic spin operator Σµ=
(

γ5,Σ), M is
the nucleon mass, and ~τ denotes the isospin operator of
the nucleon (ψ). The propagator terms DT read as,

DT, µν
φ (1,2)=

[

∂µ(1)∂ν(2)−
1

3
gµνm2

φ

]

Dφ(1,2)

+
1

3
gµνδ(x1−x2), (5)

DT, µνλδ
φ′ (1,2)=∂µ(1)∂ν(2)gλδDφ′(1,2)

−
1

3

(

gµνgλδ−
1

3
gµλgνδ

)

m2
φ′Dφ′(1,2)

+
1

3

(

gµνgλδ−
1

3
gµλgνδ

)

δ(x1−x2), (6)

where φ stands for the σ-S and π-PV channels, and φ′

represents the ω-V and ρ-T channels. Here to distin-
guish the terms, we use H

T1

σ-S to denote the relativistic
formalism for tensor force components in the σ-S chan-
nel proposed by Ref. [60]. For the ρ-V channel, the
corresponding formalism H T

ρ-V can be obtained simply
by replacing mω(gω) in Eqs. (2) and (6) by mρ(gρ) and
inserting the isospin operator ~τ in the interacting index.

In the prior study on the tensor effects brought about
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by the Fock terms, the lower components of Dirac spinors
were dropped and the spin partners j± = l±1/2 were
assumed to share the same radial wave functions [60].
Naturally, it would be interesting to study the tensor
effects with the complete form of the relativistic wave
functions, namely for realistic nuclei. Utilizing the full
Dirac spinors determined by the self-consistent calcula-
tions with the RHF-PKA1 model, we calculate the con-
tributions from various single-particle orbits j ′ to the SO
splitting of the spin-partner states j±, defined as

∆ESO≡Vj−j′−Vj+j′ , (7)

where Vjj′ denotes the interaction matrix element for
the single-particle states j and j ′. In fact, not only
the contributions from the direct terms but also those
from the exchange parts of single-particle potentials give
rise to the SO splitting in nuclear single-particle spectra.
However, the spin-dependent feature of the contributions
∆ESO from the nucleon-nucleon interactions, namely
the difference in values between the spin-partner states
j′
±
= l±1/2, is dominated by the Fock diagrams, partic-

ularly via the isoscalar meson-nucleon coupling channels
[60]. Such a spin dependence of ∆ESO is then well ex-
plained by introducing a series of Lorentz-invariant ten-
sor formalisms (Eqs. (1)–(4)), and the corresponding
tensor interaction matrix element reads as

V T
jj′=f̄j(r1)f̄j′(r2)Γ

T
1,2fj(r2)fj′(r1), (8)

with Γ T
1,2 the interaction vertices of the tensor force and

the nucleon Dirac spinor

fα(r)=
1

r

(

iGa(r)

Fa(r)σ̂·r̂

)

Ya(r̂)χ 1
2
(qa), (9)

where Ya(r̂) is the spinor spherical harmonic, and χ 1
2
(qa)

the isospinor. Ga and Fa correspond to the upper and
lower components of the radial wave function, respec-
tively. Thus, V T

jj′ can be divided further with respect to
the Ga and Fa components of the states j and j ′, namely,

V T
jj′=V

T
GjGj′

+V T
GjFj′

+V T
FjGj′

+V T
FjFj′

. (10)

Figure 1 shows the contributions to ∆ESO only from
the Fock diagrams, giving the total, the tensor parts and
the central parts, respectively, and taking the nodeless
neutron (ν) orbits in 48Ca as examples. From Figs. 1(b)
and 1(c), it is found that the spin-dependent feature of
∆ESO in Fock terms can be almost fully interpreted by
the relativistic formalism for the tensor force components
in the ω-V channel [i.e., Eq. (2)], while it seems to be
overestimated in the σ-S coupling channel, implying that
the spin-dependent feature introduced by the σ-S cou-
pling cannot be exactly explained by Eq. (1).

Fig. 1. (color online) Contributions to the spin-
orbit (SO) splittings ∆ESO=Vj−j′−Vj+j′ (MeV):
the Fock terms [plot (a)], the tensor parts [plots
(b) and (d)] and the central parts [plot (c) and
(e)]. In plots (d-e), the supplemented tensor
terms H

T2

σ-S are taken into account. The results
are extracted from the calculations of DDRHF
functional PKA1 for nodeless neutron (ν) orbits
in 48Ca, and full Dirac spinors are utilized in cal-
culating the interaction matrix element Vjj′ .

