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Abstract: A new method to test the valence quark distribution of nucleons obtained from the maximum entropy

method using the Gottfried sum rule by performing the DGLAP equations with GLR-MQ-ZRS corrections and the

original leading-order/next-to-leading-order (LO/NLO) DGLAP equations is outlined. The test relies on knowledge

of the unpolarized electron–proton structure function F
ep
2 and the electron–neutron structure function F en

2 and the

assumption that Bjorken scaling is satisfied. In this work, the original Gottfried summation value obtained by the

integrals of the structure function at different Q2 is in accordance with the theoretical value of 1/3 under the premise

of light-quark flavor symmetry of the nucleon sea, whether it results from dynamical evolution equations or from

global quantum chromodynamics fits of PDFs. Finally, we present the summation value of the LO/NLO DGLAP

global fits of PDFs under the premise of light-quark flavor asymmetry of the nucleon sea. According to analysis of

the original Gottfried summation value with two evolution equations at different Q2, we find that the valence quark

distributions of nucleons obtained by using the maximum entropy method are effective and reliable.
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1 Introduction

Up to now, there exist numerous sum rules for unpo-
larized and polarized structure functions, some of which
are rigorous results and others rely on more or less well
justified assumptions [1]. The Adler sum rule [2] is ex-
act and has no quantum chromodynamics (QCD) per-
turbative corrections, but its experimental verification is
at a very low level of accuracy [3]. The constant 2 in
the Adler sum rule is the result of local commutation
relations of the time components of the hadronic weak
current [4], which is based on the fundamental quark
structure of the standard model. By contrast, the corre-
sponding Gottfried sum rule [5] for charged lepton scat-
tering was based merely on the valence quark picture
and is modified both by perturbative and nonperturba-
tive effects [6, 7]. The original Gottfried sum rule states
that the integral over Bjorken variable x of a difference
of electron–proton and electron–neutron structure func-
tions is a constant 1/3 under flavor symmetry in the

nucleon sea (ū(x) = d̄(x)), which is independent of the
negative four-momentum transfer squared Q2. Some ex-
perimental results were achieved from electron and muon
[8] scattering on isoscalar targets or on hydrogen target
[9] deep inelastic scattering (DIS). For non-singlet Mellin
moment neutrino and charged-lepton DIS, the N =1 mo-
ments correspond to the Adler and Gottfried sum rules
[5–7].

In this paper, we test the valence quark distribu-
tions of nucleons obtained from the maximum entropy
method (MEM) by the original Gottfried sum rule us-
ing the DGLAP equation [10] with GLR-MQ-ZRS cor-
rections (DGLAP-GLR-MQ-ZRS equations from the IM-
Parton16 package) [11] at different Q2 and compare these
results with those obtained from the original DGLAP
evolution equations and the latest global fits of parton
distribution functions. The most important correction
to the DGLAP evolution equations entails accounting
for parton–parton recombination. In the IMParton16
package, we developed a dynamical parton model for the
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origin of parton distributions and extended the initial
evolution scale down to Q2 ∼ 0.1 GeV2. For evolving
the leading-order (LO) and next-to-leading-order (NLO)
DGLAP equations, we use the modified Mellin transfor-
mation method by CANDIA [12] to calculate the original
Gottfried summation value under the premise of light-
quark flavor asymmetry of the nucleon sea (ū(x)= d̄(x)).
The starting scale for the LO and NLO evolution is
Q2 = 1 GeV2. Finally, we give the summation value of
the LO/NLO DGLAP latest global fits of parton distri-
bution functions under the premise of light-quark flavor
asymmetry of the nucleon sea (ū(x) 6= d̄(x)). We find
that the obtained summation values at different Q2 are
nearly consistent with experimental observations.

The organization of the paper is as follows. A non-
perturbative initial input of valence quark distributions
of nucleons obtained from the MEM is introduced in Sec-
tion II. Section III discusses the Gottfried sum rule. Sec-
tion IV presents comparisons of DGLAP-GLR-MQ-ZRS
results with results from the LO/NLO DGLAP equations
under the premise of light-quark flavor symmetry in the
nucleon sea, as well as calculate the summation value
of LO/NLO DGLAP latest global fits of parton distri-
bution functions under the premise of light-quark flavor
asymmetry in the nucleon sea. Finally, a summary is
given in Section 5.

