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Abstract: We report a possible dipole anisotropy in acceleration scale g† with 147 rotationally supported galaxies

in the local Universe. It is found that a monopole and dipole correction for the radial acceleration relation can better

describe the SPARC data set. The monopole term is negligible but the dipole magnitude is significant. It is also

found that the dipole correction is mostly induced by anisotropy in the acceleration scale. The magnitude of the

ĝ†-dipole reaches 0.25±0.04, and its direction is aligned to (l,b)=(171.30◦±7.18◦,−15.41◦±4.87◦), which is very close

to the maximum anisotropy direction from the hemisphere comparison method. Furthermore, a robust check shows

that the dipole anisotropy could not be reproduced by an isotropic mock data set. However, it is still premature to

claim that the Universe is anisotropic, due to the small data samples and uncertainty in the current observations.
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1 Introduction

One of the foundations of the standard cosmological
paradigm (ΛCDM) is the so-called cosmological princi-
ple, which states that the Universe is homogeneous and
isotropic at large scales [1]. This principle is in accor-
dance with most cosmological observations, especially
with the approximate isotropy of the cosmic microwave
background (CMB) radiation from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) [2, 3] and Planck
satellites [4, 5]. However, there still exist some cosmo-
logical observations that challenge the cosmological prin-
ciple. These include the large-scale alignments of quasar
polarization vectors [6], the unexpected large-scale bulk
flow [7, 8], the spatial variation of the fine structure con-
stant [9, 10], and the dipole of supernova distance modu-
lus [11–14]. All of these facts hint that the Universe may
be anisotropic to some extent.

On the galactic scale, the mass discrepancy problem
[15, 16] has been known for many years. The observed
gravitational potential cannot be explained by the lumi-
nous matter (stellar and gas). Hence, it seems that there
a significant amount of non-luminous matter is needed,
i.e. dark matter. To date, however, no direct evidence
of the existence of dark matter has been found [17, 18].

A successful alternative to the dark matter hypothesis is
the modified Newtonian dynamics (MOND) [19], which
attributes the mass discrepancies in galactic systems to a
departure from standard dynamics at low accelerations.

In principle, the MOND theory assumes a universal
constant acceleration scale for all galaxies [19–21]. In
practice, however, the acceleration scale is considered as
a free parameter to fit the galaxy rotation curve, and
different galaxies may have different acceleration scales
[22–24]. Milgrom [25] also suggested that the acceler-
ation scale may be a fingerprint of cosmology on local
dynamics and related to the Hubble constant. There-
fore, cosmological anisotropy at large scales may imprint
on the acceleration scale in the local Universe. These
ideas inspire us to investigate the possibility of spatial
anisotropy in the acceleration scale. In our previous
work [26], by making use of the hemisphere comparison
method to search for such an anisotropy from the SPARC
data set, we found that the maximum anisotropy level is
significant and reaches up to 0.37±0.04 in the direction
(l,b)=(175.5◦+6◦

−10◦ ,−6.5◦+9◦

−3◦). In this paper, we search for
a monopole and dipole correction for the radial accelera-
tion relation, and try to find the possible anisotropy from
the SPARC data set.
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Fig. 1. (color online) The radial acceleration relation between the centripetal acceleration gobs and the baryonic
acceleration gbar for all 2693 data points in 147 galaxies. The two dotted lines correspond to the fitting curve
(g†=1.20×10−10 m s−2) in McGaugh et al. [29] and our fitting curve (g†=1.02×10−10 m s−2), respectively. The
solid line is the line of unity.

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief introduction to the SPARC data
set and the radial acceleration relation. In Section 3,
we show a monopole and dipole correction for the ra-
dial acceleration relation by making use of the Markov
chain Monte Carlo (MCMC) method to explore the en-
tire parameter space. The information criterion (IC) is
used for model comparison. In Section 4, the MCMC
results for whole parameter spaces are analyzed, and we
compare the dipole anisotropy and the goodness of fit
for different dipole models. We also compare the possi-
ble dipole anisotropy with the hemisphere anisotropy in
our previous work [26]. In Section 5, we make a robust
check to examine whether the dipole anisotropy could be
reproduced by a statistically isotropic data set. Finally,
conclusions and discussion are given in Section 6.