The π-PV coupling is originally in the form of
Lorentz tensor couplings of rank 2 [38, 43], and it is
proved that the spin-dependent feature introduced by the
π-PV coupling can be fully explained indeed by H T

π-PV ,
even without introducing the approximation on the ra-
dial wave functions. In fact, from the relativistic formal-
ism of the tensor forces in Eqs. (1)–(4), all the formalism
certainly represents the relativistic-type (Lorentz) tensor
couplings but taking various ranks, formally at rank 4
for the ω-V and ρ-T channels, though for the latter it
is actually at rank 3, and rank 2 for the σ-S and π-PV
channels. In order to avoid overestimation of the tensor
effects involved by the Fock terms of the σ-S coupling
[see Figs. 1(b) and 1(c)], higher ranks of Lorentz tensor
coupling than Eq. (1) could be considered as supplemen-
tations. The relativistic formalism of tensor force at rank
3, similar to H T

ρ-T , is naturally the first choice , i.e.,

H
T2

σ-S=+
1

4
·
1

9

[ gσ
mσ

ψ̄σλµψ
]

1
·
[ gσ
mσ

ψ̄σδνψ
]

2
DT,µνλδ
σ-S (1,2),

(11)

where the propagator term DT,µνλδ
σ-S corresponds to Eq.

(6) with φ′=σ-S. As shown in Figs. 1(d) and 1(e), the
supplemented relativistic formalism for the tensor force
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components in σ-S channel, i.e., H
T1+T2

σ-S , improves re-
markably the description of the tensor nature involved by
the Fock terms of σ-S coupling, leading to a clear damp-
ing of the spin dependence of the central part (Figs. 1(e))
in comparison with that in the case of H

T1

σ-S (Figs. 1(c)).
It is worth mentioning again that the full Dirac spinors
determined self-consistently with the RHF-PKA1 model
are utilized in calculating ∆ESO, different from Ref. [60].
For the other coupling channels, namely ω-V , ρ-V , ρ-T
and π-PV , it has been checked that the existing relativis-
tic formalism of the tensor forces [i.e., Eqs. (2)–(4)] can
describe fully the tensor effects involved by the relevant
Fock diagrams even with the complete Dirac spinors.

As derived from the shell model calculations [2], the
tensor force should fulfill the following sum rule,

Vsum≡ĵ
2
+V

T
j+j′

+ĵ2
−
V T
j−j′

=0, (12)

where ĵ2=2j+1. As mentioned in Refs. [2, 60], one has
to choose the same radial wave functions for the spin
partner states j± to reproduce the sum rule exactly. In
fact, the sum rule is often taken as the identity of the
tensor force, which reveals clearly its spin-dependent na-
ture. It is then worth seeing how precisely the sum rule
is fulfilled by the relativistic formalism of tensor forces,
even without introducing the approximation of the wave
functions, for instance in a realistic nucleus. Particularly,
as indicated by the supplemented relativistic formalism
H

T1+T2

σ-S for the σ-S channels, it is also valuable to verify
the role of the lower component of nucleon spinor, from
which the relativistic effects are expected to be revealed.

3 Verification of tensor sum rule

In this section, the tensor sum rule is verified under
the relativistic Hartree-Fock (RHF) approach with the
functional PKA1. In order to provide a detailed under-
standing of the sum rule, spin-unsaturated magic sys-
tems, namely 48Ca, 90Zr and 208Pb, are taken as exam-
ples in the following and the discussion focuses on the
neutron spin partner states without and with nodes, and
the pseudo-spin partners, respectively.

3.1 Sum rule for spin partner states

Taking the nodeless neutron orbits p, d and f of 48Ca
as examples, Table 1 shows the tensor interaction matrix
elements V T

j±j′
(in units of 10−1 MeV), described by the

supplemented relativistic formalism for the nuclear ten-
sor force components in the Fock diagram of the σ-S
coupling. The 2nd to 7th rows show the results calcu-
lated with the full nucleon spinors. It is found that there
exist rather distinct deviations from the sum rule, with
the Vsum values comparable to the interaction matrix el-
ements themselves. If one neglects the lower components
in the nucleon spinors, i.e., the results in the 8th to 13th

rows, it can be seen that the sum rule is properly fulfilled,
with relative deviations of a few percent. If we take the
same assumption as in Ref. [60], i.e., that the j+ and j−
orbits, as well as the j ′+ and j′

−
orbits, share the same

radial wave functions, in addition to neglecting the lower
components, the sum rule is reproduced precisely with
negligible errors (Vsum.10−6 MeV).