2 Nonperturbative initial input from the

quark–parton model

The quark model is a classification scheme for
hadrons in terms of their valence quarks under the as-
sumption that baryons are composed of three quarks and
mesons of a quark and an antiquark. The solutions of the
QCD evolution equations for parton distributions of the
nucleon at high Q2 depend on the initial parton distri-
butions at low starting scale Q2

0. According to the quark
model, an ideal assumption is that the nucleon consists of
only three valence quarks at extremely low Q2

0. Hence,
a nonperturbative initial input of the nucleon includes
merely three valence quarks, which is the simplest in-
put nucleon [13]. In the dynamical parton distribution
function model, all sea quarks and gluons are QCD ra-
dioactively generated from valence quarks at high scale
Q2. The simple functional form to approximate the va-
lence quark distribution is the time-honored canonical
parametrization f(x)=AxB(1−x)C [14]. Therefore, the
simplest parametrization of the naive nonperturbative
input of the proton by using the MEM [15] is written as

up
v(x,Q

2
0)= 7.191x0.286(1−x)1.359,

dp
v(x,Q

2
0)= 13.068x0.681(1−x)3.026.

(1)

In addition, the valence quark distributions of the free
neutron obtained in previous work [16] is written as

un
v(x,Q

2
0)= 16.579x0.780(1−x)3.267,

dn
v(x,Q

2
0)= 8.678x0.369(1−x)1.511.

(2)

By performing the DGLAP-GLR-MQ-ZRS evolution
equations [11], one can determine the valence quark dis-
tributions of the nucleon at high Q2 with the initial non-
perturbative input obtained by using the MEM [15, 16].
We get the specific low starting scale Q2

0 =0.0671 GeV2

for the naive nonperturbative input, by performing QCD
evolution on the second moments of the valence quark
distributions [17] and the measured moments of the va-
lence quark distributions at a higher Q2 [18]. The run-
ning coupling constant αs for the leading order and the
current quark masses are the parameters of perturbative
QCD involved in the evolution equations [11, 15]. For
evolving the LO and NLO DGLAP equations, we use
the modified Mellin transformation method by CANDIA
[12]. The starting scale for the LO and NLO evolution
is Q2 =1 GeV2.

3 Gottfried sum rule

In the proton, there are two up valence quarks (uv)
and one down valence quark (dv). In fact, each quark
distribution function qi(x) (i = u,d,s) always contains
the sum of two parts, including the valence quark q(v)i

and the sea quark q(s)i distribution function:

qi(x)= q
(v)
i (x)+q

(s)
i (x). (3)

According to the definition of the distribution func-
tions, the integrals of all distribution functions (quark
and antiquark distribution functions qi(x) and q̄i(x))
within the proton should give the valence quark number.
Therefore, the valence sum rules for the nonperturbative
inputs are as follows:

∫ 1

0

[u(x)− ū(x)]dx=2,

∫ 1

0

[d(x)− d̄(x)]dx=1.

∫ 1

0

[s(x)− s̄(x)]dx=0.

(4)

Through the transformation of Eq. (4), one can get
∫ 1

0

[

2

3
(u(x)− ū(x))−

1

3
(d(x)− d̄(x))

]

dx=1, (5)

∫ 1

0

[

2

3
(d(x)− d̄(x))−

1

3
(u(x)− ū(x))

]

dx=0. (6)

Equation (5) corresponds to the proton with a charge of
1. Equation (6) corresponds to the neutron with a charge
of 0. The proton and the neutron are an isospin doublet,
and up and down quarks are also isospin doublets, so the
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distribution of the up quark in the neutron should be the
same as that of the down quark in the proton.

According to the quark–parton model, the structure
function of nucleon is written as

2xF1(x)=F2(x)=
∑

i

e2i xfi(x), (7)

which is called the Callan–Gross expression [19]. In this
equation, i is the flavor index, ei is the electrical charge
of the quark of flavor i (in units of the electron charge),
and xfi is the momentum fraction of the quark of flavor
i. The structure functions of the proton and the neutron
obtained from DIS of the charged lepton on protons and
neutrons are, respectively,

1

x
F ep

2 (x)=
4

9
[u(x)+ ū(x)]+

1

9
[d(x)+ d̄(x)]+

1

9
[s(x)+ s̄(x)],

(8)
1

x
F en

2 (x)=
4

9
[d(x)+ d̄(x)]+

1

9
[u(x)+ ū(x)]+

1

9
[s(x)+ s̄(x)].

(9)
For the proton, we can set

sv(x)= s̄v(x)= ūv(x)= d̄v(x)= 0,

us(x)= ūs(x)= ds(x)= d̄s(x)= ss(x)= s̄s(x)=
1

6
S(x),

S(x)= us(x)+ds(x)+ ūs(x)+ d̄s(x)+ss(x)+ s̄s(x).
(10)

S(x) is the sea quarks’ sum of the proton, with the heavy
quark’s sea quark wave function neglected.