2 Data and radial acceleration relation

We employ the new Spitzer Photometry and Accu-
rate Rotation Curves (SPARC) data set [27, 28]. The
SPARC data set is a sample of 175 disk galaxies with new
surface photometry at 3.6 µm and high-quality rotation
curves from previous HI/Hα studies. For investigating
the radial acceleration relation, McGaugh et al. [29] have
adopted a few modest quality criteria to exclude some
unreliable data. Finally, a sample of 2693 data points in
147 galaxies have been left. Here we use the same sam-
ple to search for the possible spatial dipole anisotropy.
The SPARC data set does not include the galactic co-
ordinate. We complete it for each galaxy from previous
studies [30, 31] and by retrieving the NED dataset [32].

McGaugh et al. [29] obtained a fitting function that
describes the radial acceleration relation well for all 2693
data points. The fitting function is of the form

gobs=
gbar

1−e−
√

gbar/g†
, (1)

where gbar is the baryonic (gravitational) acceleration
predicted by the distribution of baryonic mass and gobs
is the observed dynamic centripetal acceleration traced
by rotation curves. The function has a unique fitting
parameter g†, which corresponds to the MOND accel-
eration scale. They found g† = [1.20±0.02 (random)±
0.24 (systematic)]×10−10 m s−2. This value is consistent
with that predicted by the MOND theory [19, 33]. The
MOND theory also predicts two limiting cases for the ra-
dial acceleration relation. In the deep-MOND limit, i.e.
gbar≪g†, the fitting function (1) becomes gobs≈√

gbarg†,
where the mass discrepancy appears. In the Newtonian
limit, i.e. gbar ≫ g†, the fitting function (1) becomes
gobs ≈ gbar and Newtonian dynamics is recovered. The
radial acceleration relation and the SPARC data points
are illustrated in Fig. 1.

3 Methodology

3.1 Fitting method

The same as McGaugh et al. [29], we make use of the
orthogonal-distance-regression (ODR) algorithm [34] to
fit the radial acceleration relation. The advantage of this
method is that it can consider errors on both variables.
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The chi-squared is defined as

χ2=
n∑

i=1

[gth(gbar,i+δi,g†)−gobs,i]
2

σ2
obs,i

+
δ2i

σ2
bar,i

, (2)

where σobs and σbar are the uncertainty of gobs and gbar,
respectively. The total number of data points is n=2693.
δi is an interim parameter which is used for finding out
the weighted orthogonal (shortest) distance from the
curve gth(gbar,g†) to the ith data point. The curve is
same as the right-hand side of Eq. (1), i.e.

gth(gbar,g†)=
gbar

1−e−
√

gbar/g†
, (3)

where gth represents the theoretical centripetal acceler-
ation. Therefore, the chi-squared (2) is the sum of the
squares of the weighted orthogonal distances from the
curve to the n data points. Eventually, we minimize
the chi-squared to find the best-fit value of g†. We re-
peat the fitting process used by McGaugh et al. [29]
and reproduce the same result, if the logarithmic dis-
tance (base 10) of the first term in the chi-squared (2) is
taken. For the original form of chi-squared (2), we find
the best-fit value for the universal acceleration scale is
g†=(1.02±0.02)×10−10 m s−2, which corresponds to the
unnormalized chi-squared χ2 =4020. This fitting curve
is also plotted in Fig. 1. It is worth noting that the dif-
ference in the best-fit value comes from the form of the
first term in the chi-squared (2), which could only have
a slight impact on the possible dipole anisotropy. What
we are concerned with here is the relative variation of the
acceleration scale in different directions, which is similar
to the hemisphere anisotropy.