Table 1. Interaction matrix elements V T
j±j′

(10−1

MeV) between the spin partner states, namely the
nodeless neutron orbits p, d and f of 48Ca, for the
tensor force components in the Fock diagram of
the σ-S couplings. The 2nd-7th rows show the
results calculated with the radial wave functions
determined by the self-consistent calculations of
DDRHF with PKA1. For the results in the 8th-
13th rows, the lower components in both the j±
and the j′± orbits are omitted, and for those in the
14th-19th rows the j± orbits, as well as j′± orbits,
share the same radial wave functions in addition
to neglecting the lower components.

j±
j′

ν1p3/2 ν1p1/2 ν1d5/2 ν1d3/2 ν1f7/2

ν1p3/2 0.463 −1.391 0.401 −1.031 0.259

ν1p1/2 −1.391 2.000 −1.310 1.113 −0.884

Vsum −0.929 −1.563 −1.015 −1.900 −0.731

ν1d5/2 0.401 −1.310 0.691 −1.365 0.597

ν1d3/2 −1.031 1.113 −1.365 1.261 −1.189

Vsum −1.719 −3.409 −1.312 −3.146 −1.175

ν1p3/2 0.635 −1.335 0.622 −0.963 0.433

ν1p1/2 −1.335 2.818 −1.263 1.968 −0.848

Vsum −0.132 0.298 −0.038 0.087 0.036

ν1d5/2 0.622 −1.263 0.875 −1.295 0.795

ν1d3/2 −0.963 1.968 −1.295 1.932 −1.142

Vsum −0.118 0.295 0.072 −0.041 0.204

ν1p3/2 0.635 −1.269 0.622 −0.933 0.433

ν1p1/2 −1.269 2.538 −1.244 1.866 −0.866

Vsum −0.000 0.000 0.000 0.000 0.000

ν1d5/2 0.622 −1.244 0.875 −1.313 0.795

ν1d3/2 −0.933 1.866 −1.313 1.969 −1.193

Vsum 0.000 0.000 −0.000 −0.000 0.000

Similar to Table 1, Table 2 shows the tensor interac-
tion matrix elements described by the relativistic formal-
ism for the nuclear tensor force components in the Fock
diagram of the ω-V coupling, and similar systematics in
reproducing the sum rule are found. In fact, besides the
sum rule in Eq. (12), the interaction matrix elements of
the tensor force should fulfill the following relations as
well,

ĵ2+ĵ
′2
+V

T
j+j

′
+
−ĵ2

−
ĵ′2
−
V T
j−j

′
−
=0, ĵ2+ĵ

′2
−
V T
j+j

′
−
−ĵ2

−
ĵ′2+V

T
j−j

′
+
=0,

(13)

which are precisely reproduced by the proposed relativis-
tic formalism, if both j± and j′

±
states share the same

radial wave functions in addition to neglecting the lower

024101-4



Chinese Physics C Vol. 42, No. 2 (2018) 024101

components (see the last six rows in Tables 1 and 2).
Moreover, comparing the results of V T

jj′ with full nucleon
spinors and those neglecting the lower components in
Tables 1 and 2, it is seen that the influence induced by
the inclusion of the lower components is more remarkable
for the repulsive-type tensor interaction matrix elements,
i.e., V T

j+j
′
+

and V T
j−j

′
−

in Table 1, and V T
j−j

′
+

and V T
j+j

′
−

in

Table 2, than for the attractive-type ones.