By bringing the constraints of Eqs. (3) and (10) into
Eqs. (8) and (9), one can get

f(x)=
1

x
(F ep

2 (x)−F en
2 (x))=

1

3
(uv(x)−dv(x)), (11)

where f(x) is a function of the Bjorken scaling variables
x.

From Eq. (11), we see that the difference between the
proton structure function F ep

2 and the neutron structure
function F en

2 comes only from the contribution of the va-
lence quarks, and the contribution of the sea quarks just
cancels out. Therefore, the measurement of the proton
and neutron structure functions will provide information
about valence quarks. The integral of Eq. (11) with the
constraints of Eq. (3) and Eq. (4) is as follows:

I =

∫ 1

0

dx

x
(F ep

2 (x)−F en
2 (x)), (12)

where I is the integral summation value of Eq. (12).
Theoretically, this integral value is a constant (1/3),
which is called the original Gottfried sum rule [9] un-
der flavor symmetry of the nucleon sea. In this paper,
we use Ii(Q

2) to represent the original Gottfried summa-
tion value from two evolution equations (the DGLAP-
GLR-MQ-ZRS equations and the DGLAP equations) at
different Q2.

Gottfried studied high-energy electron–nucleon scat-
tering, meson–nucleon reactions, and the spectroscopy of
heavy-quark bound states. Then he proposed the Got-
tfried sum rule [5, 6, 9] for DIS to test the elementary
quark model. The corresponding Gottfried sum rule for
charged-lepton–nucleon DIS involved a form factor for
the nucleon. Within the quark–parton model, the corre-
sponding isospin sum rule in the case of charged-lepton–
nucleon DIS is as follows:

I =

∫ 1

0

dx

x
(F lp

2 (x)−F ln
2 (x))

=

∫ 1

0

dx

[

1

3
(uv(x)−dv(x))+

2

3
(ū(x)− d̄(x))

]

=
1

3
−
2

3

∫ 1

0

dx(d̄(x)− ū(x)). (13)

If the nucleon sea were flavor symmetric, with ū(x) =
d̄(x), one should have IG(Q

2) = 1/3. If the nucleon sea
were flavor asymmetric, namely, ū(x) 6= d̄(x), one should
have IG(Q

2) 6= 1/3. Moreover, this result is supported
by the existing neutrino–nucleon DIS data [3] and the
most detailed analysis of muon–nucleon DIS data of the
NMC Collaboration [8]. It is worth noting that there
are also some other works [20] on the light-quark flavor
asymmetry deviation from the canonical value of 1/3 for
the Gottfried sum rule.

4 Results and discussion

The DGLAP equations, which is based on the par-
ton model and perturbative QCD theory, describe the
evolution of quark and gluon densities with Q2. The
DGLAP-GLR-MQ-ZRS evolution equation is based on
the DGLAP equation and mainly considers the parton
recombination effect. Theoretical work on parton recom-
bination was first proposed by Gribov, Levin, and Ryskin
(GLR) [21], then Mueller and Qiu (MQ) put forward the
recombination probabilities for gluons to go into gluons
or into quarks in a low-density limit [22] and gave a de-
tailed calculation. Finally, Zhu, Ruan, and Shen (ZRS)
further presented a set of new and concrete evolution
equations for parton recombination corrections [23].

It is worth noting that the number density of par-
tons increases rapidly in the small x area. In a small x
area, the number density of partons increases to a certain
extent so that the quanta of partons overlap spatially.
Therefore, parton–parton recombination becomes essen-
tial for small x area, which can effectively prevent the
continuous increase of cross sections near their unitarity
limit.

In fact, the GLR-MQ-ZRS corrections can be very
effective in slowing down parton splitting at low scale
Q2 < 1 GeV2. Up to now, ZRS have considered all the
recombination functions for gluon–gluon, quark–gluon,
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and quark–quark processes [23]. Because the gluon den-
sity is obviously greater than the quark density at small
x, the gluon–gluon recombination effect is dominant in
calculations [11]. Therefore, we use the simplified form
of the DGLAP equations with GLR-MQ-ZRS corrections
(DGLAP-GLR-MQ-ZRS equations) in the analysis [11].