3.2 Monopole and dipole corrections

The MOND theory assumes a universal constant ac-
celeration scale for all galaxies [19–21]. However, the
acceleration scale has been found to vary from galaxy
to galaxy [22–24]. In our previous work [26], we found
that there exists a hemisphere anisotropy in acceleration
scale in the SPARC data set. In this paper, we show
a monopole and dipole correction for the radial accel-
eration relation to search for a possible spatial dipole
anisotropy in the local Universe. The monopole and
dipole correction is a commonly used method to search
for possible dipole anisotropy, for instance, the spatial
variation of the fine structure constant [9, 10], and the
dipole modulation of supernova distance modulus [11–
14]. Here, we first assume the dipole anisotropy comes
from the radial acceleration. The theoretical centripetal
acceleration with a monopole and dipole correction is of
the form

ĝth(gbar,g†)=gth(gbar,g†)[1+A+Bm̂·p̂], (4)

where the acceleration scale has been fixed at the best-
fit value g† = 1.02×10−10 m s−2. A and B are the

monopole term and dipole magnitude, respectively. m̂

and p̂ are unit vectors pointing towards the dipole di-
rection and galaxy position, respectively. In galactic
coordinates, the dipole direction can be represented as
m̂= cos(b)cos(l)̂i+cos(b)sin(l)̂j+sin(b)k̂, where l and b

are galactic longitude and latitude, respectively. Simi-
larly, the position of the ith galaxy can be represented
as p̂i = cos(bi)cos(li)̂i+cos(bi)sin(li)̂j+sin(bi)k̂. Then
we use the corrected theoretical centripetal accelera-
tion ĝth(gbar,g†) for the chi-squared (2), and employ the
MCMC method to explore the entire parameter space
{A,B,l,b}. We have no information about the dipole
anisotropy, thus a flat prior for the parameter space is
needed, which will be discussed in Section 4. Actually,
the MCMC method used here is same as the maximum
likelihood method, and the best-fit value corresponds to
the minimal chi-squared (χ2

min=−2lnLmax).
Second, we assume that the dipole anisotropy in ra-

dial acceleration is induced by spatial variation of the
acceleration scale, which is a unique parameter in the
radial acceleration relation. The acceleration scale with
a monopole and dipole correction is of the form

ĝ†=g†(1+C+Dn̂·p̂), (5)

where the fiducial acceleration scale has also been fixed
at the best-fit value g†=1.02×10−10 m s−2, and other pa-
rameters have analogous meanings with those in Eq. (4).
Then we substitute the corrected acceleration scale (5)
into the theoretical centripetal acceleration (3). By mak-
ing use of gth(gbar,ĝ†) for the chi-squared (2), we employ
the MCMCmethod to explore the entire parameter space
{C,D,l,b}. Finally we minimize the chi-squared to ob-
tain the best-fitting value.

The monopole terms in both corrections are retained
for complete description, but usually the monopole term
is negligible. As a comparison, we repeat the above pro-
cess with only the dipole term for both corrections. In
total we have four corrections for the radial acceleration
relation.

3.3 Model comparison

To assess the goodness of fit and take account of the
number of free parameters in each model, we employ the
information criteria (IC) to compare the corrected model
i.e. ĝth(gbar,g†) or gth(gbar,ĝ†) with the reference model
gth(gbar,g†). Here the corrected model can degenerate to
the reference model when the monopole term and the
dipole magnitude both equal zero. The two most widely
used information criteria are the Akaike information cri-
terion (AIC) [35] and the Bayesian information criterion
(BIC) [36]. They are defined as

AIC=χ2
min+2k, (6)

BIC=χ2
min+klnn, (7)
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where χ2
min is the minimal chi-squared calculated by

Eq. (2), k is the number of free parameters, and the total
number of data points is n=2693. Differently from AIC,
due to ln2693>2, the BIC heavily penalizes models with
an excess of free parameters. Only the relative value of
IC between different models is important in the model
comparison. By convention, a model with ∆IC > 5 is
regarded as ‘strong’ and ∆IC>10 as ‘decisive’ evidence
against a weaker model with higher IC value [37–39].