Table 2. Interaction matrix elements V T
j±j′

(10−1

MeV) between the spin partner states, namely the
nodeless neutron orbits p, d and f of 48Ca, for the
tensor force components in the Fock diagram of
the ω-V couplings. The 2nd-7th rows show the
results calculated with the radial wave functions
determined by the self-consistent calculations of
DDRHF with PKA1. For the results in the 8th-
13th rows, the lower components in both the j±
and the j′± orbits are omitted, and for those in the
14th–19th rows the j± orbits, as well as j′± orbits,
share the same radial wave functions in addition
to neglecting the lower components.

j±
j′

ν1p3/2 ν1p1/2 ν1d5/2 ν1d3/2 ν1f7/2

ν1p3/2 −0.247 0.353 −0.250 0.150 −0.181

ν1p1/2 0.353 −1.278 0.451 −0.935 0.341

Vsum −0.282 −1.144 −0.101 −1.272 −0.042

ν1d5/2 −0.250 0.451 −0.361 0.389 −0.339

ν1d3/2 0.150 −0.935 0.389 −0.904 0.410

Vsum −0.904 −1.036 −0.613 −1.285 −0.392

ν1p3/2 −0.256 0.540 −0.265 0.412 −0.194

ν1p1/2 0.540 −1.145 0.540 −0.845 0.381

Vsum 0.057 −0.128 0.020 −0.044 −0.014

ν1d5/2 −0.265 0.540 −0.380 0.564 −0.357

ν1d3/2 0.412 −0.845 0.564 −0.844 0.513

Vsum 0.058 −0.144 −0.026 0.008 −0.092

ν1p3/2 −0.256 0.512 −0.265 0.397 −0.194

ν1p1/2 0.512 −1.024 0.530 −0.794 0.388

Vsum −0.000 0.000 −0.000 0.000 0.000

ν1d5/2 −0.265 0.530 −0.380 0.570 −0.357

ν1d3/2 0.397 −0.794 0.570 −0.855 0.536

Vsum −0.000 −0.000 0.000 0.000 0.000

In order to understand the distinct difference of the
sum rule (Eq. (12)) with/without the lower components
of nucleon spinors in Tables 1 and 2, Fig. 2 shows the
radial wave functions for the upper and lower compo-
nents. The upper radial wave functions G(r) of the spin
partner states are nearly identical to each other, which
explains the correct reproduction of the sum rule shown
in the middle six rows of Tables 1 and 2. However,
the radial wave functions F (r) of the lower components,
which emerge naturally with the relativistic treatment
of the nucleon field, are quite different for the spin part-
ners. This difference in F (r) is ascribed mainly to the
so-called nodal effect, that is, the node numbers of G(r)

and F (r) are the same for j+ states but different by one
for j− states. Therefore, although the component V T

GjGj′

in Eq. (10) fulfills appropriately the tensor sum rule in
Eq. (12), those V T

jj′ components involving F (r), namely
V T
GjFj′

, V T
FjGj′

and V T
FjFj′

, could break the sum rule im-

pressively.
Despite the remarkable violation of the sum rule with

full nucleon spinors, it is still found that the sum rule is
in general better fulfilled for the couplings V T

j±j
′
+

than

for V T
j±j

′
−

. This can be understood directly by look-

ing through the role of V T
GjFj′

, since the contributions

from the other components in Eq. (10) are similar in
both cases. As has been claimed by the nodal effect,
the structure of the lower radial wave functions Fj′

−
(r)

in j′
−

states is actually more complicated than Fj′
+
(r)

in j′+ states, consequently leading to the sum rule being
violated further for V T

Gj±
F

j′
−

than V T
Gj±

F
j′
+

.

Fig. 2. (color online) Radial wave functions of the
spin partner states ν1p and ν1d in 48Ca, where
G(r) denotes the upper components and F (r) cor-
responds to the lower components. The results
are extracted from the calculations of DDRHF
with PKA1.

The sum rule is also checked for the case where the
full Dirac spinors are used but assuming that the j±
orbits share the same radial wave functions, i.e., the
lower components of the spin partner states are set to
be the same rather than omitted, which actually can be
regarded as eliminating the nodal effect of Dirac spinors.
It is found that there still exists distinct violation of the
sum rule shown in Eq. (12). Hence, the result implies
the tensor interaction matrix elements from the lower
components of Dirac spinors might correlate with a new
tensor sum rule, which could be different from the case
of the upper components of Dirac spinors and deserves
to be investigated further.
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3.2 Sum rule for pseudo-spin partner states