To accurately test the validity of the DGLAP equa-
tions with GLR-MQ-ZRS corrections for the parton dis-
tribution function evolution at different Q2, we perform
the integral of Eq. (12), which is completely independent
of Q2 in theory. By applying the DGLAP-GLR-MQ-ZRS
evolution equations, the quark distribution functions for
the proton and the neutron (Eqs. (1) and (2)) are evolved
to high Q2, and the structure functions of the proton and
the neutron, F p

2 and F n
2 , under different Q2 are further

calculated.

0 0.2 0.4 0.6 0.8 1

x

0

1

2

3

4

5

f(
x
)

LO

2
 = 15 GeV

2
Q

DGLAP-GLR-MQ-ZRS

Fig. 1. (color online) f(x) as a function of the
Bjorken scaling variables x.

We take the DGLAP-GLR-MQ-ZRS equations as dy-
namical evolution equations to obtain the distribution of
the right end of Eq. (11). The integral value of the area
below the curve in Fig. 1 is 0.3333 at Q2 = 15 GeV2. It
is obvious that the result from the DGLAP-GLR-MQ-
ZRS equations is in good agreement with the theoretical
value of 1/3 under light-quark flavor symmetry.

After that, we take the DGLAP equations as dynam-
ical evolution equations to obtain the distribution of the
right end of Eq. (11), the starting scale Q2

0 =1 GeV2 for
the LO and NLO evolution with naive nonperturbative
input, which is from the modified Mellin transformation
method by CANDIA [12]. By applying the DGLAP evo-
lution equations, the quark distribution functions of the
proton and the neutron from the MEM (Eqs. (1) and
(2)) as initial input are evolved to high Q2. Then one
can get the original Gottfried summation value Ii(Q

2) of
LO and NLO with light-quark flavor symmetry.

Figure 2 shows comparisons of the original Gottfried
summation value Ii(Q

2) from the DGLAP-GLR-MQ-
ZRS equations with results from DGLAP equations with

LO and NLO at different Q2. The red solid line in Fig-
ure 2 represents the theoretical value of 1/3. Triangles,
rhombuses, and stars represent the original Gottfried
summation values at different Q2 given by the DGLAP-
GLR-MQ-ZRS evolution equations and the DGLAP evo-
lution equations at LO and NLO, respectively.

0 50 100

)
2

(GeV
2

Q

0.325

0.33

0.335

)
2

(Q iI

1/3

DGLAP-GLR-MQ-ZRS

DGLAP(lo)

DGLAP(nlo)

Fig. 2. (color online) Comparisons of original
Gottfried summation value from DGLAP-GLR-
MQ-ZRS equations (triangle) with results from
DGLAP equations LO (rhombus) and NLO (star)
at different Q2 under the premise of light-quark
flavour symmetry ū(x)= d̄(x) .

It is apparent that the original Gottfried summa-
tion values of the DGLAP-GLR-MQ-ZRS equations have
smaller deviations than the summation values of the LO
and NLO DGLAP equations. However, a closer inspec-
tion reveals that the summation values from the DGLAP
equations are not exactly equivalent to the theoretical
value of 1/3 but are slightly smaller than 1/3. Moreover,
the summation values from the NLO DGLAP equations
are slightly smaller than the summation values of the
LO DGLAP equations, which is from the α2

s -level per-
turbative QCD correction. These corrections compared
with the experimental analysis turn out to be small and
cannot be responsible for the significant discrepancy be-
tween experimental results and the naive expectation of
1/3. It is noteworthy that the original quark–parton
model expression for the original Gottfried sum rule is
modified by perturbative QCD contributions when the
nucleon sea was flavor symmetric in Ref. [7]. Further-
more, S.I.Alekhin et al. [27] take into account effects
of possible nonperturbative in QCD expression for Got-
tfried sum rule and effects of nuclear corrections.

To more intuitively analyze the summation value un-
der light-quark flavor symmetry and asymmetry of the
nucleon sea, we compare the results from the dynamical
evolution equations with the global fits from IMParton16
(Set B), MSTW (LO/NLO) [24], and CTEQ6l [25] and
CT10 (NLO) [26], as shown in Fig. 3.
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From Fig. 3, we can see that the results of the two
evolution equations (DGLAP-GLR-MQ-ZRS/DGLAP
equations) are basically consistent with the results
with the global QCD fit MSTW08 (LO) (squares) and
CTEQ6l (crosses) on the premise of flavor symmetry and
are approximately equal to the theoretical value of 1/3.
In the previous analysis, the summation value under fla-
vor symmetry of the nucleon sea could not describe the
deviation from the experimentally analyzed data. Con-
sequently, we have to admit that this result from the
quark-parton flavor-symmetric prediction is very naive.