4 Results

We implement the MCMC method by using the
affine-invariant Markov chain Monte Carlo ensemble
sampler in emcee [40], which is widely used in astro-
physics and cosmology. One hundred random walkers
were used to explore the entire parameter space. We ran
500 steps in the burn-in phase and another 2000 steps
in the production phase, which is enough for our pur-

pose. The dipole direction and its opposite direction give
the same correction when the dipole magnitude changes
its sign. To obtain an unambiguous result, we confined
the dipole magnitude to be positive, and constrained the
dipole direction to one cycle range, i.e. l∈ [0◦,360◦], b∈
[−90◦,90◦]. The MCMC method needs a prior distribu-
tion for each parameter but we do not have any informa-
tion about the dipole anisotropy. In this paper, we adopt
a flat prior distribution for each parameter as follows:
A(C)∼[−1,1], B(D)∼[0,1], l∼[0◦,360◦], b∼[−90◦,90◦].

The MCMC result for parameter space {A,B,l,b}
is shown in Fig. 2. For every parameter, its distribu-
tion is almost Gaussian and the slightly larger one of
1σ credible interval is regarded as its uncertainty. The
ĝth-monopole term is A = −0.01±0.01. It is negligi-
ble. The ĝth-dipole magnitude is B = 0.10±0.01. It is
a significant signal for anisotropy. The ĝth-dipole di-
rection points towards (l,b)= (176.54◦±7.55◦,−16.59◦±
5.11◦). The MCMC result for another parameter space
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Fig. 2. The 1-dimensional marginalized histograms and 2-dimensional marginalized contours for the parameter space
{A,B,l,b}. The horizontal and vertical solid lines mark the median values. The vertical dashed lines mark the 1σ
credible intervals. These values are labeled at the top of each histogram. The 2-dimensional marginalized contours
mark 1σ, 2σ credible regions from grey to light.
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Fig. 3. The 1-dimensional marginalized histograms and 2-dimensional marginalized contours for the parameter space
{C,D,l,b}. The horizontal and vertical solid lines mark the median values. The vertical dashed lines mark the 1σ
credible intervals. These values are labeled at the top of each histogram. The 2-dimensional marginalized contours
mark 1σ, 2σ credible regions from grey to light.

Table 1. The best-fit values with their 1σ uncertainties for four dipole models. The unnormalized χ2 for each
correction, and the ∆IC values, which are against the reference model (3), are given in the last three columns.

model A(C) B(D) l b χ2 ∆AIC ∆BIC

ĝth-dipole −0.01±0.01 0.10±0.01 176.54◦±7.55◦ −16.59◦±5.11◦ 3955 -59 -41

- 0.09±0.01 178.96◦±7.52◦ −18.84◦±3.90◦ 3956 -60 -48

ĝ†-dipole −0.04±0.02 0.25±0.04 171.30◦±7.18◦ −15.41◦±4.87◦ 3962 -52 -34

- 0.23±0.04 175.79◦±8.14◦ −22.80◦±4.29◦ 3967 -49 -37

{C,D,l,b} is shown in Fig. 3. The same as Fig. 2, the
distribution for each parameter is almost Gaussian. The
ĝ†-monopole term is C=−0.04±0.02. It is more signifi-
cant than the ĝth-monopole term, but it is still negligible.
The ĝ†-dipole magnitude is D=0.25±0.04. It is another
significant signal for anisotropy. The ĝ†-dipole term di-
rectly indicates that the acceleration scale could be spa-
tially variable. The ĝ†-dipole direction points towards
(l,b)=(171.30◦±7.18◦,−15.41◦±4.87◦).