In nuclear single-particle spectra, the near degen-
eracy between the single-particle states with quantum
numbers (n, l, j=l+1/2) and (n−1, l+2, j=l+3/2) has
been recognized as pseudo-spin symmetry (PSS), and the
doublet states are referred as pseudo-spin (PS) partners
with newly defined quantum numbers ñ=n−1, l̃= l+1,
j̃±= l̃±1/2 [61, 62]. Nowadays, PSS is widely accepted
as a relativistic symmetry [63], and the quantum num-
ber l̃ is nothing but the orbit angular momentum of the
lower components of the Dirac spinor. In recent decades,
lots of efforts have been devoted to understanding the
nature of PSS and the conservation conditions within
the relativistic mean field models with/without the Fock
terms [9, 34, 43, 44, 49, 64–75]. Similar to the spin
partners, it is also worth checking the sum rule for the
pseudo-spin partner states with the proposed relativistic
formalism of the tensor forces, which could be helpful to
understand the role of the tensor force in determining
the PSS. Correspondingly, the sum rule for pseudo-spin
partners can be expressed as,

Ṽsum≡
ˆ̃j2+V

T
j̃+ j̃′

+
ˆ̃
j2
−
V T
j̃− j̃′

=0, (14)

where ˆ̃j2=2j̃+1, and j̃± denotes the pseudo-spin partners.
Taking the neutron pseudo-spin doublets 1p̃ and 1d̃

in 90Zr as examples, Table 3 shows the interaction matrix
elements V T

j̃± j̃′
between the pseudo-spin partners, calcu-

lated with the supplemented relativistic formalism for
the tensor force components in the Fock diagram of the
σ-S coupling. In Table 3, the 2nd to 7th rows show the
results (in units of 10−1 MeV) calculated with the full
nucleon spinors. It is found that the sum rule is violated
completely, with the Ṽsum values one order of magnitude
larger than the V T

j̃± j̃′
values, and even the spin-dependent

characteristic of the tensor forces is not regular, as in the
cases of spin partners, any more. However, if one neglects
the upper components of nucleon spinors, which corre-
spond to the results (in units of 10−4 MeV) in the 8th to
13th rows, the agreement with the sum rule is improved
remarkably, while relatively less good than the cases ne-
glecting the lower components of nucleon spinors for spin
partners (see the 8th–13th rows in Tables 1 and 2). Fur-
thermore, if the j̃+ and j̃− orbits, as well as the j̃′+ and

j̃′
−
orbits, share the same radial wave functions, i.e., the

results (in units of 10−4 MeV) in the 14th-19th rows in
Table 3, eventually the sum rule is reproduced precisely
with negligible errors (Ṽsum.10−9 MeV). As depicted in
Table 3, similar systematics in describing the sum rule,
although the results are not shown here, are found with
the relativistic formalism for the tensor force components
in the Fock diagrams of ω-V , ρ-V , ρ-T and π-PV cou-
plings. It is also found, in the last six rows of Table
3, that the relations (13) for pseudo-spin partners are

fulfilled precisely if one neglects the upper components
and takes the same radial wave functions for the lower
components.

Table 3. Interaction matrix elements V T
j̃± j̃′

be-

tween the pseudo-spin partner states, namely the
pseudo orbital p̃ and d̃ of 90Zr, for the tensor
force components in the Fock diagram of the σ-
S couplings. The 2nd–7th rows show the results
(in units of 10−1 MeV) calculated with the radial
wave functions determined by the self-consistent
calculations of DDRHF with PKA1. For the re-
sults in the 8th-13th rows the upper components in
both the j̃± and the j̃′± orbits are omitted, and for
those in the 14th-19th rows the j̃± orbits, as well
as j̃′± orbits, share the same radial wave functions
in addition to neglecting the upper components;
both are in units of 10−4 MeV.