0 50 100

)
2

(GeV
2

Q

0.1

0.2

0.3

0.4

0.5

)
2

(Q iI

DGLAP-GLR-MQ-ZRS Flavour Symmetry
DGLAP(lo) Flavour Symmetry

DGLAP(nlo) Flavour Symmetry
MSTW2008(lo) Flavour Symmetry

CTEQ6l Flavour Symmetry

IMParton(Set B) Flavour Asymmetry
MSTW2008(lo) Flavour Asymmetry
CTEQ6l Flavour Asymmetry
MSTW2008(nlo) Flavour Asymmetry
CT10(nlo) Flavour Asymmetry

Fig. 3. (color online) Comparisons of summa-
tion value from two dynamics evolution equa-
tions (DGLAP-GLR-MQ-ZRS / DGLAP equa-
tions) with global QCD fit from IMParton16
(Set B), MSTW(LO / NLO) and CTEQ6l /
CT10(NLO) at different Q2 under the premise of
light-quark flavour symmetry or asymmetry of the
nucleon sea.

By analyzing the results of light-quark flavor symme-
try, we find that it does not affect the necessity to intro-
duce flavor asymmetry (ū(x) 6= d̄(x)) for the description
of the experimentally analyzed results for the Gottfried
sum rule. Figure 3 shows the direct results from IMPar-
ton16 (Set B), MSTW (LO/NLO), and CTEQ61/CT10
(NLO) PDFs obtained by computing Eq. (12) with the
use of Eq. (7). It clearly indicates violation of the the-
oretical value of 1/3 with light-quark asymmetry of the
nucleon sea, which is in agreement with the experimen-
tal analysis. Moreover, one can find that the summation
values from the NLO DGLAP global fits MSTW (NLO)
and CT10 (NLO) PDFs by computing Eq. (12) with the
use of Eq. (7) are slightly smaller than the LO DGLAP
global fits MSTW (LO) and CTEQ6l PDFs, which are
from the perturbative QCD correction.

5 Summary

In this work, the valence quark distribution function
of the nucleon at low Q2

0 obtained by using the MEM is
used as nonperturbative initial input. The parton distri-
butions of the nucleon are then evaluated dynamically at
high Q2 by using the DGLAP-GLR-MQ-ZRS equations
and the LO and NLO DGLAP equations. Then, we get
the unpolarized electromagnetic structure functions for
the proton and the neutron, F p

2 and F n
2 . Through calcu-

lation of Eq. (12), one can further obtain the Gottfried
summation value.

This is an interesting attempt to test the valence
quark distribution function of the nucleon obtained by
using the MEM via the Gottfried sum rule by performing
the DGLAP-GLR-MQ-ZRS equations and the DGLAP
equations. The original Gottfried summation value ob-
tained by using Eq. (11) with different Q2 is in ac-
cordance with the theoretical value of 1/3 under the
light-quark flavor symmetry of the nucleon sea. It is
apparent that the original Gottfried summation values
of the DGLAP-GLR-MQ-ZRS equations have smaller
deviations than the summation values of the LO/NLO
DGLAP equations. Moreover, the summation value from
the NLO DGLAP equations is slightly smaller than the
summation value of the LO DGLAP equations, which is
from the α2

s -level perturbative QCD correction. The cor-
rection is small. It should be mentioned that the naive
theoretical summation value equal to 1/3 is very prelim-
inary compared with the existing experimental analysis
results. Finally, we give the summation value from Fig. 3,
which is not equal to 1/3 with NLO DGLAP evolution
and the global fits from IMParton16 (Set B), MSTW
(LO/NLO) [24], CTEQ6l [25] and CT10(NLO) [26] un-
der light-quark flavor asymmetry. This result validates
the necessity of introducing light-quark flavor asymmetry
in the nucleon sea for the description of the experimental
analysis results.

The Gottfried sum rule verifies the reliability of
nonperturbative initial input of valence quark distribu-
tions from the starting low scale Q2

0 by performing the
DGLAP-GLR-MQ-ZRS equations. The DGLAP-GLR-
MQ-ZRS equations based on the DGLAP equations with
parton–parton recombination corrections is an important
innovation, demonstrating that the nonlinear effects of
parton–parton recombination are non-negligible at low
Q2. According to the results of the above analysis, the
valence quark distribution functions of the nucleon ob-
tained by using the MEM as initial input are valid and
reliable.

The authors would like to thank Rong Wang for help-

ful and fruitful suggestions.
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