The 2-dimensional marginalized contours for both pa-
rameter spaces have very similar shapes. In addition,

the two dipole directions are very close to each other,
and the angular separation is only 5.17◦ (see Fig. 4).
Furthermore, the minimal chi-squared of the ĝ†-dipole
model is close to that of the ĝth-dipole model (see Ta-
ble 1). These results mean that the dipole anisotropy
in the radial acceleration is mostly induced by the dipole
anisotropy in the acceleration scale. In our previous work
[26], we employed the hemisphere comparison method
with the same SPARC data set to search for possible
spatial anisotropy in the acceleration scale. We found
the maximum anisotropy direction is pointing in the di-
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Fig. 4. (color online) The distribution of 147 SPARC galaxies on the sky (galactic coordinate system). Each point
represents a single galaxy. The square points with confidence regions, labeled with numbers, represent the direction
of the hemisphere anisotropy (2σ) or dipole anisotropy (1σ). Specifically, they are: 1) the hemisphere anisotropy;
2) the ĝ†-dipole anisotropy with monopole and dipole corrections; 3) the ĝth-dipole anisotropy with monopole and
dipole corrections; 4) the ĝth-dipole anisotropy with dipole correction; and 5) the ĝ†-dipole anisotropy with dipole
correction.

rection (l,b)=(175.5◦+6◦

−10◦ ,−6.5◦+9◦

−3◦), which is very close
to the ĝ†-dipole direction, and the angular separation is
only 9.82◦ (see Fig. 4).

For both the dipole models, the monopole term is in-
deed negligible compared to the dipole magnitude, so
we can neglect it from both corrections. Table 1 is
the MCMC result for all dipole models with or with-
out the monopole term. Without the monopole term,
both dipole magnitudes become slightly smaller, and the
dipole directions are both shifted a little to the southeast,
with an angle less than 8.52◦ (see Fig. 4). In addition,
the chi-squares also have a slightly increase. These re-
sults indicate that the monopole term only has a slight
impact on the dipole anisotropy. Both AIC and BIC
indicate that there is ‘decisive’ evidence for all dipole
models against the reference model, but it is indistin-
guishable from the dipole model with or without the
monopole term. Even though there is ‘strong’ evidence
for the ĝth-dipole model against ĝ†-dipole model, these
models could be compatible when the dipole anisotropy
in radial acceleration is induced by the dipole anisotropy
in acceleration scale.

5 Monte Carlo simulations

As a robust check, we examined whether the dipole
anisotropy could be derived from statistical isotropy.
First we created a mock data set from the SPARC data
set. The dynamic centripetal acceleration gobs is replaced
by a random number which has a Gaussian distribution,
i.e. G(gth,σobs). Here gth is the theoretical centripetal ac-
celeration (3) and the acceleration scale has been fixed at
the best-fit value g†=1.02×10−10 m s−2. σobs is the uncer-

tainty in gobs. Except for the dynamic centripetal accel-
eration, other data, including the galactic coordination,
acceleration uncertainties and the baryonic acceleration,
remained unchanged. Then we employed the monopole
and dipole corrections (4) and (5) for the radial accelera-
tion relation with the mock data set and used the MCMC
method to explore the entire parameter space {A,B,l,b}
and {C,D,l,b}.
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Fig. 5. (color online) The monopole term A and
the dipole magnitude B in the isotropic mock data
set for 10000 Monte Carlo simulations.

For both the dipole models, we find that it is hard to
constrain the dipole direction. It has a relatively large
uncertainty and spans in all possible directions. The
monopole term is still negligible, but the dipole magni-
tude becomes much less than that from the SPARC data
set. Figures 5 and 6 show the results of 10000 simula-
tions for the ĝth-dipole model and ĝ†-dipole model (here
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we use only the ODR algorithm to fit the radial accel-
eration relation, on account of the computation time).
For the ĝth-dipole model, the monopole term centers on
Ā = 0.01. It rarely reaches Amax = 0.03, so that the
monopole term is still negligible. The dipole magnitude
centers on B̄ = 0.01, and its upper limit only reaches
Bmax=0.04. It is much less than the dipole magnitude
from the SPARC data set. For the ĝ†-dipole model, the
monopole term centers on C̄ = 0.01. It rarely reaches
Cmax=0.07, so that the monopole term is still negligible.
The dipole magnitude centers on D̄=0.03, and its upper
limit only reaches Dmax=0.10. It is much less than the
dipole magnitude from the SPARC data set. All these
results mean that the dipole anisotropy from the original
SPARC data set could not be reproduced by the isotropic
mock data set. This check is consistent with the robust
check for the hemisphere comparison method [26].
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Fig. 6. (color online) The monopole term C and
the dipole magnitude D in the isotropic mock
data set for 10000 Monte Carlo simulations.