j̃±
j̃′

ν1p̃3/2 ν1p̃1/2 ν1d̃5/2 ν1d̃3/2

ν1p̃3/2 0.929 −0.142 0.672 −0.400

ν1p̃1/2 −0.142 −0.460 −0.128 −0.396

Ṽsum 3.433 −1.487 2.432 −2.390

ν1d̃5/2 0.672 −0.128 0.730 −0.272

ν1d̃3/2 −0.400 −0.396 −0.272 0.020

Ṽsum 2.432 −2.351 3.290 −1.555

ν1p̃3/2 0.931 −1.513 0.970 −1.161

ν1p̃1/2 −1.513 2.472 −1.578 1.902

Ṽsum 0.698 −1.106 0.722 −0.842

ν1d̃5/2 0.970 −1.578 1.591 −1.872

ν1d̃3/2 −1.161 1.902 −1.872 2.229

Ṽsum 1.172 −1.863 2.057 −2.315

ν1p̃3/2 0.618 −1.236 0.634 −0.951

ν1p̃1/2 −1.236 2.472 −1.268 1.902

Ṽsum −0.000 0.000 −0.000 −0.000

ν1d̃5/2 0.634 −1.268 0.991 −1.486

ν1d̃3/2 −0.951 1.902 −1.486 2.229

Ṽsum 0.000 −0.000 0.000 0.000

In order to understand the systematics of describing
the sum rule for pseudo-spin partners, Fig. 3 shows the
radial wave functionsG(r) and F (r) as functions of radial
distance r. The radial wave functions G(r) for the upper
components are quite different for the pseudo-spin part-
ners, from which the distinct violation of the sum rule
can be well understood. However, as shown in the lower
panels of Fig. 3, the lower components of the pseudo-spin
partners are of similar radial dependence, which accounts
for the approximate PSS. It is also interesting that the
radial wave functions F (r) for the pseudo-spin partners
are quantitatively different at large radial distance. As
a result, the sum rule for the pseudo-spin partners, if
neglecting the upper components, is not fulfilled as well
as for the spin partners neglecting the lower components.
Since the radial wave functions F (r) are nearly one order
of magnitude smaller than the upper ones G(r), it is not
surprising that the interaction matrix elements V T

j̃j̃′
are
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reduced by 3 orders of magnitude, if the upper compo-
nents of nucleon spinors are neglected.

Within the non-relativistic scheme [2] the sum rule
(12), as well as the relations (13), can be properly ful-
filled, particularly if one adopts the same radial wave
functions for the spin partners. For the pseudo-spin part-
ners, however, as depicted in the 2nd–7th rows of Table 3,
the relations (12) and (13) are not satisfied any more, due
to the nodal difference. One may argue that with identi-
cal wave functions these relations can be fulfilled. How-
ever, such an arbitrary approximation already changes
the pseudo-spin doublet states themselves. In the rela-
tivistic scheme, the relations (12) and (13) can be fulfilled
properly for the spin partners if the lower components
of the nucleon spinors are neglected, and can be repro-
duced precisely if one further lets the spin partners share
the same radial wave functions G(r). Moreover, for the
pseudo-spin partners, the sum rules can be also fulfilled
to certain extent if one neglects the upper components,
and further these relations can be satisfied precisely with
identical radial wave functions F (r) that correspond to
the exact PSS.

Fig. 3. (color online) Radial wave functions of
the pseudo-spin partner states ν1p̃ and ν1d̃ in
90Zr, where G(r) denotes the upper components
and F (r) corresponds to the lower components.
The results are extracted from the calculations of
DDRHF with PKA1.

3.3 Sum rule for the nodal states

As discussed in the previous subsections, the nodal
differences in the lower components of spin-partners, as
well as in the upper components of the pseudo-spin part-
ners, induce distinct violations of the sum rules (12) and
(13). It is then worth checking the validity of the sum
rules for the nodal states with the relativistic formalism
for the tensor force components in the Fock diagrams.

Taking the nodeless neutron orbit ν1h, and the nodal
orbits ν2d and ν3p in 208Pb as examples, Tables 4–6
shows the interaction matrix elements V T

j±j′
(in units of

10−2 MeV), calculated with the supplemented relativis-
tic formalism for the tensor force components in the Fock
diagram of the σ-S coupling. As expected, the magni-
tude of V T

j±j′
tends to be smaller with increasing mass

numbers, i.e., the units changing from 10−1 MeV to 10−2

MeV. Similar to the results in the 2nd to 7th rows in Table
1, Table 4 shows the results calculated with the full nu-
cleon spinors, and distinct deviations from the sum rule
can be seen with the Vsum values comparable to V T

j±j′

themselves. Notice that the sum rules are scaled with
the occupations ĵ2

±
, see Eqs. (12) and (13), and as a

result the violation of the sum rules then increases with
increasing angular momentum, particularly for the high-
j orbits ν1h and ν2f . For V T

j±j′
between the ν3p orbits,

the deviations from the sum rule are also surprisingly
large.