6 Discussion and conclusions

In this paper, we have shown the monopole and dipole
correction for the radial acceleration relation with 147
rotationally supported galaxies. We found that there
exists a significant dipole anisotropy in the radial ac-
celeration, which is most probably induced by dipole
anisotropy in the acceleration scale. The ĝ†-dipole mag-
nitude is significant and reaches D = 0.25±0.04. The
ĝ†-dipole direction is pointing in the direction (l,b) =
(171.30◦±7.18◦,−15.41◦±4.87◦), which is very close to
the maximum anisotropy direction from the hemisphere
comparison method. The monopole term is negligible.
It only has a slight impact on the dipole anisotropy.
The same as the hemisphere comparison method, a ro-
bust check has been made to examine the significance of
the dipole anisotropy. The result shows that the dipole

anisotropy cannot be reproduced by an isotropic mock
data set.

As pointed out in the introduction, the cosmologi-
cal principle has been challenged by some cosmological
observations. In this paper, we have found a possible
dipole anisotropy in the acceleration scale g† in the local
Universe. The dipole direction is very close to the cos-
mological preferred direction from the hemisphere com-
parison method [26]. In addition, we find that the dipole
direction in this paper is close to some other cosmological
preferred directions. For instance, the anisotropy of cos-
mic acceleration [41] from Type Ia supernovae has been
found to have a dipole direction (l,b)=(187.0◦,−18.8◦),
which is close to our dipole direction, with an angular
separation of only 15.38◦. Another dipole direction is
from the spatial variation of the fine structure constant
[9, 10], and it only has an angular separation of 35.37◦.
All these preferred directions hint that the Universe may
be anisotropic, which could be related to some underly-
ing physical effects, such as spacetime anisotropy [42–44].
If the cosmological principle is no longer valid, the stan-
dard ΛCDM model needs to be modified. However, it is
still premature to claim that the Universe is anisotropic,
due to the small data samples and the uncertainty in the
current observations.

There are still some uncertainties in the original
SPARC data set. As stated by McGaugh et al. [29],
near-infrared (NIR) luminosity was observed, while
physics requires stellar (baryonic) mass. The mass-to-
light ratio Υ∗ is an unavoidable conversion factor which
can be estimated by the stellar population synthesis
(SPS) model [45]. The SPS model suggests that Υ∗ is
nearly constant in the NIR (within ∼0.1 dex), thus Mc-
Gaugh et al. [29] assume a constant Υ∗ for all galaxies
to fit the radial acceleration relation. We use the same
assumption in this paper as a precondition to search for
the possible dipole ansitropy. Recently, Li et al. [46]
took Υ∗ as ‘free’ parameter to fit the radial acceleration
relation to individual SPARC galaxies. If the possible
small variation of Υ∗ is taken into account, then the
possible dipole anisotropy on acceleration scale may be
impacted. Further investigations are necessary to seek
possible degeneracy. Another possible uncertainty comes
from the inhomogeneous distribution of galaxies in the
sky (see Fig. 4). For future research on anisotropy with
galaxies, it would be better to cover the sky homoge-
neously.

We are grateful to Dr. Yu Sang and Dong Zhao for
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access of the SPARC data set.

115103-7



Chinese Physics C Vol. 42, No. 11 (2018) 115103

References

1 S. Weinberg, Cosmology , (Oxford, UK: Oxford University
Press, 2008)

2 C. L. Bennett et al (WMAP), Astrophys. J. Suppl., 208: 20 (2013)
3 G. Hinshaw et al (WMAP), Astrophys. J. Suppl., 208: 19 (2013)
4 P. A. R. Ade et al (Planck), Astron. Astrophys., 571: A16 (2014)
5 P. A. R. Ade et al (Planck), Astron. Astrophys., 594: A13 (2016)
6 D. Hutsemekers, R. Cabanac, H. Lamy, and D. Sluse,

Astron. Astrophys., 441: 915 (2005)
7 A. Kashlinsky, F. Atrio-Barandela, H. Ebeling, A. Edge, and

D. Kocevski, Astrophys. J., 712: L81 (2010)
8 H. A. Feldman, R. Watkins, and M. J. Hudson,

Mon. Not. Roy. Astron. Soc., 407: 2328 (2010)
9 J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum,

R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett., 107:
191101 (2011)

10 J. A. King, J. K. Webb, M. T. Murphy, V. V. Flambaum, R. F.
Carswell, M. B. Bainbridge, M. R.Wilczynska, and F. E. Koch,
Mon. Not. Roy. Astron. Soc., 422: 3370 (2012)

11 A. Mariano and L. Perivolaropoulos, Phys. Rev. D, 86: 083517
(2012)

12 Z. Chang, X. Li, H.-N. Lin, and S. Wang, Eur. Phys. J. C, 74:
2821 (2014)

13 Z. Chang and H.-N. Lin, Mon. Not. Roy. Astron. Soc., 446:
2952 (2015)

14 H.-N. Lin, X. Li, and Z. Chang, Mon. Not. Roy. Astron. Soc.,
460: 617 (2016)

15 V. C. Rubin, W. K. Ford, Jr., and N. Thonnard,
Astrophys. J., 225: L107 (1978)

16 A. Bosma, Astron. J., 86: 1825 (1981)
17 A. Tan et al (PandaX-II), Phys. Rev. Lett., 117: 121303 (2016)
18 E. Aprile et al (XENON100), Phys. Rev. D, 94: 122001 (2016)
19 M. Milgrom, Astrophys. J., 270: 365 (1983)
20 M. Milgrom, New Astron. Rev., 46: 741 (2002)
21 M. Milgrom, Mon. Not. Roy. Astron. Soc., 437: 2531 (2014)
22 K. G. Begeman, A. H. Broeils, and R. H. Sanders,

Mon. Not. Roy. Astron. Soc., 249: 523 (1991)
23 R. A. Swaters, R. H. Sanders, and S. S. McGaugh,

Astrophys. J., 718: 380 (2010)
24 Z. Chang, M.-H. Li, X. Li, H.-N. Lin, and S. Wang,

Eur. Phys. J. C, 73: 2447 (2013)
25 M. Milgrom, in Proceedings, 2nd International Heidelberg

Conference on Dark matter in astrophysics and particle
physics (DARK 1998): Heidelberg, Germany, July 20-25, 1998
(1998) p. 443–457

26 Y. Zhou, Z.-C. Zhao, and Z. Chang, Astrophys. J., 847: 86 (2017)
27 F. Lelli, S. S. McGaugh, and J. M. Schombert,

Astron. J., 152: 157 (2016)
28 http://astroweb.cwru.edu/SPARC/

29 S. S. McGaugh, F. Lelli, and J. M. Schombert,
Phys. Rev. Lett., 117: 201101 (2016)

30 A. Begum and J. N. Chengalur, Astron. Astrophys., 424: 509 (2005)
31 W. J. G. de Blok, S. S. McGaugh, and J. M. van der Hulst,

Mon. Not. Roy. Astron. Soc., 283: 18 (1996)
32 http://ned.ipac.caltech.edu/

33 M. Milgrom, (2016), arXiv:1609.06642
34 P. T. Boggs, R. H. Byrd, and R. B. Schnabel,

SIAM Journal on Scientific and Statistical Computing, 8: 1052
(1987)