Table 4. Interaction matrix elements V T
j±j′

(10−2

MeV) between the spin partner states, namely the
nodeless neutron orbit 1h and the nodal neutron
orbits 2d and 3p of 208Pb, for the tensor force
components in the Fock diagram of the σ-S cou-
plings. The results are calculated with the radial
wave functions determined by the self-consistent
calculations of DDRHF with PKA1.

j±
j′

ν1h11/2 ν1h9/2 ν2f7/2 ν2f5/2 ν3p3/2 ν3p1/2

ν1h11/2 3.048 −4.884 0.617 −1.603 −0.089 −0.713

ν1h9/2 −4.884 3.673 −1.971 0.918 −0.778 0.021

Vsum −12.26 −21.88 −12.31 −10.05 −8.850 −8.354

ν2f7/2 0.617 −1.971 1.114 −3.344 −0.231 −1.298

ν2f5/2 −1.603 0.918 −3.344 2.186 −1.237 0.187

Vsum −4.680 −10.26 −11.15 −13.63 −9.274 −9.266

ν3p3/2 −0.089 −0.778 −0.231 −1.237 −0.007 −4.389

ν3p1/2 −0.713 0.021 −1.298 0.187 −4.389 3.600

Vsum −1.782 −3.072 −3.521 −4.577 −8.806 −10.35

Furthermore, if we neglect the lower components of
the nucleon spinors, i.e., the results in Table 5, the agree-
ments with the sum rule are distinctly improved, despite
the large scaling factors in high-j orbits. Specifically,
for V T

j±j′
between the ν3p orbits, the deviations from the

sum rule tend to vanish. In fact it can also be found that
for the repulsive-type V T

j±j′
, namely V T

j+j
′
+

and V T
j−j

′
−

, the

contributions from the lower component are also remark-
able, and even change the sign of the interaction matrix
elements (see Table 4). The Vsum values for the high-j
orbits ν1h and ν2f are in general larger than those for
ν3p orbits, see Table 5. This can be clearly understood
from the radial wave functions G(r) shown in Fig. 4. It is
shown that the differences in the wave functions G(r) of
the spin partners ν1h are large, due to the fact that the
ν1h orbits cross over the major shell N=82, whereas the
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ν3p orbits have almost identical G(r). If one lets the j+
and j− orbits, as well as j′+ and j′

−
orbits, share the same

radial wave functions in addition to neglecting the lower
components, as shown in Table 6, the sum rules can be
reproduced precisely with negligible errors (Vsum .10−7

MeV).

Table 5. Interaction matrix elements V T
j±j′

(10−2

MeV) between the spin partner states, namely
the nodeless neutron orbit 1h and the nodal neu-
tron orbits 2d and 3p of 208Pb, for the tensor
force components in the Fock diagram of the σ-S
couplings, with the lower components of nucleon
spinors in both j± and j′± orbits omitted. The re-
sults are calculated with the radial wave functions
determined by the self-consistent calculations of
DDRHF with PKA1.

j±
j′

ν1h11/2 ν1h9/2 ν2f7/2 ν2f5/2 ν3p3/2 ν3p1/2

ν1h11/2 3.820 −4.553 1.086 −1.384 0.260 −0.503

ν1h9/2 −4.553 5.516 −1.453 1.807 −0.339 0.655

Vsum 0.317 0.529 −1.504 1.463 −0.268 0.509

ν2f7/2 1.086 −1.453 2.263 −2.880 0.462 −0.889

ν2f5/2 −1.384 1.807 −2.880 3.703 −0.611 1.173

Vsum 0.383 −0.786 0.828 −0.817 0.033 −0.072

ν3p3/2 0.260 −0.339 0.462 −0.611 1.818 −3.533

ν3p1/2 −0.503 0.655 −0.889 1.173 −3.533 6.872

Vsum 0.033 −0.045 0.070 −0.095 0.204 −0.389

Table 6. Interaction matrix elements V T
j±j′

(10−2

MeV) between the spin partner states, namely the
nodeless neutron orbit 1h and the nodal neutron
orbits 2d and 3p of 208Pb, for the tensor force com-
ponents in the Fock diagram of the σ-S couplings,
with the lower components of nucleon spinors in
both j± and j′± orbits omitted, and the j± orbits
and j′± orbits sharing the same radial wave func-
tions. The results are calculated with the radial
wave functions determined by the self-consistent
calculations of DDRHF with PKA1.