35 H. Akaike, IEEE Transactions on Automatic Control, 19: 716
(1974)

36 G. Schwarz, Annals of Statistics, 6: 461 (1978)
37 A. R. Liddle, Mon. Not. Roy. Astron. Soc., 377: L74 (2007)
38 F. Arevalo, A. Cid, and J. Moya, Eur. Phys. J. C, 77: 565 (2017)
39 H.-N. Lin, X. Li, and Y. Sang, (2017), arXiv:1711.05025
40 D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman,

Publications of the Astronomical Society of the Pacific, 125:
306 (2013)

41 W. Zhao, P.-X. Wu, and Y. Zhang, Int. J. Mod. Phys. D, 22:
1350060 (2013)

42 Z. Chang, S. Wang, and X. Li, Eur. Phys. J. C, 72: 1838 (2012)
43 Z. Chang, M.-H. Li, and S. Wang, Phys. Lett. B, 723: 257 (2013)
44 X. Li, H.-N. Lin, S. Wang, and Z. Chang,

Eur. Phys. J. C, 75: 181 (2015)
45 J. M. Schombert and S. McGaugh, PASA, 31: e011 (2014)
46 P.-F. Li, F. Lelli, S. McGaugh, and J. Schormbert,

Astron. Astrophys., 615: A3 (2018)

115103-8

https://global.oup.com/academic/product/cosmology-9780198526827
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361:20053337
http://dx.doi.org/10.1088/2041-8205/712/1/L81
http://dx.doi.org/10.1111/j.1365-2966.2010.17052.x
http://dx.doi.org/ 10.1103/PhysRevLett.107.191101
http://dx.doi.org/ 10.1111/j.1365-2966.2012.20852.x
http://dx.doi.org/10.1103/PhysRevD.86.083517
http://dx.doi.org/ 10.1140/epjc/s10052-014-2821-7
http://dx.doi.org/10.1093/mnras/stu2349
http://dx.doi.org/10.1093/mnras/stw995
http://dx.doi.org/10.1086/182804
http://dx.doi.org/10.1086/113063
http://dx.doi.org/10.1103/PhysRevLett.117.121303
http://dx.doi.org/10.1103/PhysRevD.94.122001
http://dx.doi.org/10.1086/161130
http://dx.doi.org/10.1016/S1387-6473(02)00243-9
http://dx.doi.org/10.1093/mnras/stt2066
http://dx.doi.org/10.1093/mnras/249.3.523
http://dx.doi.org/10.1088/0004-637X/718/1/380
http://dx.doi.org/ 10.1140/epjc/s10052-013-2447-1
https://inspirehep.net/record/483371/files/arXiv:astro-ph_9810302.pdf
http://dx.doi.org/10.3847/1538-4357/aa8991
http://dx.doi.org/10.3847/0004-6256/152/6/157
http://astroweb.cwru.edu/SPARC/
http://dx.doi.org/10.1103/PhysRevLett.117.201101
http://dx.doi.org/10.1051/0004-6361:20041210
http://dx.doi.org/10.1093/mnras/283.1.18
http://ned.ipac.caltech.edu/
http://arxiv.org/abs/1609.06642
http://dx.doi.org/10.1137/0908085
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1111/j.1745-3933.2007.00306.x
http://dx.doi.org/ 10.1140/epjc/s10052-017-5128-7
http://arxiv.org/abs/1711.05025
http://dx.doi.org/10.1086/670067
http://dx.doi.org/ 10.1142/S0218271813500600
http://dx.doi.org/ 10.1140/epjc/s10052-011-1838-4
http://dx.doi.org/10.1016/j.physletb.2013.05.020
http://dx.doi.org/ 10.1140/epjc/s10052-015-3380-2
http://dx.doi.org/10.1017/pasa.2014.2
http://dx.doi.org/ 10.1051/0004-6361/201732547

	Introduction
	Data and radial acceleration relation
	Methodology
	Fitting method
	Monopole and dipole corrections
	Model comparison

	Results
	Monte Carlo simulations
	Discussion and conclusions