j±
j′

ν1h11/2 ν1h9/2 ν2f7/2 ν2f5/2 ν3p3/2 ν3p1/2

ν1h11/2 3.820 −4.584 1.086 −1.448 0.260 −0.520

ν1h9/2 −4.584 5.501 −1.303 1.737 −0.312 0.624

Vsum 0.000 0.000 0.000 −0.000 −0.000 −0.000

ν2f7/2 1.086 −1.303 2.263 −3.018 0.462 −0.924

ν2f5/2 −1.448 1.737 −3.018 4.024 −0.616 1.232

Vsum 0.000 0.000 0.000 0.000 −0.000 −0.000

ν3p3/2 0.260 −0.312 0.462 −0.616 1.818 −3.636

ν3p1/2 −0.520 0.624 −0.924 1.232 −3.636 7.271

Vsum −0.000 0.000 −0.000 −0.000 0.000 0.000

Similar tests were also performed with the relativis-
tic formalism for the tensor force components in the Fock
diagrams of the ω-V , ρ-V , π-PV and ρ-T couplings in
DDRHF with PKA1, and similar systematics are found

for the nodal orbits on the tensor sum rule. Following
the characteristics of tensor force, the interactions be-
tween the partners {j±,j

′

+} are opposite to the ones be-
tween the partners {j±,j

′

−
}. Notice that the states j±

are often denoted with the quantum number κ±, with
κ±=∓(j+1/2). In addition, with the relativistic repre-
sentation of nucleon spinors, the signs of κ are opposite
for the upper and lower components. Thus, according
to the spin-dependent feature of the tensor force, the
signs of V T

GjGj′
and V T

FjFj′
are different from the signs

of V T
GjFj′

and V T
FjGj′

. So the dialog between the upper

component of the j (j ′) state and the lower component
of the j′ (j) state, namely V T

GjFj′
(V T

FjGj′
), will partly

cancel the dominant contributions of V T
GjGj′

between the

upper components of states j and j ′ via the tensor force.
As a result, distinct violations of the sum rules are then
found in Tables 1-6 due to the interference between the
upper and lower components of nucleon spinors.

Fig. 4. (color online) Radial wave functions G(r) of
the spin partner states ν1h, ν2f and ν3p in 208Pb.
The results are extracted from the calculations of
DDRHF with PKA1.

4 Summary

In conclusion, the nature of nuclear tensor force has
been illustrated in detail within the relativistic Hartree-
Fock approach, with a series of relativistic formalisms
of the tensor forces which are naturally introduced by
the Fock diagrams of meson-nucleon couplings. Tak-
ing the original wave functions determined by the self-
consistent DDRHF calculations, namely without drop-
ping the lower components of Dirac spinors, the contribu-
tions to the spin-orbit splitting from the Fock diagrams
have been analyzed in selected realistic nuclei, and it has
been shown that the spin-dependent feature described by
the relativistic formalism for the tensor force is overesti-
mated in the σ-S coupling channel. Drawing inspiration
from different ranks of Lorentz tensor couplings used in
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various meson coupling channels, the relativistic formal-
ism for the tensor force component in the σ-S channel
was then supplemented to its higher rank, and proved
to be impressive in fully interpreting the spin-dependent
feature of the tensor force brought about by the Fock
terms in realistic nuclei, without ignoring the lower com-
ponents of nucleon spinors.

Taking the doubly magic nuclei 48Ca and 208Pb and
the semi-magic one 90Zr as candidates, the tensor sum
rules were then tested for the spin and pseudo-spin part-
ners with and without nodes, to further investigate the
tensor force nature within the relativistic model. Due to
the opposite signs of the κ quantities of the upper and
lower components, as well as the nodal difference, it is

shown that the interference between the two components
of nucleon spinors brings distinct violations of the tensor
sum rules in realistic nuclei. The spin dependence in the
contributions to the spin-orbit splittings from the Fock
diagrams can be almost fully taken into account by the
supplemented relativistic formalism of the tensor force
components. Moreover, if one neglects the lower/upper
components of nucleon spinors for the spin/pseudo-spin
partners, the sum rules can be fulfilled properly, and can
be precisely reproduced if, in addition, the same radial
wave functions are taken for the spin/pseudo-spin part-
ners, clearly revealing the nature of the tensor force, and
illustrating the validity of the relativistic formalism of
nuclear tensor forces.
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